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Comparison of Linear Shrinkage Estimators of a Large
Covariance Matrix in Normal and Non-normal

Distributions

Yuki Ikeda∗, Tatsuya Kubokawa†and Muni S. Srivastava‡

University of Tokyo and University of Toronto

Abstract

The problem of estimating the large covariance matrix of both normal and non-
normal distributions is addressed. In convex combinations of the sample covariance
matrix and the identity matrix multiplied by a scalor statistic, we suggest a new
estimator of the optimal weight based on exact or approximately unbiased estima-
tors of the numerator and denominator of the optimal weight in non-normal cases.
It is also demonstrated that the estimators given in the literature have second-
order biases. It is numerically shown that the proposed estimator has a good risk
performance.

Key words and phrases: Covariance matrix, high dimension, large sample, non-
normal distribution, normal distribution, linear shrinkage estimator, risk function,
shrinkage.

1 Introduction

Many applied problems in multivariate analysis require estimates of a covariance matrix
and/or of its inverse. For example, the inverse of estimators of the covariance matrix is
used in the Fisher linear discriminant analysis, confidence intervals based on the Maha-
lanobis distance and generalized least squares estimators in multivariate linear regression
models. However, the unbiased estimator based on the sample covariance matrix is not
invertible when the dimension p of the variables is larger than the sample size N . When
p is large and close to N , the inverse of the unbiased estimator may be ill-conditioned
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even if N > p. Thus, an estimator for the covariance matrix is required to be both in-
vertible and well-conditioned. Many approaches to this goal have been considered in the
literature. Among them, here we focus on linear shrinkage estimators such as Daniels and
Kass (2001), Ledoit and Wolf (2003, 2004), Schafer and Strimmer (2005), Srivastava and
Kubokawa (2007), Konno (2009), Chen, Wiesel, Eldar and Hero (2010), Fisher and Sun
(2011) and Bai and Shi (2011). Their ideas are to shrink the sample covariance matrix
in the direction of more stable target such as a diagonal matrix. Therefore it is crucial
that to what degree the sample covariance should be shrunk, which is called a shrinkage
intensity and it corresponds the weight appeared in linear shrinkage estimators. In this
paper, we suggest a reasonable weight in the linear shrinkage estimator under general
distributions and confirm the numerical performances.

To specify the problem, consider p-dimensional random vectors x1, . . . ,xN which are
mutually independently and identically distributed with mean vector µ and covariance
matrix Σ. Then, Σ is estimated unbiasedly by

S =
1

n

N∑
j=1

(xj − x)(xj − x)t, (1.1)

for n = N − 1 and x = N−1
∑N

j=1 xj. A linear shrinkage estimator we treat here is of the
form

Σ̂w = wS + (1− w)â1Ip, â1 = tr [S]/p,

for a constant w satisfying 0 ≤ w ≤ 1. This shrinks S toward the target â1Ip.

The weight w is estimated based on x1, . . . ,xN , and the performance of the linear
shrinkage estimator depends on an estimator of w. We describe several estimators of w
which have been suggested in the literature. Based on the optimal weight w in the sense
of minimizing the risk function E[tr [(Sw − Σ)2]], Ledoit and Wolf (2004) suggested to
estimate w by

ŵLW = 1−
∑N

j=1 tr [{(xj − x)(xj − x)t − S}2]
n2(trS2 − (trS)2/p)

, (1.2)

which yields the plug-in linear shrinkage estimator

Σ̂LW = ŵLWS + (1− ŵLW )â1Ip.

