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Abstract

This paper studies impacts of imperfect collateralization on derivatives values. Particu-
larly, we investigate option prices in no collateral posting and time-lagged collateral posting
cases with stochastic volatility, interest rate and default intensity models, where a stochastic
collateral asset value may depend on the values of the assets different from the underlying
contract. We also derive an approximation of the credit value adjustment (CVA)’s density
function in pricing forward contract with bilateral counter party risk, which seems useful in
evaluation of the CVA’s Value-at-Risk(VaR).
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1. Introduction

After several financial crises, most financial institutions have been forced to take stringent credit
risk management in derivatives trading. For example, collateralized contracts are widely used
in interbank markets, which substantially decreases the impact of the counter parties’ credit
deterioration.

On the other hand, collateralized contracts are not so common in non-financial institutions,
as their contracts are still uncollateralized or imperfectly collateralized. In that case, the evalu-
ation of counter parties’ credit risks should be taken into account. For instance, credit valuation
adjustments (CVAs) are charged for those contracts. As a result, there may exist significant
difference in values between collateralized and the corresponding uncollateralized contracts.

Following the recent trend, many researchers in academia and industries have been consider-
ing derivatives pricing with taking counter party risks into account and CVAs. The traditional
CVA in practice is roughly estimated by a default-free value of the derivatives contract mul-
tiplied by the counter party’s default probability. In order to obtain more accurate values of
the derivatives contracts with default risks, a significant number of researches have investigated
so-called the wrong way risk. For instance, see Redon [2006], Lipton-Sepp [2009], Brigo et al.
[2011], Hull-White[2012] and Fujii-Takahashi [2012c, 2013].

However, a lot of problems still remain unsolved for the derivatives pricing. For example, a
collateral is posted with time lag and/or with currencies different from the payment currency
or assets such as treasuries suffering from their own price fluctuations. Although the traditional
CVA in practice is estimated based on a pre-default value of the corresponding contract with
default-free parties, in order to obtain more accurate estimations, the credit risks of the contract
parties should be taken into consideration in the pre-default value. Therefore, the traditional
CVA is not always enough in the value adjustment of derivatives with the contract parties’
default risks.

With regard to formulation of derivatives values with default risks, one typical method is to
employ backward stochastic differential equations (BSDEs). Applications of BSDEs in finance
are discussed, for instance by El Karoui-Peng-Quenez [1997], Ma-Yong [2000], Carmona[2000]
and Crépey [2011]. In this paper, we use Markovian BSDEs, that is forward BSDEs (FBSDEs),
where the underlying variables (factors) follow diffusion processes, which are characterized by
the solution of forward stochastic differential equations (FSDEs).

More concretely, we investigate the derivatives values of over-the-counter (OTC) forward
contracts and European options. In particular, we suppose the underlying variables to be the
following random factors: the (forwards’ and options’) underlying asset prices, their volatilities,
(contract parties’) default probabilities, the risk-free interest rate, a collateral asset price and
those volatilities. Under the setting, we are interested in analyzing derivatives prices with
counter party risk and imperfect collateralization. Particularly, we would like to derive the
density function of the CVA(credit value adjustment) for a forward contract, which seems useful
in evaluation of the CVA’s VaR (Value at Risk). Also, we often need to investigate the impacts
on the option values of the changes in the parameters of the underlying factors and the times
to maturities of the options.

However, it is a very tough task to numerically evaluate the solutions to high dimensional
FBSDEs as encountered in this paper. To overcome this problem, we apply a perturbative
expansion method and a perturbative expansion technique with interacting particle method, a
new computational scheme for FBSDEs recently developed by Fujii and Takahashi [2012a,b]
and Takahashi and Yamada [2013]. Then, it turns out to be true that in certain situations, the
traditional CVAs are not enough for the price adjustment of the derivatives with the counter
parties’ default risks, but more precise evaluation is necessary. Particularly, we concretely
show that overestimated amounts of traditional CVAs are not to be neglected under some
circumstances.
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The organization of the paper is as follows: the next section briefly explains a general
result for pre-default values of financial derivatives. Section 3 explains the framework of the
approximation methods of the solutions to the FBSDEs. As an application, Section 4 provides an
approximation for the density function of the CVA (Credit Value Adjustment) in the valuation of
forward contract with bilateral counter party risk. Applying a Monte Carlo scheme to calculate
approximated values of FBSDEs, Section 5 analyzes the impacts on the option values of the
changes in the parameters of the underlying factors and the times to maturities of the options.
Moreover, we examine the shapes of implied volatility curves of the options. Section 6 concludes.
Appendix provides the derivation of an expression for the pre-default value of a derivatives
contract, and explains the Monte Carlo method to compute approximated values of FBSDEs.

2. Pricing Derivatives with Default Risks under Imperfect Col-
lateralization

This section briefly explains a general method for pricing derivatives with default risks under
imperfect collateralization.

Let us define a base probability space as (Ω,F ,F, Qp), where F is a filtration which satisfies
the usual conditions, and Qp is a risk-neutral measure under a currency p. In these settings,
we consider two firms, an investor (i = 1) and a counter party (i = 2), whose default times are
defined as τ i ∈ [0,∞], (i = 1, 2). Also, we define τ = τ1 ∧ τ2 := min{τ1, τ2}. Here, τ i (and
hence τ) is assumed to be a totally-inaccessible F-stopping time. Then, indicator functions H i

t

and Ht are defined as H i
t = 1{τ i≤t} and Ht = 1{τ≤t}, respectively. Moreover, we suppose the

existence of absolutely continuous compensator for each H i and hi is a hazard rate of H i. We
also assume that there are no simultaneous defaults and hence, the hazard rate of H is given by

ht = h1t + h2t . (1)

Other than the default times τ i(i = 1, 2), we introduce a Rd- valued stochastic process,
X = {Xt : t ≥ 0} as a vector of state variables, which affects market values of assets considered
in this paper. Specifically, X is the solution to the following Rd-valued stochastic differential
equation defined on (Ω,F ,F, Qp):

dXt = γ0(Xt)dt+ γ(Xt) · dWt, (2)

X0 = x0,

whereW is a n dimensional Brownian motion. (for x, y ∈ Rn, we use notations x·y =
∑n

i=1 xiyi.)
γ0(x) : Rd 7→ Rd and γ(x) : Rd 7→ Rd×n satisfy conditions so that X has the unique strong
solution. Moreover, we define G = (Gt){t≥0}(⊂ F) as the augmented filtration generated by X.

Under a bilateral collateral contract, which is a recent market convention, each contract
party i = 1 or 2 needs to post a collateral to j(̸= i) when the value of derivatives becomes
a negative present value for i. Then, when it posts a cash collateral, in practice an overnight
interest rate of a collateral currency is paid by a party receiving the collateral. Future values
of the overnight interest rates are fixed by overnight index swaps (OISs). We note that an OIS
itself is a collateralized contract.

Hereafter, we assume that p is a payment currency, q is a collateral currency, Ψ represents
a maturity payoff, Γt represents the value process of the collateral and rpt (or rqt ) represents the
risk-free interest rate process under currency p (or currency q). Also, cpt (or cqt ) represents the
collateral rate process under currency p (or currency q) and lit(≥ 0), i ∈ {1, 2} represents the
party i’s loss rate process.

In general, cp, cq, rp, rq, l[i] and h[i] (i = 1, 2) are assumed to be F adapted processes. In this
article, we also suppose that cp, cq, rp, rq and Ψ are functions of X, and that under non-default
states of both parties, that is conditioned on {τ > t}, h[i] and l[i] (i = 1, 2) are some functions
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of X. Moreover, when either an investor or counter party is default, the derivatives contract is
terminated after the settlement of the present values of the collateral and derivatives.

Under these assumptions, conditioned on {τ > t}, we consider the pre-default value Vt

of a derivatives with maturity T (> 0) and the payoff Ψ from the viewpoint of the investor,
party 1. Under the no-jump condition which means V does not jump when one party defaults
(∆Vτ := Vτ − Vτ− = 0) 1, Vt is expressed as follows. The derivation is given in Appendix.

