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Abstract 

  

 We investigate revenue maximization in general allocation problems with 

incomplete information, where we assume quasi-linearity, private values, independent 

type distributions, and single-dimensionality of type spaces. We require a mechanism to 

satisfy strategy-proofness and ex-post individual rationality. We assume that each 

player has a type-independent preference ordering over deterministic allocations. We 

show that the Myerson’s technique to solve the incentive-constrained revenue 

maximization problem in single-unit auctions can be applied to general allocation 

problems, where the incentive-constrained revenue maximization problem can be 

reduced to the simple maximization problem of the sum of players’ marginal revenues 

without imposing any incentive constraint. 
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1. Introduction 

 

 This paper investigates revenue maximization in general allocation problems with 

incomplete information under the assumptions of expected utility, quasi-linearity, 

private values, independent type distributions, and the single-dimensionality of type 

spaces. The seminal work by Myerson (1981) considered single-unit auctions and 

demonstrated a tractable reduction technique to solve the incentive-constrained revenue 

maximization problem; Myerson showed a sufficient condition under which the revenue 

maximization problem under the constraints of Bayesian incentive compatibility and 

interim individual rationality can be reduced to the maximization problem of the sum of 

players’ marginal revenues (virtual valuations). The latter problem is much simpler to be 

solved than the original problem, because it imposes no explicit incentive constraints. 

Without any substantial modification, this technique can be applied to the revenue 

maximization problem in single-unit auctions that imposes strategy-proofness (SP) and 

ex-post individual rationality (EPIR), instead of Bayesian incentive compatibility and 

interim individual rationality, respectively. 

 With imposing SP and EPIR, this paper clarifies the possibility that the Myerson’s 

reduction technique is extended to more general allocation problems. The main 

contribution of this paper is to demonstrate the following informational condition that 

guarantees this reduction technique to be available even in general allocation problems. 

Suppose that players have their respective preference orderings over (deterministic) 

allocations that are independent of their types. In this case, the central planner knows 

their preference orderings in advance, but does not know their valuations in the absolute 

and relative terms. With this supposition, we can generalize the definition of marginal 

revenues and the sufficient condition addressed by Myerson (1981), and then show that 

the revenue maximization problem under the constraints of SP and EPIR can be reduced 

to the maximization problem of the sum of players’ marginal revenues without imposing 

any explicit incentive constraint. 

 There are a number of previous works that applied the Myerson’s reduction 

technique to various private good allocation problems. For instance, Myerson and 

Satterthwaite (1983) investigated bilateral bargaining with single-unit commodity, 



3 
 

where the intermediator maximized his (or her) expected revenue under the constraints 

of Bayesian incentive compatibility and interim individual rationality3. Maskin and 

Riley (1989) investigated the seller’s revenue maximization in multi-unit auctions. We 

can also apply this technique to position auctions, or sponsored search auctions, in 

which the search engine maximizes his (or her) expected revenue by allocating 

heterogeneous positions across advertisers4. 

These works commonly assumed that each player has a type-independent 

preference ordering over allocations assigned to him (or her). This implies that we can 

regard these works as the special cases of this paper’s framework. 

These works, however, commonly assumed that players’ preference orderings are 

the same with each other. In contrast, this paper allows for the heterogeneity across 

players in term of preference ordering. For instance, while the previous study of 

position auctions generally assumed that advertisers have the same preference orderings 

over positions with each other, this paper does not need to make such assumptions. 

Because of this allowance for heterogeneity, this paper’s framework includes general 

combinatorial allocation problems, in which players have heterogeneous preferences 

concerning substitutes and complements. 

Moreover, the above-mentioned previous works did not allow for the presence 

externality. In contrast, this paper allows for the presence of externality in the manner 

that each player’s welfare is influenced by not only the allocation assigned to himself 

but also the allocations to the other players. 

Figueroa and Skreta (2012) and Ulku (2013) investigated general combinatorial 

allocations that allow for substitutes, complements, and externality. These papers 

implied that it is generally impossible to apply the Myerson’s reduction technique to 

such general problems in a tractable manner. In contrast, this paper clarifies the 

informational condition under which the Myerson’s reduction technique can be directly 

applied to such general problems. This informational condition implies that the central 

planner knows player’s preference orderings over deterministic allocations in advance, 

                                                      
3 See Matsushima (2012) for the multiunit case. 
4 The relevant works are Edelman, Ostrovsky, and Schwarz (2007), Edelman and Schwarz 
(2010), and others. 
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but does not know their valuations, productivities, or profitabilities, in the absolute and 

relative terms. 