Chen, Wiesel, Eldar and Hero (2010) considered to improve Σ̂LW by the Rao-Blackwell
theorem in the normal distribution. The Rao-Blackwell Ledoit-Wolf (RBLW) estimator

is given by Σ̂RBLW = E[Σ̂LW |S] = ŵRBLWS + (1− ŵRBLW )â1Ip for

ŵRBLW = max
{
0, 1− (n− 2)tr (S2) + n(trS)2

n(n+ 2)(trS2 − (trS)2/p)

}
. (1.3)
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Chen, Wiesel, Eldar and Hero (2010) also suggested another estimator, called the Oracle-

Approximating Shrinkage (OAS) estimator, given by Σ̂OAS = ŵOASS + (1 − ŵOAS)â1Ip

for

ŵOAS = max
{
0, 1− (p− 2)tr (S2) + p(trS)2

p(n+ 1− 2/p)(trS2 − (trS)2/p)

}
. (1.4)

Fisher and Sun (2011) proposed the linear shrinkage estimator Σ̂FS = ŵFSS + (1 −
ŵFS)â1Ip for

ŵFS =
n(â2 − â21)

n(â2 − â21) + pâ21 + â2
, (1.5)

where

â2 =
n2

(n− 1)(n+ 2)

[1
p
tr [S2]− p

n
â21

]
. (1.6)

As shown in Section 3, the OAS estimator Σ̂OAS has almost the same form as the Σ̂FS

estimator of Fisher and Sun (2011) and this fact can be confirmed numerically in Section
4.

In the OAS estimator and the Fisher-Sun estimator, the estimator â2 is used for
a2. In the normal distribution, Srivastava (2005) showed that â2 is unbiased and that
â2 − a2 = Op((np)

−1/2) + Op(n
−1). That is, â2 is a good estimator of a2 in the normal

case. In the non-normal distributions, however, â2 is not unbiased as shown in Srivastava,
Kollo and von Rosen (2011) and Srivastava, Yanagihara and Kubokawa (2014). This

affects the performance of Σ̂OAS and Σ̂FS. In fact, Chen, Wiesel, Eldar and Hero (2010)

pointed out that the performance of their estimators is worse than Σ̂LW in non-normal
cases.

In this paper, we address the problem of improving the performance of the linear
shrinkage estimators in non-normal distributions. To this end, we use the estimator

â2C =
n

(n+ 1)(n− 1)(n− 2)p
{n(n− 1)trS2 + (trS)2 − (n+ 1)Q} (1.7)

instead of â2, where

Q =
1

n

N∑
i=1

{(xi − x)t(xi − x)}2. (1.8)

As shown in Srivastava, Yanagihara and Kubokawa (2014) and Himeno and Yamada
(2014), the estimator â2C is an unbiased estimator of a2 in non-normal distributions.
Himeno and Yamada (2014) indicated the interesting fact that â2C is of the same form as
the estimator given in Chen, Zhang and Zhong (2010). Although the estimator of Chen,
Zhang and Zhong (2010) is known to be computationally hard, the expression in â2C is
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simple and easily implementable. In Section 2, based on the optimal weight w in linear
shrinkage estimators, we suggest the estimator of w, given by

ŵU =
â2C − â21

trS2/p− â21
,

and the plug-in estimator Σ̂U = ŵUS + (1 − ŵU)â1Ip. A motivation for this estimator
and some asymptotic properties are provided in Section 2.

In Section 3, we compare the suggested weight function ŵU with the others ŵLW ,
ŵRBLW , ŵOAS and ŵFS by deriving the second-order biases of their numerators. It is
also seen that the OAS estimator in Chen, Wiesel, Eldar and Hero (2010) is close to the
estimator in Fisher and Sun (2011).

In Section 4, we investigate the risk performance of the above estimators through
simulation, and it is numerically shown that the estimator Σ̂U is superior in the cases of
non-normal distributions, while it has a bit small loss from some of the other estimators in
the normal distributions, but the difference is quite small. The numerical results confirm
the analytical results given in Section 3 that the OAS estimator is almost identical to the
estimator in Fisher and Sun (2011). Concluding remarks are given in Section 5.