Vt = EQp

[
e−

∫ T
t rpuduΨ+

∫ T

t
e−

∫ u
t rpsds

{
(rqu − cqu)Γu

+h[1]u l[1]u (Γu − Vu)
+ − h[2]u l[2]u (Vu − Γu)

+
}
du
∣∣∣Ft

]
, (3)

where the first term in the right hand side of (3) is the default-free price of the original derivatives
and the second term is the return from posting or posted collaterals. The third and fourth terms
express the effects of over (or under) collateral when the investor (i = 1) or the counter party
(i = 2) defaults.

At each time t, when a collateral is posted perfectly as the value of derivatives Vt by the
settlement currency of derivatives, the collateral value Γt coincides with the present value Vt of
the derivatives.

In this article, as examples of imperfect collateralization, we take a no collateral case and
a time-lag collateral case. Moreover, in Section 5 we consider a case that collateral values are
dependent on not only the original derivatives values, but also other factors. (e.g. the collateral
is posted by a currency different from the payment currency of the original derivatives.) Hence,
we suppose that the collateral value Γ is a function of X as well as of Vt−∆. Then, because the
other variables, cp, cq, rp, rq, Ψ, h[i], l[i] (i = 1, 2), which determine a value V in (3) on {τ > t},
are also some functions of X, V does not jump at a time of default.

From (3), we also remark that

e−
∫ t
0 rpuduVt +

∫ t

0
e−

∫ u
0 rpsds

×
{
(rqu − cqu)Γu + h[1]u l[1]u (Γu − Vu)

+ − h[2]u l[2]u (Vu − Γu)
+
}
du (4)

is a martingale, and the drift term of the stochastic differential equation which above the equa-
tion satisfies is zero. Then, a pair of (V, Z) is the solution to the following backward stochastic
equation (BSDE). Here, Z stands for the volatility of the derivatives value (or volatility multi-
plied by V )

dVt = cptVtdt− f(t,X, V,Γ)dt+ Zt · dWt, (5)

VT = Ψ(XT ), (6)

f(t,X, V,Γ) = (rqt − cqt )Γt − (rpt − cpt )Vt

+h
[1]
t l

[1]
t (Γt − Vt)

+ − h
[2]
t l

[2]
t (Vt − Γt)

+ (7)

We summarize the discussion above as the following proposition:

Proposition 2.1. Suppose that p is a payment currency, q is a collateral currency, Ψ represents
a maturity T ’s payoff of a derivative, Γt represents the value process of the collateral and rpt (or
rqt ) represents the risk-free interest rate process under currency p (or currency q). Also, cpt (or

1In our subsequent numerical analyses, since Γt is a function of Vt−∆ and a diffusion process Xt, with assump-
tions that cp, cq, rp, rq, Ψ h[i] and l[i] (i = 1, 2) on {τ > t} are some functions of X, the no-jump condition is
fulfilled.
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cqt ) represents the collateral rate process under currency p (or currency q) and lit(≥ 0), i ∈ {1, 2}
represents the party i’s loss rate process.

We also assume that cp, cq, rp, rq and Ψ are functions of X, the solution to the SDE (2),
and that under non-default states of both parties (i.e. on {τ > t}), the default hazard rates h[i]

and l[i] (i = 1, 2) are some functions of X. Moreover, when either an investor or counter party
is default, the derivatives contract is terminated after the settlement of the present values of the
collateral and derivatives.

Then, when Γt is a function of Xt and Vt−∆, a past pre-default value of the derivative, the
current pre-default value Vt from the viewpoint of the party 1 is expressed as the equation (3).
Moreover, V and its volatility Z are given by the solution to the FBSDE (2), (5)-(7).

In the BSDE, (6) shows that a payoff of the derivatives contracts with maturity T is expressed
as Ψ(XT ), which is a function of state variables XT at time T .

The first term of (5), cptVt means the discount by a collateral rate of the currency p, which
is the same as the payment currency of the derivatives. That is, the term corresponds to the
discount in the perfect collateralized contract with payment and collateral currency p.

Moreover, the first term in (7), (rqt−cqt )Γt, represents a collateral cost caused from a collateral
asset whose value is Γ. The second term, (rpt − cpt )Vt, stands for a cost of the cash collateral of
currency p. These first and second terms, (rqt − cqt )Γt − (rpt − cpt )Vt, express a funding spread
between the cash of currency p and a collateral asset valued as Γ.

Finally, the third term in (7), h
[1]
t l

[1]
t (Γt − Vt)

+, shows an (instantaneous) expected gain of
the investor i = 1 caused by imperfect collateralization when the investor i = 1 defaults. On

the other hand, the fourth term in (7), h
[2]
t l

[2]
t (Vt − Γt)

+, means an (instantaneous) expected
loss of the investor i = 1 caused by an imperfect collateralization when the counterparty i = 2
defaults.

In general, it is difficult to solve this BSDE. Then, in this article, we approximate the solution
by a perturbation method introduced in Section 3. Especially, we consider a perturbed BSDE
(10), where a perturbation parameter ϵ is introduced in the driver f , and the solution of the
BSDE (5)-(7) is expanded around the solution of the following equation, that is in BSDE (10)
we set ϵ = 0:

dVt = cptVtdt+ Zt · dWt, (8)

VT = Ψ(XT ) (9)

In other words, we propose to expand the solution around the value of the derivatives which
is perfectly collateralized with currency p, the same currency as the settlement currency of the
derivatives.

Moreover, in order to implement computation of this approximation, we apply Monte Carlo
simulations based on an interacting particle method, which is explained in Appendix.

3. Perturbative Expansion Method

This section summarizes an approximation method for the solution to the BSDEs (5)-(7) by
following Fujii-Takahahi [2012a]. For a mathematical validity of the method, see Takahashi and
Yamada [2013].

First, we approximate the FBSDE with a perturbative expansion technique. Let us introduce
the perturbation parameter ϵ as follows:{

dV
(ϵ)
t = cptV

(ϵ)
t dt− ϵf

(
t,X, V

(ϵ)
t ,Γ

(ϵ)
t

)
dt+ Z

(ϵ)
t · dWt

V
(ϵ)
T = Ψ(XT ),

(10)

Here, we make Γ depend explicitly on ϵ as Γ
(ϵ)
t , since Γ is dependent on V such as Γt = Vt−∆(∆ >

0) in the analyses below.
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Next, let us expand a solution of FBSDE (10) with respect to ϵ around ϵ = 0. That is, when

f is small enough, we suppose that V
(ϵ)
t and Z

(ϵ)
t are expanded as follows:

V
(ϵ)
t = V

(0)
t + ϵV

(1)
t + ϵ2V

(2)
t + · · · (11)

Z
(ϵ)
t = Z

(0)
t + ϵZ

(1)
t + ϵ2Z

(2)
t + · · · . (12)

For instance, by calculating the expansions of V
(ϵ)
t and Z

(ϵ)
t up to the k-th order with putting

ϵ = 1, we obtain the k-th order approximation of Vt, Zt as follows:

Ṽt =
k∑

i=0

V
(i)
t , Z̃t =

k∑
i=0

Z
(i)
t , (13)

where V
(i)
t and Z

(i)
t are calculated recursively using the results of the lower order approximations

and X.
Next, we explain how to derive V

(i)
t concretely. For the zero-th order of ϵ, one can easily

derive V
(0)
t by substituting 0 for ϵ in the equation (10), and it is expressed as follows:

dV
(0)
t = cptV

(0)
t dt+ Z

(0)
t · dWt (14)

V
(0)
T = Ψ(XT ) . (15)

It can be integrated as

V
(0)
t = E

[
e−

∫ T
t cpsdsΨ(XT )

∣∣∣Ft

]
. (16)

We remark that V
(0)
t is equivalent to the price of a standard European contingent claim without

default risks, and V
(0)
t is a function of Xt. Then, applying Itô’s formula, we obtain Z

(0)
t as a

function of Xt.
It is clear that they can be evaluated by standard Monte Carlo simulation. However, in

order to obtain the higher order approximations, it is crucial to derive an explicit or closed form

approximation of V
(0)
t . For instance, the SABR formula for plain vanilla options derived by

Hagan et al. [2002] is useful for an approximation of V
(0)
t , which is applied in the numerical

experiments of this paper. To approximate derivatives values in general models and prices of
multi-asset exotic options such as basket and average options, which are mainly traded in the
energy market, it is useful to employ an asymptotic expansion method. (See Shiraya-Takahashi
[2011], [2014] for the details.)