 The organization of this paper is as follows. Section 2 explains the model and the 

type-independence of preference ordering. Section 3 defines the revenue maximization 

problem under the constraints of strategy-proofness and ex-post individual rationality, 

defines the concept of marginal revenue, and shows the main theorem. 
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2. The Model 

 

 We investigate the following allocation problem with incomplete information, 

where we assume expected utility, quasi-linearity, private values, independent type 

distributions, and single-dimensionality of type spaces. A  denotes the non-empty and 

finite set of all (deterministic) allocations. {1,..., }N n  denotes the non-empty and 

finite set of all players, where 2n  . Each player i N  has a single-dimensional type 

space [0,1]i  . His (or her) type i i   is randomly and independently drawn 

according to a probability density function ( ) 0i ip   . Each player 'i s  payoff is given 

by ( , )i i iv a t  , where a A  denotes the selected allocation, it R  denotes the 

monetary payment from player i  to the central planner, and :i iv A R   denotes 

his type-dependent valuation function. We assume that iv  is differentiable in i i  . 

Let 2

( , )
( , ) i i

i i
i

v a
v a








. 

 

Assumption 1: For every i N , (0,1]i  , (0,1]i , a A , and a A , 

(1)   [ ( , ) ( , )] [ ( , ) ( , )]i i i i i i i iv a v a v a v a         , 

and 

(2)   [ ( , ) ( , )] [ ( , ) ( , )]i i i i i i i iv a v a v a v a         . 

 

Assumption 1 implies that each player i N  has a type-independent preference 

ordering 



i
 over deterministic allocations, where for every (0,1]i  , a A , and 

a A , 

    [ ( , ) ( , )i i i iv a v a  ]⇔[ ia a ], 

and 
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    [ ( , ) ( , )i i i iv a v a  ]⇔[ ia a ].56 

Since each player’s preference ordering 



i
 over deterministic allocations is 

independent of his (or her) type i , the central planner knows the profile of players’ 

preference orderings ( )i N
i


  in advance. However, the central planner does not know 

their valuations in the absolute and relative terms. 

 

Assumption 2: For every i N , i i  , and a A , 

(3)   2 ( , ) 0i iv a   , 

and for every a A  such that 
i

a a

 , 

(4)   2 2( , ) ( , )i i i iv a v a  . 

 

 The inequalities (3) imply that each player i s  valuation ( , )i iv a   is 

non-decreasing in his type i . The inequalities (4) imply that the difference in 

valuation ( , ) ( , )i i i iv a v a   is non-decreasing in his type i , where 
i

a a

 . 

 A direct mechanism, in short, a mechanism, is defined by ( , )g x , where 

:g A   denotes an allocation rule, ( ) : n
i i Nx x R   denotes a payment rule, 

and :ix R . We denote by G  the set of all allocation rules. We denote by X  the 

set of all payment rules7. 

 

Strategy-Proofness (SP): For every i N ,  , and i i , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i iv g x v g x            . 

 
                                                      

5 We denote ia a  if and only if 
i

a a

  and 

i
a a


 . We denote ia a  if and only if 

i
a a

  and 

i
a a


 .  

6 Assumption 1 allows for the case that ( ,0) ( ,0)i iv a v a , but ( , ) ( , )i i i iv a v a   for all 

(0,1]i  . 
7 We denote ii N

    , ( )i i N    , 
\{ }i jj N i 

    , and \{ }( )i j j N i i     . 
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 An allocation rule g  is said to be monotonic if for every i N ,  , and 

i i , 

   ( , ) ( )i i
i

g g  

   if i i   . 

Monotonicity implies that the greater player 'i s  type i  is, the more preferable to 

this player the selected allocation is. Let us denote by Ĝ G  the set of all monotonic 

allocation rules. 

 

Proposition 1: A mechanism ( , )g x  satisfies SP if g  is monotonic and there exists 

:i id R   for each i N  such that 

(5)   2

0

( ) ( ( ), ) ( ( , ), ) ( )
i

i

i i i i i i i i i i i i

s

x v g v g s s ds d


     


    for all  . 

If ( , )g x  satisfies SP, there exists :i id R   for each i N  that satisfies (5). 

 

Proof: Suppose that ( , )g x  satisfies monotonicity and (5). Then, from (4), it follows 

that for every i N ,   , and i i , if i i  , then 

   ( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i iv g x v g x              

2 ( ( , ), )
i

i i

i i i i i

s

v g s s ds







  ( ( ), ) ( ( ), )i i i iv g v g     , 

which implies that 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i iv g x v g x              . 

