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Abstract

This paper provides a survey on an asymptotic expansion approach to valuation and hedging prob-
lems in finance. The asymptotic expansion is a widely applicable methodology for analytical approxi-
mations of expectations of certain Wiener functionals. Hence not only academic researchers but also
practitioners have been applying the scheme to a variety of problems in finance such as pricing and hedg-
ing derivatives under high-dimensional stochastic environments. The present note gives an overview of
the approach.
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1 Introduction

Let (Ω,F , {Ft}t∈[0,T ], P ) denote a probability space with filtration, on which a r-dimensional standard
Wiener process W is defined, where P is an appropriate pricing measure (a risk neutral measure) in
finance, and T denotes some positive constant. Now, let F (ω) be a Wiener functional and then V, the
security or portfolio value can be expressed as V = E[F (ω)] under certain conditions. Evaluating this
expectation is one of the main issues in finance. Moreover, if F depends on the parameter θ, computation
of ∂V

∂θ = ∂
∂θE[F (ω; θ)], the sensitivity of the security value with respect to the change in this parameter

(so called Greeks) is also an important task in practice.
As an example, let us consider a d-dimensional diffusion process X(ϵ) which is obtained as a strong

solution to the stochastic differential equation;

dX
(ϵ)
t = V0(X

(ϵ)
t , ϵ)dt+ V (X

(ϵ)
t , ϵ)dWt, t ∈ [0, T ]; X

(ϵ)
0 = x0,

where ϵ ∈ [0, 1] is a known parameter. Here, the coefficients are assumed to satisfy some regularity
conditions. In finance, many problems of pricing derivatives and evaluating the portfolios in investment

theories are reduced to the problems of computing E[f(X
(ϵ)
T )], the expectation of f(X

(ϵ)
T ), that is a function

of X
(ϵ)
T .
In finance applications, it is important to deal with not only a smooth function f(x) but also non-smooth

one. For example, when various options are evaluated, f is expressed as f = T ◦g, where T (x) = max{x, 0}
and g stands for a smooth function of Rd 7→ R. In general, it is difficult to represent this expectation
explicitly except for special cases. Hence, numerical methods such as Monte Carlo simulations or numerical
solutions of partial differential equations (PDEs) are employed and various speeding up techniques are
developed, since fast and precise computation is required in practice.

As a different approach, an approximation of the expectation by an asymptotic expansion of the

stochastic differential equation around ϵ = 0 may be considered. Furthermore, because ∂
∂x0

E[f(X
(ϵ)
T )]

∗I dedicate this note to the late Professor Peter Laurence and Koji Takahashi.
† Forthcoming in Large Deviations and Asymptotic Methods in Finance, Springer Pro-

ceedings in Mathematics and Statistics, Vol. 110, 2015, Springer.
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and ∂
∂ϵE[f(X

(ϵ)
T )], the sensitivities of the security value with respect to the changes in the initial value

x0 and in the parameter ϵ are important indicators for practical purposes, the approximations with high
accuracies are so valuable. Moreover, some schemes that combine Monte Carlo simulations with asymptotic
expansions with low orders are developed, since the asymptotic expansion up to the first or second order
can be easily evaluated. Those schemes are able to improve the efficiencies of Monte Carlo simulations and
the accuracies of approximations obtained by the asymptotic expansions.

An asymptotic expansion approach in finance has been developed for the past two decades, which is
mathematically justified by Watanabe theory (Watanabe [111]) in Malliavin calculus (e.g. Malliavin [64],
Chapter V-8 in Ikeda. and Watanabe [39], Nualart [73]). To the best of our knowledge, the asymptotic ex-
pansion technique is firstly applied to finance for evaluation of average options that are popular derivatives
in commodity markets. Kunitomo and Takahashi [48] and [85] derive approximation formulas for aver-
age options by an asymptotic expansion method based on log-normal approximations for average prices
distributions, when the underlying asset prices follow geometric Brownian motions. Yoshida [119] derives
an asymptotic expansion of an average option price around a normal distribution for a general diffusion
model, which is a byproduct of his result in statistics [118] based on the Watanabe theory.

Thereafter, the asymptotic expansion approach have been applied to a broad class of valuation problems
in finance, which includes pricing options with stochastic volatility models, pricing options under Heath-
Jarrow-Morton (HJM) models ([37]) or Libor market models (LMM) (Brace, Gatarek and Musiela [7],
Jamshidian [43]) of interest rates, and pricing so called exotic-type options such as basket and barrier
options in addition to average options.

For instance, please see Kawai [44], Kobayashi, Takahashi and Tokioka [45], Kunitomo and Takahashi
[49], [50], [51], Li [59] Matsuoka, Takahshi and Uchida [66], Muroi [67], Nishiba [71], Osajima [75], Shiraya
and Takahashi [78], [79], [80], Shiraya, Takahashi and Toda [81], Shiraya, Takahashi and Yamada [83],
Shiraya, Takahashi and Yamazaki [82], Takahashi and Matsushima [88], Takahashi and Saito [89], Takahashi
and Takehara [90], [91], [92], [93], [94], Takahashi, Takehara and Toda [90], [91], Takahashi and Tsuzuki[98],
Takahashi and Uchida [99], Takahashi and Yamada [100], [101], [102], [103], [104], Takahashi and Yoshida
[106], [107], Takehara, Takahashi and Toda[92], [93], Violante[110], Xu and Zheng [112], [113], and [86],
[87].

We briefly introduce some of above works in Section 3.6. Moreover, we remark that the asymptotic
expansion approach is employed by Yamanobe [116], [117] in physics for analyses of the impulse-driven
stochastic biological oscillator and global dynamics of a stochastic neuronal oscillator.

We also note that there exist many other types of the expansion/perturbation methods which have
turned out to be so useful for applications in finance. For example, see Bayer and Laurence [2], Ben Arous
and Laurence [3], Benaim, Friz and Lee [4], Col, Gnoatto and Grasselli [9], Davydov and Linetsky [11],
Deuschel, Friz, Jacquier and Violante [12], [13], Forde and Jacquier [18], Forde, Jacquier and Lee [17],
Foschi, Pagliarani, Pascucci [19], Fouque, Papanicolaou and Sircar [20], [21], Fujii [24], Fujii and Takahashi
[25], [26], [27], [29], Gatheral, Hsu, Laurence, Ouyang, and Wang [30], Gnoatto and Grasselli [31], Gulisas-
hvili [32], Hagan, Kumar, Lesniewski and Woodward [33], Henry-Labordere [38], Kato Takahashi and
Yamada [46], [47], Kusuoka and Osajima [57], Lee [58], Lipton [60], Linetsky[61], Osajima [76], Pagliarani
and Pascucci [77], Siopacha and Teichmann [84], Yamamoto, Sato and Takahashi [114], Yamamoto and
Takahashi [115], and references therein.

The organization of the paper is as follows. The next section describes the outline of the asymptotic
expansion approach in a general diffusion setting. Then, Section 3 explains a computational scheme for the
expansion method. Section 4 provides an extension of the general computational scheme in the previous
section, and Section 5 briefly introduces two improvement scheme for the expansion method. Section 6
extends the approach to non-diffusion Wiener functionals by using an instantaneous forward rates model
as an example. Section 7 and Section 8 introduce an asymptotic expansion in jump-diffusion models
and a perturbation scheme in forward backward stochastic differential equations (FBSDEs). Section 9
concludes.
(Acknowledgment) I am very grateful to Professor Fujii, Professor Shiraya, Professor Takehara, Dr.
Toda, Dr. Tsuzuki and Professor Yamada, my coauthors in the original articles, which are main bases for
this survey.
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