Next, V
(1)
t is derived by differentiating (10) with respect to ϵ, and substituting 0 for ϵ.

dV
(1)
t = cptV

(1)
t dt− f(t,Xt, V

(0)
t ,Γ

(0)
t )dt+ Z

(1)
t · dWt, (17)

V
(1)
T = 0 , (18)

Then, we have the following by solving the above equations.

V
(1)
t = E

[∫ T

t
e−

∫ u
t cpsdsf(u,Xu, V

(0)
u ,Γ(0)

u )du

∣∣∣∣Ft

]
. (19)

Because V
(0)
u and Z

(0)
u are functions of Xu, we obtain V

(1)
t as a function of Xt, and again by

Itô’s formula, we have Z
(1)
t as a function of Xt, too. We note that this first order approximation

term V
(1)
t can be regarded as a traditional CVA (Credit Value Adjustment) which is often used

in practice. 2.
2Our convention of CVA is different from the one, which is used in practice by sign, where it is defined as the

“charge” to the clients. Thus, our CVA = -CVA.
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In the similar manner, an arbitrarily higher order correction term can be derived. For
example, the second order correction term is expressed as follows:

dV
(2)
t = cptV

(2)
t dt− ∂

∂v
f(t,Xt, V

(0)
t ,Γ

(0)
t )V

(1)
t dt− ∂

∂γ
f(t,Xt, V

(0)
t ,Γ

(0)
t )Γ

(1)
t dt

+Z
(2)
t · dWt, (20)

V
(2)
T = 0, (21)

V
(2)
t = E

[∫ T

t
e−

∫ u
t cpsds

[
∂

∂v
f(u,Xu, V

(0)
u ,Γ(0)

u )V (1)
u +

∂

∂γ
f(t,Xu, V

(0)
u ,Γ(0)

u )Γ(1)
u

]
du

∣∣∣∣Ft

]
.

= E

[∫ T

t
e−

∫ u
t cpsds

[(
−(rpu − cpu)− h[1]u l[1]u 1{Γ(0)

u >V
(0)
u } − h[2]u l[2]u 1{Γ(0)

u <V
(0)
u }

)
V (1)
u

+
(
(rqu − cqu) + h[1]u l[1]u 1{Γ(0)

u >V
(0)
u } + h[2]u l[2]u 1{Γ(0)

u <V
(0)
u }

)
Γ(1)
u

]
du
∣∣∣Ft

]
. (22)

4. Approximation of Density Function of CVA in a Multi-factor
Model

The first concrete example applies a perturbative expansion method in the relevant FBSDE
to an approximation for the density function of the CVA (Credit Value Adjustment) in the
valuation of a pre-default contract with bilateral counter party risk. We note that the first
order expansion term in the driver of the pricing BSDE is regarded as CVA which is typically
used in practice, and that an approximate density function of the CVA seems useful in evaluation
of its VaR(Value at Risk).

In particular, we take a forward contract of a foreign exchange (forex) rate with bilateral
counter party risk, where both parties post their collateral perfectly with the constant time-lag
(∆) by the same currency as the payment currency. For simplicity we also assume the constant
risk-free interest rate r is equal to the collateral rate.

We consider a forward contract on the forex rate S ϵ̂ with strike K and maturity T . The rele-
vant FBSDE for the pre-default contract value is given with perturbation parameters ϵ, ϵ̂ ∈ (0, 1].
In particular, the state vector consisting of the FSDE is specified as X ϵ̂ = (h[1],ϵ̂, h[2],ϵ̂, S ϵ̂, ν ϵ̂),
where S ϵ̂ is the forex rate, ν ϵ̂ is its volatility and hj,ϵ̂, j = 1, 2 stands for each counter party’s
hazard rate process.

dV
(ϵ),ϵ̂
t = rV

(ϵ),ϵ̂
t dt− ϵf(h

[1],ϵ̂
t , h

[2],ϵ̂
t , V

(ϵ),ϵ̂
t , V

(ϵ),ϵ̂
t−∆ )dt+ Z

(ϵ),ϵ̂
t · dWt, (23)

V
(ϵ),ϵ̂
T = S ϵ̂

T −K, (24)

f(h
[1],ϵ̂
t , h

[2],ϵ̂
t , V

(ϵ),ϵ̂
t , V

(ϵ),ϵ̂
t−∆ ) = h

[1],ϵ̂
t (V

(ϵ),ϵ̂
t−∆ − V

(ϵ),ϵ̂
t )+ − h

[2],ϵ̂
t (V

(ϵ),ϵ̂
t − V

(ϵ),ϵ̂
t−∆ )+,

(25)

dh
[j],ϵ̂
t = µ[j]h

[j],ϵ̂
t dt+ ϵ̂σh[j]h

[j],ϵ̂
t

 j∑
η=1

cj,ηdW
η
t

 , h
[j],ϵ̂
0 = h

[j]
0 , (j = 1, 2), (26)

dS ϵ̂
t = (r − rf )S

ϵ̂
tdt+ ϵ̂ν ϵ̂t

(
S ϵ̂
t

)β 3∑
η=1

c3,ηdW
η
t

 , S ϵ̂
0 = s0, β ∈ (0, 1], (27)

dν ϵ̂t = κ(θ − ν ϵ̂t )dt+ ϵ̂ξν ϵ̂t

 4∑
η=1

c4,ηdW
η
t

 , ν ϵ̂0 = ν0. (28)
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Here, W = (W 1,W 2,W 3,W 4) is a four dimensional Brownian motion, and cj,η (j = 1, 2, 3, 4,

η = 1, · · · , j), r, rf , κ θ, ξ, µh[j] , σh[j] , h
j
0 (j = 1, 2), s0 and ν0 are some constants.

Then, the derivative price with the bilateral counter party risk is given by

V
(ϵ),ϵ̂
t = E

[
e−r(T−t)(S ϵ̂

T −K)
]
+ ϵE

[∫ T

t
e−r(u−t)f(h[1],ϵ̂u , h[2],ϵ̂u , V (ϵ),ϵ̂

u , V
(ϵ),ϵ̂
u−∆)du

]
.

(29)

Hereafter, we pursue an approximation of the equation above. Firstly, the equation with regard
to the first order of the ϵ-expansion is expressed as follows:

dV
(1),ϵ̂
t = rV

(1),ϵ̂
t dt− f(h

[1],ϵ̂
t , h

[2],ϵ̂
t , V

(0),ϵ̂
t , V

(0),ϵ̂
t−∆ )dt+ Z

(1),ϵ̂
t · dWt, (30)

V
(1),ϵ̂
T = 0. (31)

Then, the derivative price with the bilateral counter party risk is approximated by

V
(ϵ),ϵ̂
t ≃ V

(0),ϵ̂
t + ϵV

(1),ϵ̂
t , (32)

and the term ϵV
(1),ϵ̂
t is regarded as the CVA at time t represented by the following equation:

V
(1),ϵ̂
t = E

[∫ T

t
e−r(u−t)f(h[1],ϵ̂u , h[2],ϵ̂u , V (0),ϵ̂

u , V
(0),ϵ̂
u−∆)du

]
, (33)

where

f(h[1],ϵ̂u , h[2],ϵ̂u , V (0),ϵ̂
s , V

(0),ϵ̂
u−∆)

= h[1],ϵ̂u · (V (0),ϵ̂
u−∆ − V (0),ϵ̂

u )+ − h[2],ϵ̂u · (V (0),ϵ̂
u − V

(0),ϵ̂
u−∆)+. (34)

Here, V
(0),ϵ̂
u−∆ = 0 when u < t+∆.

Then, V
(0),ϵ̂
u and V

(0),ϵ̂
u − V

(0),ϵ̂
u−∆ are explicitly calculated as

V (0),ϵ̂
u = e−rf (T−u)S ϵ̂

u − e−r(T−u)K, (35)

V (0),ϵ̂
u − V

(0),ϵ̂
u−∆ = e−rf (T−u)S ϵ̂

u − e−rf (T−u+∆)S ϵ̂
u−∆ − k(u;∆, r), (36)

where

k(u; ∆, r) := e−r(T−u)(1− e−r∆)K. (37)

Next, we apply the asymptotic expansion method to evaluation of

C(u; t, x) = e−r(u−t)E
[
f(h

[1],ϵ̂
u , h

[2],ϵ̂
u , V

(0),ϵ̂
u , V

(0),ϵ̂
u−∆)

]
up to ϵ̂3 where (t, x) represents the values of

the state variables x = (h[1], h[2], s, ν) at time t, that is the third order of ϵ̂. Then, we obtain
the following result.