In the same manner, 

( ( ), ) ( ) { ( ( , ), ) ( , )}i i i i i i i i i iv g x v g x              

2 ( ( , ), )
i

i i

i i i i i

s

v g s s ds







  ( ( , ), ) ( ( , ), )i i i i i i i iv g v g          , 

which implies that 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i iv g x v g x            . 

Hence, we have proved that ( , )g x  satisfies SP. 

We define 
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( , ) ( ( , ), ) ( , )i i i i i i i i iy v g x            

and 

*( ) ( ( ), ) ( )i i i iy v g x     . 

Suppose that ( , )g x  satisfies SP. Then, ( )iy   is absolutely continuous in i , 

implying that there exist :i R   and :i id R   such that for every  , 

*

0
( ) ( , ) ( )

i

i
i i i i i i is

y s ds d


    
  . 

The envelope theorem8 implies 

2( ) ( ( ), )i i iv g    , 

and therefore, 

*
20

( ) ( ( ), ) ( ) ( ( ), ) ( )
i

i
i i i i i i i i is

y v g x v g ds d


      
    , 

implying (5). 

       Q.E.D. 

 

 We assume that each player has the outside opportunity ( )i iU R   that is 

contingent on his type i i  . We assume that there exists a ‘status quo’ allocation 

e A  such that for every i N  and every i i  , 

   ( ) ( , )i i i iU v e  . 

 

Ex-Post Individual Rationality (EPIR): For every i N  and  , 

   ( ( ), ) ( ) ( , )i i i i i iv g x v e     . 

 

  

                                                      
8 See Milgrom and Segal (2002). 
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3. Revenue Maximization 

 

 We define the marginal revenue (virtual valuation) for player i N  associated 

with ( , )i ia A   , denoted by ( , )i iMR a  , as follows: 

   2

1 ( )
( , ) ( , ) ( , )

( )
i i

i i i i i i
i i

P
MR a v a v a

p

  



     if 

i
a e

 , 

and 

   2
2

( )
( , ) ( , ) ( , )

( ) ( )

( , ) i i
i i i i i i

i i i

i

i

i P
MR a v a v a

p

v e

p

  
 


    if 
i

e a

 . 

The marginal revenue ( , )i iMR a   implies the valuation ( , )i iv a   minus the 

informational rent given by 

   2

1 ( )
( , )

( )
i i

i i
i i

P
v a

p

 



 

and the bargaining rent given by 

   22m ( , ),0]

(

ax[ (

)

, ) i i

i

i

i

i v ae

p

v 


 
. 

Note that the above-defined bargaining rent is positive only if player i  prefers e  to 

a . We assume that ( , )i iMR a   is differentiable in i . Let 2

( , )
( , ) i i

i i
i

MR a
MR a








. 

The following proposition holds straightforwardly from Proposition 1 and the definition 

of EPIR. 

 

Proposition 2: Suppose that a mechanism ( , )g x  satisfies SP. Then, it satisfies EPIR if 

and only if for every i N , the equalities (5) hold and 

(6)   2

0

( ) max{ ( , ) ( ( , ), ) }
i

i
i

i i i i i i i i i

s

d v e v g s s ds



   



     for all i i  . 

 

 We define the revenue maximization problem as 

(7)   
( , )

max [ ( )]i
g x G X

i N

E x 
 


  subject to SP and EPIR. 
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The following proposition states that the expected revenue induced by the revenue 

maximization problem (7) is equivalent to the expected value of the sum of players’ 

marginal revenues. 

 

Proposition 3: If a mechanism ( , )g x  is a solution to the revenue maximization 

problem (7) and g  is monotonic, then 

(8)   2

0

( ) ( ( ), ) ( ( , ), )
i

i

i i i i i i i i

s

x v g v g s s ds


   


    

 2

0

max{ ( , ) ( ( , ), ) }
i

i
i

i i i i i i i

s

v e v g s s ds



 



    for all i N  and all   , 

and 

(9)   [ ( )] [ ( ( ), )]i i i
i N i N

E x E MR g  
 

  . 

 

Proof: It is clear from Proposition 2 that the solution to the revenue maximization 

problem (7) satisfies (6) with equality. This along with (5) implies (8). 