2 Estimation of the Optimal Weight under Non-normal

Distributions

Consider p-dimensional random vectors x1, . . . ,xN which are mutually independently
and identically distributed with mean vector µ and covariance matrix Σ = Σ1/2(Σ1/2)t,
where Σ1/2 is the Cholesky decomposition with positive diagonal elements. Assume that
the observation vectors xj are generated as

xj = µ+Σ1/2uj, j = 1, . . . , N, (2.1)

with
E(uj) = 0, Cov (uj) = Ip, (2.2)

and for integers γ1, . . . , γk satisfying 0 ≤
∑p

k=1 γk ≤ 4,

E

[
p∏

k=1

uγk
jk

]
=

p∏
k=1

E(uγk
jk), j = 1, . . . , N, (2.3)

where ujk is the k
th component of the vector uj = (uj1, . . . , ujk, . . . , ujp)

t. This assumption
is requested for existence of the risk function. We shall write the third and fourth moments
of ujk as E[u3

jk] = K3 and E[u4
jk] = K4 + 3. In the case of a normal distribution, we have

K3 = K4 = 0. We use the notations

a1 = tr [Σ]/p, a2 = tr [Σ2]/p and a20 =

p∑
i=1

σ2
ii/p,
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for Σ = (σij).

We consider the problem of estimating Σ by an estimator Σ̂ relative to the quadratic
loss function Lq(Σ̂,Σ) = tr [(Σ̂ − Σ)2]. Estimator Σ̂ is evaluated in terms of the risk

function R(Σ, Σ̂) = E[tr [(Σ̂−Σ)2]]. An unbiased estimator ofΣ is S, but is not invertible
in the case of p > n nor well-conditioned in the case that p is close to n even if n > p. Thus,
it is reasonable to consider convex combinations of S and a positive definite matrix based
on S. Under the assumption that Σ = σ2Ip, an unbiased estimator of σ2 is â1 = tr [S]/p.

Then, we consider a class of linear shrinkage estimators Σ̂w = wS + (1 − w)â1Ip for
0 ≤ w ≤ 1. A direct calculation shows that

R(Σ, Σ̂w) = E[tr [(S − â1Ip)
2]w2 − 2tr [(S − â1Ip)(Σ− â1Ip)]w + tr [(Σ− â1Ip)

2]],

which implies that the optimal weight w minimizing the risk is

w∗ =
Etr [(S − â1Ip)(Σ− â1Ip)]

Etr [(S − â1Ip)2]
.

Since E(S) = Σ and E(â1) = a1 for any underlying distributions, w∗ is simplified as

w∗ =
Etr [(S − â1Ip)Σ]

Etr [(S − â1Ip)2]
=

a2 − a21
Etr [(S − â1Ip)2]/p

. (2.4)

Since w∗ is a function of Σ, we need to estimate w∗ based on S. An idea is to
provide an unbiased estimator of w∗. However, it is not easy to obain such an estimator.
Thus, in this paper, we consider to estimate the numerator a2 − a21 and the denominator
Etr [(S − â1Ip)

2]/p unbiasedly. For the denominator, tr [(S − â1Ip)
2]/p = trS2/p − â21,

and clearly it is an unbiased estimator of Etr [(S − â1Ip)
2]/p for any distribution. We

next want to find an unbiased or approximately unbiased estimator of a2 − a21.

Let â2 be defined in (1.6). In the case of normal distributions, Srivastava (2005)
showed that â2 is an unbiased estimator of a2. Under non-normality, however, Srivastava,
et al . (2014) demonstrated that

E[â2] = a2 +
n

(n+ 1)(n+ 2)
K4a20.

This implies that the estimator â2 has a second-order bias in non-normal distributions
when a20 = O(1). Srivastava, et al . (2014) and Himeno and Yamada (2014) suggested the
unbiased estimator â2C given in (1.7) for a2, which is rewritten as

â2C =
n

(n+ 1)(n− 1)(n− 2)
{n(n− 1)trS2/p+ pâ21 − (n+ 1)Q/p}.

Although they derived the estimator independently, we can verify that their proposals
are identical. Himeno and Yamada (2014) also demonstrated that the estimator â2C
is identical to the one given in Chen, Zhang and Zhong (2010). Compared with the
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form given in Chen, Zhang and Zhong (2010), the expression in â2C is simple and easily
implementable.