Proposition 4.1. The value of CVA at time t, ϵV
(1),ϵ̂
t is approximated by

ϵV
(1),ϵ̂
t = ϵ

∫ T

t
CAE(u; t, x)du+O(ϵ̂4), (38)

where, CAE(u; t, x) stands for the approximation of C(u; t, x) based on the asymptotic expansion
up to the third order, which is expressed as follows:

CAE(u; t, x) = e−r(u−t)
2∑

j=1

{
ϵ̂

(
yjN

(
yj√
Σj

)
+Σjn[yj ; 0,Σj ]

)

+ϵ̂2

(
−Cj

1

Σj
yjn[yj ; 0,Σj ] + Cj

0N

(
yj√
Σj

))
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+ϵ̂3
(
Cj
2

(
−1

Σj
+

(yj)2

(Σj)2

)
n[yj ; 0,Σj ] + Cj

3n[y
j ; 0,Σj ]

+

(
Cj
4

(
(yj)4

(Σj)4
− 6(yj)2

(Σj)3
+

3

(Σj)2

)
+ Cj

5

(
(yj)2

(Σj)2
− 1

Σj

)
+ Cj

6

)
n[yj ; 0,Σj ]

+
(Cj

0)
2

2
N

(
yj√
Σj

)
− Cj

0C
j
1

Σj
yjn[yj ; 0,Σj ]

)}
. (39)

Here, N(·) and n[·, µ,Σ] stand for the standard normal distribution function and the normal
density function with mean µ and variance Σ, respectively. Also, Cj

i and yj i = 0, 1, · · · , 6,
j = 1, 2 are some constants. 3

We emphasize that due to the analytical approximation of each CAE(u; t, x), we have no
problem in computation of the integral in (38), which is very fast.

The parameters in the factors are set as follows with ϵ = ϵ̂ = 1:

• parameters of h[1]:

h
[1]
0 = 0.02, µ[1] = −0.02, σh[1] = 0.2.

• parameters of h[2]:

h
[2]
0 = 0.01, µ[2] = 0.02, σh[2] = 0.3.

• parameters of S:
S0 = 10, 000, r = rf = 0.01, β = 1.

• parameters of ν:
ν0 = 0.1, κ = 1, θ = 0.2, ξ = 0.3.

• correlations are in Table 1.

Table 1: Correlation Matrix

h[1] h[2] S ν

h[1] 1 0.5 -0.3 0.2

h[2] 0.5 1 0.1 0.1
S -0.3 0.1 1 -0.8
ν 0.2 0.1 -0.8 1

In this setting, we show the density function of the approximate CVA above by the asymptotic
expansion method with Monte Carlo simulations. T stands for the maturity of the forward
contract, t denotes the future time when CVA is evaluated, and ∆ is the lag of the collateral
posting. In addition to the the parameters above, the setup and the procedure of the calculation
are summarized as follows:

• maturity (T ): 5 years, evaluation date (t): 2.5 years.

• strike price (K): 10, 000.

• time step size in Monte Carlo: 1
400 year.

• the number of trials in Monte Carlo: 325,000 with antithetic variates.

Procedure:

3Those are given upon request.
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1. implement Monte Carlo simulations of the state variables (h[1], h[2], S, ν) until time t
(from time 0).

2. given each realization of the state variables, compute CAE(u; t, x).

3. integrate CAE(u; t, x) numerically with respect to the time parameter u from t to T , and
plot the values and their frequencies after normalization.

Figure 1 shows the density functions of CVA with different time-lags.

Figure 1: Density Functions of CVA with Different Time-Lags
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It is observed that the longer the time lag is, the wider the density is, and that the mode
(or average) moves to the right when the time-lag becomes longer. Here, we recall that in the
CVA equation (33), we have

f(h[1],ϵ̂u , h[2],ϵ̂u , V (0),ϵ̂
u , V

(0),ϵ̂
u−∆)

= h[1],ϵ̂u · (V (0),ϵ̂
u−∆ − V (0),ϵ̂

u )+ − h[2],ϵ̂u · (V (0),ϵ̂
u − V

(0),ϵ̂
u−∆)+. (40)

Then, we are able to see that when the first term on the right hand side increases, the CVA also
increases. This is because in our parameterization the hazard rate h[1],ϵ̂ in the first term tends

to be larger than h[2],ϵ̂ in the second term mainly due to h
[1]
0 > h

[2]
0 .

Figure 2 shows the density functions of CVA with different evaluation dates.

Figure 2: Density Functions of CVA with Different Evaluation Dates
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Because the CVA depends on the time to maturity T−t, we can see that when the evaluation
date t is in the more future (0.5, 1, · · · , 4.5), that is, the shorter the time to maturity (T − t)
becomes, the CVA becomes smaller.

5. Option Pricing with Counter Party Risk and Imperfect Col-
lateralization

This section analyzes option prices with counter party risk and imperfect collateralization by
applying the so-called interacting particle method, which is explained in Appendix. Particularly,
we investigate the impacts on the option values of the changes in the parameters of the underlying
factors and the times to maturities of the options. We also examine the shapes of implied
volatility curves.

5.1. Models

First, we explain the models which are used in simulations. Hereafter, W stands for a eight
dimensional standard Brownian motion. For x, y ∈ Rn, we use notations x · y =

∑n
i=1 xiyi.

• The underlying asset price S is described by a SABR model:

dSt = (rpt − δt)Stdt+ νt (St)
β ΣS · dWt; S0 = s0, (41)

dνt = νtΣν · dWt; ν0 = ν̂0. (42)

• Both of the hazard rates (h[i], i = 1, 2) and the risk-free rates (rp, rq) of currencies p and
q follow CIR models:

dh
[i]
t = κi

(
θi − h

[i]
t

)
dt+

√
h
[i]
t Σh[i] · dWt; h

[i]
0 = ĥ

[i]
0 , (43)

drpt = κrp (θrp − rpt ) dt+
√
rptΣrp · dWt; rp0 = r̂p0, (44)

drqt = κrq (θrq − rqt ) dt+
√

rqtΣrq · dWt; rq0 = r̂q0. (45)

• The collateral asset price (A) follows a SABR model:

dAt = µAAtdt+AβA
t νAt ΣA · dWt; A0 = a0, (46)

dνAt = νAt ΣνA · dWt; νA0 = ν̂A0 . (47)

Here, ΣS , Σν , Σh[i](i = 1, 2), Σrp , Σrq , ΣA and ΣνA are eight dimensional vectors, which are
determined by an instantaneous correlation matrix among S, ν, h[i](i = 1, 2), rp, rq and A.

For simplicity, we assume that collateral rates (cp, cq) and loss rates (l[1],l[2]) are constants.
The payoff Ψ at maturity T of a derivatives is expressed by a function of the underlying

asset price S. Particularly, for the case of a European call option with strike K, Ψ is given as

Ψ(ST ) = (ST −K)+ := max{ST −K, 0}. (48)

Moreover, we allow a collateral asset to be different from the cash of the settlement currency
of the derivatives, such as the cash of a different currency. In addition, we consider the cases
that both parties post no collaterals or post collaterals by the asset with its value A and a
constant time-lag ∆.

Under the setting, the state variable vector {Xt : t ≥ 0} is specified as

Xt = (St, νt, h
[1]
t , h

[2]
t , rpt , r

q
t , At, Ât, ν

A
t , ν

Â
t ), where Ât := At−∆. Then, the stochastic differential

equation (2) is formulated by the above stochastic differential equations (41)-(47).
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Then, the driver f for the no collateral case is expressed as follows:

f(t,X, V,Γ) = f(t,X, V ) = −ypt Vt + h
[1]
t l[1](−Vt)

+ − h
[2]
t l[2](Vt)

+, (49)

where ypt = rpt − cp.
On the other hand, the driver f for the case that the collateral asset with its value A is

posted with a constant time-lag ∆ is expressed as follows:

f(t,X, V,Γ) = yqtVt−∆
At

At−∆
− ypt Vt + h

[1]
t l[1]

(
Vt−∆

At

At−∆
− Vt

)+

−h
[2]
t l[2]

(
Vt − Vt−∆

At

At−∆

)+

, (50)

where Γt = Vt−∆
At

At−∆
, yqt = rqt − cqt and ypt = rpt − cpt .