 For each i N  and i i  , let us define ( )i i i    as maximizing the 

value of 2

0

( , ) ( ( , ), )
i

i

i i i i i i i i

s

v e v g s s ds


 


   in terms of i . From the monotonicity and 

Assumption 2, 

( ) 1i i       if ( )ie g   for all [0,1]i  , 

( ) 0i i       if ( ) ig e   for all [0,1]i  , 

and 

( ( ), )i i ig e      otherwise, 

where 

( )ie g   for all [0, ( ))i i i   , 

and 

( )
i

g e

  for all ( ( ),1]i i i   . 

Hence, we can write 



11 
 

   2

0

max{ ( , ) ( ( , ), ) }
i

i
i

i i i i i i i

s

v e v g s s ds



 



   

   
( )

2 2

0

{ ( , ) ( ( , ), )}
i i

i

i i i i i i i

s

v e s v g s s ds
 







  . 

Since the type distributions are independent with each other, we can write 

2

0

[ ( )] [ ( ( ), ) ( ( , ), )
i

i

i i i i i i i i

s

E x E v g v g s s ds


   


    

( )

2 2

0

{ ( , ) ( ( , ), )} ]
i i

i

i i i i i i i

s

v e s v g s s ds
 







  . 

Let us specify : [0,1]iz A R   by 

   ( , ) 0i iz a          if 
i

a e

 , 

and 

   2 2( , ) ( ,( , ))i i i i i i iv e v az a     if 
i

e a

 . 

Hence, 

2

0

[ ( )] [ ( ( ), ) ( ( , ), )
i

i

i i i i i i i i

s

E x E v g v g s s ds


   


    

1

0

( ( , ), ) ]
i

i i i i i

s

z g s s ds


   

2

{1 ( )} ( ( ), )
[ ( ( ), ) ( ( ), ) ]

( ) ( )
i i i i

i i i i
i i i i

P z g
E v g v g

p p

     
 


   . 

Since 

   2

{1 ( )} ( , )
( , ) ( , ) ( , )

( ) ( )
i i i i

i i i i i i
i i i i

P z a
MR a v a v a

p p

   
 


   , 

it follows that 

   [ ( )] [ ( ( ), )]i i iE x E MR g    for all i N , 

which implies (9). 

Q.E.D. 
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 We assume that players’ marginal revenues satisfy the following monotonic 

properties. 

 

Assumption 3: For every i N  and a A , 

   ( , )i iMR a   is non-decreasing in i . 

For every i N , a A , and a A  such that ia a , 

   ( , ) ( , )i i i iMR a MR a    for all [0,1]i  , 

and 

   ( , ) ( , )i i i iMR a MR a    is increasing in i . 

 

 Assumption 3 imply that the marginal revenue ( , )i iMR a   and the difference in 

marginal revenue ( , ) ( , )i i i iMR a MR a    are monotonic in terms of i , and the 

marginal revenue ( , )i iMR a   is monotonic in terms of a  in the order of i . 

 With Assumptions 1, 2, and 3, we can show as the main theorem of this paper that 

the Myerson’s reduction technique is available in general allocation problems; the 

incentive-constrained revenue maximization problem (7) can be reduced to the simple 

maximization problem of the sum of players’ marginal revenues without imposing any 

explicit incentive constraint. 

 

Theorem 4: A mechanism ( , )g x  is a solution to the revenue maximization problem (7) 

if and only if 

(10)   ( ) arg max ( , )i i
a A i N

g MR a 
 

   for all   , 

and x  is specified according to (8). 

 

Proof: From Proposition 3, it is enough to show that the allocation rule g  specified by 

(10) is monotonic. Suppose that g  is not monotonic. Then, there exist i N ,  , 

and i i    such that 

   ( ) ( , )i i ig g   . 
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From (10), 

(11)   ( ( , ), ) ( ( ), )i i i i i iMR g MR g       

{ ( ( , ), ) ( ( ), )} 0j i i j j j
j i

MR g MR g    


   , 

while 

(12)  ( ( , ), ) ( ( ), )i i i i i iMR g MR g        

{ ( ( , ), ) ( ( ), )} 0j i i j j j
j i

MR g MR g    


   . 

From Assumption 3 and ( ) ( , )i i ig g   , 

( ( , ), ) ( ( ), )i i i i i iMR g MR g       

( ( , ), ) ( ( ), )i i i i i iMR g MR g        , 

which along with (11) implies 

( ( , ), ) ( ( ), )i i i i i iMR g MR g        

{ ( ( , ), ) ( ( ), )} 0j i i j j j
j i

MR g MR g    


   . 

This contradicts (12). 

Q.E.D. 
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