Concerning the estimation of a21, Srivastava, et al . (2011) showed that

V ar(â1) =
2

np
a2 +

1

(n+ 1)p
K4a20, (2.5)

in non-normal cases. Thus,

E[â21] = a21 +
2

np
a2 +

1

(n+ 1)p
K4a20, (2.6)

which implies that E[â21] = a21 + O((np)−1) when a2 = O(1) and a20 = O(1). In the
non-sparce case of a2 = O(p), â21 has a second-order bias, and we should use the exact
unbiased estimator

â21C =
n

(n+ 1)(n− 1)(n− 2)

{ 2

p2
trS2 + (n2 − n− 1)â21 −

n+ 1

p2
Q
}
,

which was derived in Himeno and Yamada (2014). However, the two estimators â21 and

â21C give little difference in numerical risk performances in most settings. Hence, we use
the simpler estimator â21. Thus, the numerator a2 − a21 in w∗ is estimated by â2C − â21,
and we can suggest the estimator

Σ̂U = ŵUS + (1− ŵU)â1Ip, (2.7)

for

ŵU =
â2C − â21

trS2/p− â21
=

â2C − â21
â2 − â21 + pâ21/n+ (n− 2)â2/n2

, (2.8)

where the second equality follows from

trS2/p =
(n− 1)(n+ 2)

n2
â2 +

p

n
â21. (2.9)

We here give an exact expression of w∗. It follows from Himeno and Yamada (2014)
and Lemma 7.1 in Srivastava, et al . (2014) that

E[trS2/p] =a2 +
1

n
a2 +

p

n
a21 +

1

n+ 1
K4a20,

E[Q/p] =
n2 − n+ 1

(n+ 1)2
K4a20 +

2n

n+ 1
a2 +

np

n+ 1
a21.

(2.10)

Using (2.6) and (2.10), we can see that

E[trS2/p− â21] = a2 − a21 +
p

n
a21 +

p− 2

np
a2 +

p− 1

(n+ 1)p
K4a20,
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which means that the optimal weight is expressed as

w∗ =
a2 − a21

a2 − a21 + pa21/n+ (p− 2)a2/(np) + (p− 1)K4a20/(Np)
. (2.11)

In the case of normal distributions, w∗ = (a2−a21)/{a2−a21+pa21/n+(p−2)a2/(np)} and
it is estimated by (â2− â21)/{â2− â21+pâ21/n+(p− 2)â2/(np)}. Comparing this estimator
with (2.8) in non-normal distributions, we can see that there is a second-order bias in the
numerator, while there is no bias at all in the denominator.

When w∗ is close to one, the linear shrinkage estimator approches to the sample
covariance matrix S, namely it may be ill-conditioned. Thus, it is important to investigate
the limit value of w∗.

Proposition 2.1 For large p, assume that a1 = O(1), a20 = O(1) and a2 = O(pδ) for
δ ≥ 0.

(Case 1) If na2/p → ∞, then w∗ → 1.
(Case 2) If na2/p → 0, then w∗ → 0.
(Case 3) If na2/p → C for positive constant C, then w∗ approaches to(

C − n

p
a21

)
/
(
C − n

p
a21 + a21 +

1

n
C
)
.

We can verify Proposition 2.1 from the expression

w∗ =
(na2

p
− n

p
a21

)
/
(na2

p
− n

p
a21 + a21 +

p− 2

pn

na2
p

+
n(p− 1)

Np2
K4a20

)
.

We get some implications from Proposition 2.1. First, consider the case of a2 = O(1),
which means that Σ is sparce or not dense. Then, Cases 1, 2 and 3 correspond to

(Case 1) n → ∞ and p = O(nδ) for constant δ satisfying 0 ≤ δ < 1,
(Case 2) p → ∞ and n = O(pδ) for constant δ satisfying 0 ≤ δ < 1,
(Case 3) (p, n) → ∞ and n/p → γ for constant γ.
Second, consider the case of a2 = O(p), which means that Σ is non-sparce or dense.