5.2. Concrete Setup in Numerical Experiments

We calculate the values of OTC (over the counter) European call options on an asset price S.
Hereafter, to avoid complexity, we assume that the investor is default-free (h[1] ≡ 0, h = h[2]),

and the loss rate of the counter party is 1 (l[2] = 1), that is there is no recovery at default.
Under this setup, we have the following specifications:

• The driver of the BSDE with the no collateral case is expressed as follows:

f(t,X, V,Γ) = −ypt Vt − h
[2]
t Vt. (51)

The first order approximation V
(1)
t in (19) (the general expression of the first order ap-

proximation in Section 3) is given as follows:

V
(1)
t = E

[∫ T

t
e−

∫ u
t cpsds

(
−ypuV

(0)
u − h[2]u V (0)

u

)
du

∣∣∣∣Ft

]
. (52)

• The driver f of the BSDE for the case that the collateral asset with its value A is posted
with a constant time-lag ∆ is expressed as follows:

f(t,X, V,Γ) = yqtVt−∆
At

At−∆
− ypt Vt − h

[2]
t

(
Vt − Vt−∆

At

At−∆

)+

. (53)

In this case, the first order approximation V
(1)
t in (19), is obtained as follows:

V
(1)
t = E

[∫ T

t
e−

∫ u
t cpsds

[
yquV

(0)
u−∆

Au

Au−∆
− ypuV

(0)
u − h[2]u

(
V (0)
u − V

(0)
u−∆

Au

Au−∆

)+
]
du

∣∣∣∣∣Ft

]
,

(54)

where we use the relation that Γ
(0)
u = V

(0)
u−∆

Au
Au−∆

.

We remark that in the following tables, h[2] is denoted as h.
In numerical examples, we investigate the following points:

1. effects of parameters

• no collateral

– effects of parameters of the hazard rate

12



– effects of parameters of the interest rate rp

• asset collateral

– effects of parameters of the hazard rate

∗ time-lags : 0.25 or 0.02

– effects of parameters of the interest rate rp

∗ time-lags : 0.25 or 0.02

– effects of parameters of the interest rate rq

– effects of parameters of the collateral asset A

2. effects of the maturities

• no collateral

• asset collateral

The Monte Carlo simulations with the interacting particle method are implemented with
time-step size 1/200 year and 5 million sample paths, and V (0) is evaluated by the formula of
Hagan et al. [2002].

Hereafter, we make the following assumptions otherwise mentioned.

• We set the correlations which are not under consideration for the effects in the changes as
0.

• We set the risk free rates and the collateral rates as rp = cp = 1% or rq = cq = 1% when
rp or rq is a constant.

Under these settings with no collateral posting, the driver f of the BSDE (51) is expressed
as

f(t,X, V,Γ) = −h
[2]
t Vt, (r

p : constant) (55)

f(t,X, V,Γ) = −ypt Vt − h
[2]
t Vt, (r

p : stochastic) (56)

On the other hand, when the collateral is posted with a constant time-lag ∆ by the asset
whose value is A, the driver (53) is expressed as

f(t,X, V,Γ) = −h
[2]
t

(
Vt − Vt−∆

At

At−∆

)+

, (rpand rq : constant) (57)

f(t,X, V,Γ) = yqtVt−∆
At

At−∆
− h

[2]
t

(
Vt − Vt−∆

At

At−∆

)+

, (rp : constant) (58)

f(t,X, V,Γ) = −ypt Vt − h
[2]
t

(
Vt − Vt−∆

At

At−∆

)+

, (rq : constant) (59)

f(t,X, V,Γ) = yqtVt−∆
At

At−∆
− ypt Vt − h

[2]
t

(
Vt − Vt−∆

At

At−∆

)+

, (rpand rq : stochastic)

(60)

• The time-lag ∆ is equal to 0.25.

• The OTC European option is ATM (K = S0) call option with 6 years maturity, where the
underlying asset yields a dividend, which is equal to the risk free rate (i.e. the drift term
of the risk-neutral asset price process is 0).

The underlying asset price follows the SABR model and its parameters are listed in Table
2.
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Table 2: Parameters of the underlying asset price (SABR model)

s0 β ν0 σν ρ

underlying asset and its volatility 100 0.5 2 0.4 0

Here, σX := |ΣX | where |x| =
√∑n

i=1 x
2
i for x ∈ Rn. ρ is the instantaneous correlation

between S and ν. We note that the corresponding Black-Scholes volatility is about 20%,
where the Black-Scholes volatility is defined as σ such that ν0S

β
0 = σS0.

• The parameters of the stochastic differential equation of the collateral asset value (46)
are generally assumed to be a SABR model. However, otherwise mentioned, we use the
following parameters in Table 3, that is A follows a log-normal model.

Table 3: Parameters of the collateral asset price

A0 µA β νA0 σA ρ

collateral asset and its volatility 1 0 1 50% 0 0

ρ is the instantaneous correlation between A and νA.

• The parameters of the stochastic differential equation (SDE) of the hazard rate are listed
in Table 4.

Table 4: Parameters of Hazard Rate

h0 κ θ σh

hazard rate 4% 1 4% 40%

Here, the initial value of the hazard rate h0 = 4% is taken from the results of Hull - White
[2005], which is regarded as the default probability about between Ba and Baa ratings.

• When the risk free rate rp or rq is stochastic, the parameters of the SDE are listed in
Table 5.

Table 5: Parameters of risk free interest rate (rx = rp or rq)

r̂x0 κrx θrx σrx OIS cx

risk free rate (rp) 4% 1 4% 40% 1%
risk free rate (rq) 4% 1 4% 40% 1%

• ”0th”, ”1st” and ”2nd” in the tables stand for the values of V (0), V (1) and V (2), respec-
tively. ”total” means the sum of 0th, 1st and 2nd values, that is the sum of V (0), V (1)

and V (2) (Total = V (0) + V (1) + V (2)).

5.3. Effects of Parameters

We investigate the effects of the changes in the parameters of the underlying factors with or
without collateral.
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5.3.1. No Collateral

Here, we change the parameters of the hazard rate h and the interest rate rp for uncollateralized
contracts.

First, we investigate the effects of the changes in the parameters of the hazard rate. The
cases of the parameters of the hazard rate are listed in Table 6.

Table 6: Parameters of Hazard Rate

h0 κ θ σh

i 2% 1 2% 20%
ii 2% 1 2% 40%
iii 4% 1 4% 20%
iv 4% 1 4% 40%
v 6% 1 6% 20%
vi 6% 1 6% 40%

From the results in Hull - White [2005], the default probability 2% is the one for a rating
between A and Baa, and 4% is for a rating between Baa and Ba, and 6% is for a rating between
Ba and B. Here, in order to concentrate on the effects of the parameters of h, we assume that
rp is a constant as rp = cp. The results are listed in Table 7.

Table 7: Effects of Hazard Rate - no collateral -

i ii iii iv v vi

0th 19.69 19.69 19.69 19.69 19.69 19.69
1st -2.26 -2.54 -4.52 -4.62 -6.79 -6.81
2nd 0.17 0.31 0.60 0.82 1.31 1.61
Total 17.60 17.46 15.77 15.90 14.21 14.50

This result shows that the level of hazard rate (h0 and θ) has a large impact on the 1st order
value V (1). However, the effect of volatility of the hazard rate is small (see case i and ii, or iii
and iv). In the cases of iii and iv, the volatility of the hazard rate has a larger impact on the
2nd order value V (2) than on the 1st order value V (1).

We also note that the sign of the 2nd order value is different from that of the 1st order value.
This is because while V (1) is evaluated based on the default-free price, it should be based on
the value including the default risk, and V (2) makes its adjustment.

In terms of call and put option’s implied volatilities, these results are in Figure 3.
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Figure 3: Implied volatilities of call and put option prices with no collateral posting
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The low rating (high value of hazard rate) causes decrease in implied volatilities. Especially,
this is the case for the deeper In-The-Money (ITM) options. In fact, for the call options the
shapes of the skew curves have upward slopes, as opposed to that for the default-free case.
Moreover, this results means that the put-call parity does not hold and that implied volatilities
of call and put options with the same strike do not coincide.

We can understand it from the following observation: the losses become larger in the deeper
ITMs when the counter party defaults, and the default probability is higher for the worse rating
of the counter party. Consequently, the values of correction terms become larger. That is, the
decreases in the implied volatilities become larger.

Next, we study the effects of interest rate rp. The cases of parameters are listed in Table 8.

Table 8: Parameters of Interest Rate rp

rp0 κ θ σrp OIS

i 1% 1 1% 0% 1%
ii 1% 1 1% 20% 1%
iii 1% 1 1% 40% 1%
iv 4% 1 4% 20% 1%
v 4% 1 4% 40% 1%
vi 4% 1 4% 20% 4%
vii 4% 1 4% 40% 4%

The results are listed in Table 9.

Table 9: Effects of Interest Rate rp - no collateral -

i ii iii iv v vi vii

0th 19.69 19.69 19.69 19.69 19.69 16.45 16.45
1st -4.63 -4.65 -5.05 -7.92 -8.03 -3.54 -3.61
2nd 0.82 0.85 1.01 2.00 2.23 0.65 0.80
Total 15.89 15.89 15.65 13.77 13.90 13.56 13.64
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The effect of the collateral cost yp = rp−cp is the same as that of h because of the functional
form f . Hence, the results are similar to that of h in no collateral case. Although the cases
ii, iii and vi, vii have the same initial and long term collateral spreads (rp0 = θrp = cp), the
difference of the interest rate level affects the level of the pre-default value. Moreover, when the
initial value of the risk free rate is different from the collateral rate (see iv and v), the second
order value V (2) affects more than 10% of the default free derivatives price. Thus, one needs to
consider about the effects of interest rate, especially when the collateral cost yp is not equal to
0.

5.3.2. Asset Collateral

Next, we investigate the cases of an asset collateralized contract.
First, we study the effects of parameters of the hazard rate for different volatilities of the

asset collateral price. The parameters of the hazard rate are the same as in Table 6. We consider
the cases that the time-lag of collateral posting is 0.25 years or 0.02 years. As in the no collateral
case, to concentrate on the effects of the parameter changes of h, we assume that rp and rq are
constants as rp = cp and rq = cq.

The results are in Table 10 and 11.

Table 10: Effects of Hazard Rate - time-lag : 0.25 years -

i ii iii iv v vi

0th 19.69 19.69 19.69 19.69 19.69 19.69
1st -0.44 -0.48 -0.87 -0.89 -1.31 -1.32
2nd 0.002 0.003 0.006 0.008 0.012 0.016
Total 19.26 19.21 18.82 18.81 18.39 18.39

Table 11: Effects of Hazard Rate - time-lag : 0.02 years -

i ii iii iv v vi

0th 19.69 19.69 19.69 19.69 19.69 19.69
1st -0.11 -0.12 -0.21 -0.22 -0.32 -0.32
2nd 0.000 0.000 0.000 0.001 0.001 0.001
Total 19.59 19.57 19.48 19.48 19.38 19.38

The absolute values of V (1) and V (2) are smaller than those in the no collateral cases. The
first order value V (1) is mainly changed by the initial value (h0) and its long term value (θ) of
the hazard rate, and the effect of the volatility on the hazard rate is small as in the no collateral
case. The 2nd order value V (2) is very small, even if the volatility of collateral asset price is
50%. Especially, in the case of short time-lag (∆ = 0.02), the effect of the 2nd order value is
almost 0.

Next, we change parameters of the interest rate rp or rq for the asset collateralized contracts.
First, we study the effects of the interest rate rp (rq is a constant as rq = cq). The parameters

are the same as in Table 8. The results are in Table 12.
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Table 12: Effects of Interest Rate rp - asset collateral, time-lag : 0.25 years -

i ii iii iv v vi vii

0th 19.69 19.69 19.69 19.69 19.69 16.45 16.45
1st -0.89 -0.92 -1.32 -4.29 -4.40 -0.68 -0.76
2nd 0.01 0.03 0.10 0.46 0.67 0.05 0.19
Total 18.81 18.80 18.47 15.86 15.97 15.82 15.88

The absolute values of V (1) and V (2) are smaller than those in the no collateral cases, as
in the results of the effect of the hazard rate case. As opposed to the no collateral case, the
impact of rp is much larger than that of hazard rate h. Under the current assumption, h affects

only
(
Vt − Vt−∆

At
At−∆

)+
, which is seen from the equation (53). On the other hand, rpt affects

Vt itself. Thus, in the collateral posted case, the change in the yp has the larger effect on the
derivatives value.

As in the Table 8, when the level of rp is different from cp, the second order value V (2) has a
large impact, even if the collateral is posted (see iv and v). Thus, we cannot ignore the second
order value, especially when the risk free rate is different from the collateral rate.

The Table 13 shows the results of 0.02 years time-lag:

Table 13: Effects of Interest Rate rp - asset collateral, time-lag : 0.02 years -

i ii iii iv v vi vii

0th 19.69 19.69 19.69 19.69 19.69 16.45 16.45
1st -0.22 -0.24 -0.65 -3.61 -3.72 -0.17 -0.25
2nd 0.00 0.02 0.09 0.39 0.61 0.05 0.19
Total 19.48 19.47 19.13 16.47 16.58 16.33 16.39

The short time lag makes the first order values V (1) decrease. However, the second order
values V (2) are not so small. From these results, we need to consider the second order values
in the cases of wide collateral spreads and the stochastic interest rate, even if the time lag of
collateralization is short.

Next, we check the effects of another interest rate rq based on the parameters listed in Table
14.

Table 14: Parameters of Interest Rate rq

rq0 κ θ σrq OIS

i 1% 1 1% 0% 1%
ii 1% 1 1% 20% 1%
iii 1% 1 1% 20% 1%
iv 4% 1 4% 20% 1%
v 4% 1 4% 40% 1%
vi 4% 1 4% 20% 4%
vii 4% 1 4% 40% 4%

The results are listed in Table 15.
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Table 15: Effects of Interest Rate rq - asset collateral -

i ii iii iv v vi vii

0th 19.69 19.69 19.69 19.69 19.69 19.69 19.69
1st -0.89 -0.86 -0.45 2.37 2.46 -0.89 -0.78
2nd 0.01 0.06 0.28 0.44 1.12 0.23 0.91
Total 18.81 18.89 19.53 22.50 23.28 19.04 19.83

It is observed that when the volatility becomes high, the first order value contributes to
the plus side in the total value, as opposed to the effects of the changes in the other factors’
volatilities, where the first order values contribute to the minus sides in the total values. The
reason is that the sign of the term concerning with rq is plus that is different from the sign of
another term concerning with h[2] (see (58)). Thus, the first order value contributes to the plus
side in the total value, when the rq moves widely or yq > 0. (This phenomenon is observed in
the case of yp < 0, because of the sign of yp in (59).) However, in the cases of yq < 0, the first
order value moves conversely.

Moreover, as in the case of rp in Table 12, the cases that risk free rate rq is different from
collateral rate cq have a large impact, and we need to treat carefully these cases.

Finally, we study the effects of the parameters of the collateral asset price. The cases that
we consider are listed in Table 16.

Table 16: Parameters of the Collateral Asset Price

Collateral Asset Price A0 µA β νA0 σA

i 1 0 1 20% 0%
ii 1 0 1 20% 30%
iii 1 0 1 50% 0%
iv 1 0 1 50% 30%
iv 1 0 0 0% 0%

The risk free rates are set as a constant (rp = cp and rq = cq). The results of collateral asset
price are in Table 17.

Table 17: Effects of the collateral asset price

i ii iii iv v

0th 19.69 19.69 19.69 19.69 19.69
1st -0.75 -0.75 -0.89 -0.91 -0.71
2nd 0.001 0.002 0.008 0.011 0.000
Total 18.95 18.94 18.81 18.80 18.98

This result shows that the volatility on volatility of the collateral asset price does not have
a large impact on the pre-default value. The effects of the volatility on the collateral asset price
are also not so large.
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5.4. Maturity Effect

In this subsection we investigate the effects of the option values of the differences on the contract
maturity.

First, we assume that the collateral cost yq is set as 0, while yp follows a stochastic process,
whose parameters are in Table 5. (The driver of the BSDE is given by (56) or (59).) Maturities
of options are 2, 4, 6, 8 and 10 years.

5.4.1. No Collateral

Table 18 and Figure 4 show the options prices without default risks: V (0) denoted by 0th, the
traditional CVAs in practice V (1) denoted by 1st and the second order correction term V (2)

denoted by 2nd.

Table 18: Call option prices with no collateral posting

2 years 4 years 6 years 8 years 10 years

0th 11.32 16.06 19.69 22.75 25.42
0th + 1st 9.74 11.61 11.67 10.71 9.45
0th + 1st + 2nd 9.90 12.49 13.90 14.98 16.16

Figure 4: Call option prices with no collateral posting
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This result shows that the second order value (V (2)) largely affects the pre-default values in
the long maturity such as 10 years. The effect of the second order value is increased when the
maturity is longer: in the case of 2 years maturity, the second order effect (V (2)) is less than
1% of the corresponding default-free price. However, in the case of the 10 years maturity, the
second order value (V (2)) affects more than 10%. This result also reveals that if the rating of the
counter party is not good, the traditional CVA in practice could overestimate the adjustment
for an option price.

5.4.2. Asset Collateral

Next, we study the case of the asset collateral posting. Table 19 and Figure 5 show the results
for the collateral posting case.

20



Table 19: Call option prices with collateral posting

2 years 4 years 6 years 8 years 10 years

0th 11.32 16.06 19.69 22.75 25.42
0th + 1st 10.35 13.55 15.25 16.19 16.60
0th + 1st + 2nd 10.41 13.83 15.92 17.45 18.62

Figure 5: Call option prices with collateral posting
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Even if the collateral is posted, the effect of the second order value (V (2)) becomes important
when there exists a non negligible collateral cost yp.

6. Conclusion

We have studied the impacts of imperfect collateralization on forward and option values. In
particular, we examine the cases of no collateral posting and collateral posting with time-lag.
We also derive an approximation for the density function of the traditional CVA (Credit Value
Adjustment) in the valuation of forward contract with bilateral counter party risk, which seems
useful in evaluation of the CVA ’s VaR(Value t Risk). Moreover, we have considered the case
that the collateral values depend not only on the underlying contract prices, but also on other
asset values: for instance, currencies different from the payment currency or assets such as
treasuries suffering from their own price fluctuations.

In the numerical experiments we have shown that in the uncollateralized cases, we should
include higher order correction terms in our approximation method for the solutions to the
pricing FBSDEs (forward backward stochastic differential equations). Particularly, for contracts
with long maturities and low rating counter parties, the second order approximation term (V (2))
should not be ignored.

In addition, under the existence of default risks we have shown that the put-call parity
does not hold, and that implied volatilities of call and put options with the same strike do not
coincide.

In the collateralized contract cases, when the time-lag of collateral posting is long, the
collateral asset value is volatile or the interest rate is stochastic, our analyses have revealed that
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one needs to appropriately estimate those effects through the higher order correction terms in
the approximate solution to the pricing FBSDE.

More realistically, it is necessary to analyze large-scale portfolios in financial institutions
that consist of various types of financial assets and derivatives, which will be one of our next
research topics.
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A. Derivation of (3)

For a derivatives contract whose payoff is Ψ at maturity T (> 0), we derive the pre-default value
Vt (τ > t) from the investor(i = 1)’s viewpoint, where τ > t means that both the investor and
the counter party do not default until time t.

We assume that the regularity conditions necessary for the discussion are satisfied, and that
V does not jump at default of the contract parties.

In addition, the discussion below can be applied to not only options, but also general deriva-
tives including forward contracts.

We set the derivatives value as St, and define St = 0 on {τ ≤ t}. From the viewpoint of
the investor (i = 1), the payoffs at default of the investor and the counter party are expressed
respectively as follows:

η[1]u :=
(
Su − l[1]u (Su − Γu)

+
)
1{Su<0} +

(
Su + l[1]u (Γu − Su)

+
)
1{Su≥0}, (61)

η[2]u :=
(
Su − l[2]u (Su − Γu)

+
)
1{Su≥0} +

(
Su + l[2]u (Γu − Su)

+
)
1{Su<0}. (62)

Thus, the value of derivatives at time t(< τ) is given as follows:

St = e
∫ t
0 rpsdsEQp

[
e−

∫ T
0 rpsdsΨ1{τ>T} +

∫ T

t
e−

∫ u
0 rpsds(rqu − cqu)Γu1{τ>u}du

+

∫ T

t
e−

∫ u
0 rpsdsη

[1]
u−1{τ>u−}dH

1
u +

∫ T

t
e−

∫ u
0 rpsdsη

[2]
u−1{τ>u−}dH

2
u

∣∣∣Ft

]
, (63)

where the first term in the right hand side stands for the value of the derivatives payoff, and
the second term represents the gain (in the case of a positive sign) or the loss (in the case of
a negative sign), which is generated from the collateral posting. The third and fourth terms
express the payoffs at default of the investor (i = 1) and the counter party (i = 2), respectively.

Hereafter, we consider the pre-default value V which satisfies the relation that St = Vt1{τ>t}
at {τ > t}.

First, the next equation holds by (63):

Ste
−

∫ t
0 rpsds +

∫ t

0
e−

∫ u
0 rpsds(rqu − cqu)Γu1{τ>u}du

+

∫ t

0
e−

∫ u
0 rpsdsη

[1]
u−1{τ>u−}dH

1
u +

∫ t

0
e−

∫ u
0 rpsdsη

[2]
u−1{τ>u−}dH

2
u

= EQp

[
e−

∫ T
0 rpsdsΨ1{τ>T} +

∫ T

0
e−

∫ u
0 rpsds(rqu − cqu)Γu1{τ>u}du

+

∫ T

0
e−

∫ u
0 rpsdsη

[1]
u−1{τ>u−}dH

1
u +

∫ T

0
e−

∫ u
0 rpsdsη

[2]
u−1{τ>u−}dH

2
u

∣∣∣Ft

]
= Mt, (64)

where Mt is a Qp-martingale. If we set H i
t = M

[i]
t +

∫ t
0 h

[i]
s 1{τ i>s}ds, then

dMt = e−
∫ t
0 rpsdsdSt − rpt e

−
∫ t
0 rpsdsStdt+ e−

∫ t
0 rpsds(rqt − cqt )Γt1{τ>t}dt

+e−
∫ t
0 rpsdsη

[1]
t−1{τ>t−}dH

1
t + e−

∫ t
0 rpsdsη

[2]
t−1{τ>t−}dH

2
t

= e−
∫ t
0 rpsdsdSt − rpt e

−
∫ t
0 rpsdsStdt+ e−

∫ t
0 rpsds(rqt − cqt )Γt1{τ>t}dt
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+e−
∫ t
0 rpsdsη

[1]
t−1{τ>t−}dM

[1]
t + e−

∫ t
0 rpsdsη

[2]
t−1{τ>t−}dM

[2]
t

+e−
∫ t
0 rpsdsη

[1]
t 1{τ>t}h

[1]
t dt+ e−

∫ t
0 rpsdsη

[2]
t 1{τ>t}h

[2]
t dt. (65)

When we set dmt = e−
∫ t
0 rpsdsdMt + η

[1]
t−1{τ>t−}dM

[1]
t + η

[2]
t−1{τ>t−}dM

[2]
t , mt is also a Qp-

martingale, and we have

dmt = dSt − rptStdt+ (rqt − cqt )Γt1{τ>t}dt+ η
[1]
t 1{τ>t}h

[1]
t dt+ η

[2]
t 1{τ>t}h

[2]
t dt.

(66)

Since St = 0 on {τ ≤ t}, it holds that

dSt = 1{τ>t}

(
rptStdt− (rqt − cqt )Γtdt− η

[1]
t h

[1]
t dt− η

[2]
t h

[2]
t dt

)
+ dmt

= 1{τ>t}

(
rpt Stdt− (rqt − cqt )Γtdt− Sthtdt

+
(
l
[1]
t (St − Γt)

+1{St<0} − l
[1]
t (Γt − St)

+1{St≥0}

)
h
[1]
t dt

+
(
l
[2]
t (St − Γt)

+1{St≥0} − l
[2]
t (Γt − St)

+1{St<0}

)
h
[2]
t dt

)
+ dmt, (67)

On the other hand, if we define

Vt := EQp

[
e−

∫ T
t rpuduΨ+

∫ T

t
e−

∫ u
t rpsdsϖudu

∣∣∣Ft

]
, (68)

ϖu := (rqu − cqu)Γu + ϑ[1]
u h[1]u + ϑ[2]

u h[2]u , (69)

ϑ[1]
u := −

(
l[1]u (Vu − Γu)

+
)
1{Vu<0} +

(
l[1]u (Γu − Vu)

+
)
1{Vu≥0}, (70)

ϑ[2]
u := −

(
l[2]u (Vu − Γu)

+
)
1{Vu≥0} +

(
l[2]u (Γu − Vu)

+
)
1{Vu<0}, (71)

and then, the similar argument derives

e−
∫ t
0 rpuduVt +

∫ t

0
e−

∫ u
0 rpsdsϖudu = EQp

[
e−

∫ T
0 rpuduΨ+

∫ T

0
e−

∫ u
0 rpsdsϖudu

∣∣∣Ft

]
= M̃t, (72)

where M̃t is a Qp-martingale. Since m̃t is also a Q-martingale where dm̃t = e
∫ t
0 rpududM̃t, it holds

that

dVt = (rpt Vt −ϖt) dt+ dm̃t. (73)

Since the assumption that V does not jump at default (∆Vτ := Vτ − Vτ− = 0), it holds that

d(Vt1{τ>t}) = 1{τ>t}dVt − Vt−dHt −∆Vτ∆Hτ

= 1{τ>t} (r
p
t Vt −ϖt) dt− Vtht1{τ>t}dt−∆Vτ∆Hτ + dñt

= 1{τ>t}

(
rpt Vtdt− (rqt − cqt )Γtdt− Vthtdt

+
(
l
[1]
t (Vt − Γt)

+1{Vt<0} − l
[1]
t (Γt − Vt)

+1{Vt≥0}

)
h
[1]
t dt

+
(
l
[2]
t (Vt − Γt)

+1{Vt≥0} − l
[2]
t (Γt − Vt)

+1{Vt<0}

)
h
[2]
t dt

)
+ dñt,

(74)

where dñt = 1{τ>t}

(
dm̃t + Vt−(dM

[1]
t + dM

[2]
t )
)
. Both of the drivers of the BSDEs in (67) and

(74) are the same, and the boundary conditions are also the same because of ST = 1{τ>T}VT =
1{τ>T}Ψ. Thus, we can regard the solution of the BSDE St as that of 1{τ>t}Vt.

Finally, we note that when the derivatives is an option contract, (3) is obtained since Vt ≥ 0.
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B. Interacting Particle Method

As it is still a tough task to approximate FBSDEs more than the first order values analytically,
we make use of a Monte Carlo method based on a so-called interacting particle technique.

Hereafter, we assume that both parties post their collaterals perfectly with the constant
time-lag ∆ (i.e. Γt = Vt−∆), and the notations are the same as those in Section 3.

To calculate the values of V (1) and V (2), we apply interacting particle method. V (1) is
expressed as follows:

V
(1)
t = 1{τ>t}E

[
1{τ<T}f̂t

(
Xτ , V

(0)
τ , V

(0)
τ−∆

) ∣∣Ft

]
, (75)

where τ represents an interaction time, which is drawn independently from a Poisson distribution
with an arbitrary deterministic positive intensity λ, and f̂ is defined as follows:

f̂t(Xs, V
(0)
s , V

(0)
s−∆) =

1

λ
eλ(s−t)e−cp(s−t)f(s,Xs, V

(0)
s , V

(0)
s−∆). (76)

The above equations can be understood by intuition. That is, firstly using (17) with Γ
(0)
t = V

(0)
t−∆,

we derive a stochastic differential equation which is satisfied by V̂
(1)
t,s := eλ(s−t)V

(1)
s . Then, noting

V
(1)
t = V̂

(1)
t,t , we obtain the following equation:

V
(1)
t = E

[∫ T

t
e−λ(u−t)λf̂t

(
Xu, V

(0)
u , V

(0)
u−∆

)
du

∣∣∣∣Ft

]
. (77)

We remark that by standard results of credit risk models (e.g. Bielecki-Rutkowski [2000]), the
right hand side in this equation is known as the present value of a contract whose maturity

T , hazard rate λ and payment f̂t

(
Xu, V

(0)
u , V

(0)
u−∆

)
at a default time u(> t). Consequently, we

express V
(1)
t as (75).

Similarly, the expression of V (2) is given as

V
(2)
t = 1{τ1>t}E

[
1{τ1<T}V

(1)
τ1 ∂vτ1 f̂t

(
Xτ1 , V

(0)
τ1 , V

(0)
τ1−∆

)
+1{τ1<T}V

(1)
τ1−∆∂vτ1−∆ f̂t

(
Xτ1 , V

(0)
τ1 , V

(0)
τ1−∆

) ∣∣Ft

]
. (78)

Moreover, using tower property for conditional expectations, V (2) is expressed as follows:

V
(2)
t = 1{τ1>t}E

[
1{τ1<τ2<T}f̂τ1

(
Xτ2 , V

(0)
τ2 , V

(0)
τ2−∆
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(0)
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(0)
τ1−∆

) ∣∣∣∣Ft

]
= 1{τ1>t}E

[
1{τ1<τ2<T}f̂τ1

(
Xτ2 , V

(0)
τ2 , V

(0)
τ2−∆

)
× 1

λ
eλ(τ1−t)e−cp(τ1−t)

(
−(rpτ1 − cpτ1)− h[1]τ1 l

[1]
τ1 1{V (0)

τ1−∆>V
(0)
τ1

} − h[2]τ1 l
[2]
τ1 1{V (0)

τ1−∆<V
(0)
τ1

}

)
+1{τ1<τ2<T}f̂τ1

(
Xτ2 , V

(0)
τ2 , V

(0)
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)
× 1
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) ∣∣∣∣Ft

]
.

(79)

In the cases that τ < ∆, we define Vτ−∆ and the second term of right hand side of (79) as 0.
Based on above preparations, we summarize a procedure to calculate V (i), i = 1, 2 by a

Monte Carlo method. We set the number of discretization of [0, T ] as N , this is, reference
times are {0, T

N , 2TN , · · · , T}, and set the number of simulation as M . Then, the procedure of
calculation is follows.
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1. In order to get the stopping time τ , we generate uniform random numbers (ui, i =
1, · · · , N) corresponding to the reference times {0, T

N , 2TN , · · · , T}.

Then, using the first i which satisfies 1− e−λ T
N > ui, we set τ1 =

Ti
N .

Next, using the first j which is larger than i (i < j) satisfying 1 − e−λ T
N > uj , we set

τ2 =
Tj
N .

If 0 < τ1 < T for V (1) (τ1 < τ2 < T for V (2)), we proceed to Step 2 below.

2. We compute the realized values of diffusion processes of the underlying asset prices, hazard
rates and a collateral asset value until τ1 (τ2) by Monte Carlo simulations4.

3. Using values Xτ1 , V
(0)
τ1 , V

(0)
τ1−∆ at τ1 (τ2) and Xτ2 , V

(0)
τ2 , V

(0)
τ2−∆ at τ2, we calculate

f̂0

(
Xτ1 , V

(0)
τ1 , V

(0)
τ1−∆

)
, (80)

f̂τ1

(
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(0)
τ2 , V

(0)
τ2−∆

)
× 1

λ
eλ(τ1−t)e−cp(τ1−t)

(
−(rpτ1 − cpτ1)− h[1]τ1 l

[1]
τ1 1{V (0)

τ1−∆>V
(0)
τ1

} − h[2]τ1 l
[2]
τ1 1{V (0)

τ1−∆<V
(0)
τ1

}

)
+f̂τ1

(
Xτ2 , V

(0)
τ2 , V

(0)
τ2−∆

)
× 1

λ
eλ(τ1−t)e−cp(τ1−t)

(
(rqτ1 − cqτ1) + h[1]τ1 l

[1]
τ1 1{V (0)

τ1−∆>V
(0)
τ1

} + h[2]τ1 l
[2]
τ1 1{V (0)

τ1−∆<V
(0)
τ1

}

)
,

(81)

and store these values.

4. Reiterate M times from Step 1 to Step 3, and take the average.

Finally, we note that in our models, as the driver f of the BSDE (5)-(7) does not depend
on the volatility Z of the BSDE, we do not need to calculate Z.

4When the value of diffusion process is smaller than 0, we set a value as 0.
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