Then, Cases 1, 2 and 3 correspond to
(Case 1) n → ∞,
(Case 2) NA,
(Case 3) n is bounded.
When p → ∞, but n is bounded, we have w∗ → 0 for a2 = O(1), and w∗ → C/(C +

a21 + n−1C) for a2 = O(p). When n → ∞, but p is bounded, we have always w∗ → 1.
When (p, n) → ∞ and n/p → γ for constant γ, we have

w∗ →
{

γ(a2 − a21)/{γ(a2 − a21) + a21} for a2 = O(1),
1 for a2 = O(p).
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As in Ledoit and Wolf (2004), we define the percentage relative improvement in average
loss (PRIAL) over the sample covariance as

PRIAL =
E[tr (S −Σ)2]− E[tr (Σ̂w∗ −Σ)2]

E[tr (S −Σ)2]
.

Then the following proposition can be established similarly to Proposition 2.1.

Proposition 2.2 For large p, assume that a1 = O(1), a20 = O(1) and a2 = O(pδ) for
δ ≥ 0.

(Case 1) If na2/p → ∞, then PRIAL→ 0.
(Case 2) If na2/p → 0, then PRIAL→ 1.
(Case 3) If na2/p → C for positive constant C, then PRIAL approaches to(

a21 +
1

n
C
)
/
(
C − n

p
a21 + a21 +

1

n
C
)
.

Proof Since E[tr (Σ̂w∗ −Σ)2] = E[tr (S−Σ)2− 2(1−w∗)tr (S−Σ)(S− â1Ip)+ (1−
w∗)2tr (S − â1Ip)

2], PRIAL is written as

PRIAL = (1− w∗)
2E[tr (S −Σ)(S − â1Ip)]− (1− w∗)Etr (S − â1Ip)

2]

E[tr (S −Σ)2]
.

Since w∗ = Etr [(S−â1Ip)Σ]/Etr [(S−â1Ip)
2] from (2.4), PRIAL can be further rewritten

as

PRIAL =
{E[tr (S −Σ)(S − â1Ip)]}2

E[tr (S −Σ)2]E[tr (S − â1Ip)2]
.

Note that

E[tr (S −Σ)2]/p =
1

n
a2 +

p

n
a21 +

1

n+ 1
K4a20,

E[tr (S − â1Ip)
2]/p =a2 − a21 +

p

n
a21 +

p− 2

np
a2 +

p− 1

(n+ 1)p
K4a20,

E[tr (S −Σ)(S − â1Ip)]/p =
p

n
a21 +

p− 2

np
a2 +

p− 1

(n+ 1)p
K4a20.

Then, PRIAL is expressed as

{a21 + (1− 2
p
) 1
n
(n
p
a2) +

n(p−1)
(n+1)p

1
p
K4a20}2

{ 1
n
(n
p
a2) + a21 +

n
n+1

1
p
K4a20}{(npa2)−

n
p
a21 + a21 + (1− 2

p
) 1
n
(n
p
a2) +

n(p−1)
(n+1)p

1
p
K4a20}

.

In this expression, we can obtain the limiting values of PRIAL for the three cases. For
example, (Case 3) implies that p → ∞, so that it follows from the above expression that
PRIAL approaches to

{a21 + 1
n
C}2

{ 1
n
C + a21}{C − n

p
a21 + a21 +

1
n
C}

,

which yields the result in (Case 3). The other cases can be easily verified. □
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3 Comparison of the Estimators of the Optimal Weight

In this section, we compare the suggested estimator of the weight w with the estimators
given in the literature. The major difference between ŵU and the other estimators is that
the numerator â2C − â21 in ŵU = (â2C − â21)/(trS

2/p − â21) is a second-order unbiased
estimator of a2 − a21 when a2 = O(1), namely,

E[â2C − â21] = a2 − a21 +O((np)−1).

In what follows, we compare the estimators given in Section 1 in light of the expectations
of their numerators under the assumption that ai = O(1), i = 1, 2, and a20 = O(1).

For the weight function ŵLW of Ledoit and Wolf (2004) given in (1.2), it can be
rewritten as

ŵLW =
{(

1 +
n− 1

n2

)
trS2/p− â21 −

1

np
Q
}
/
(
trS2/p− â21

)
.

Using the moments given in (2.6) and (2.10), we can evaluate the expectation of the
numerator as

E
[(

1 +
n− 1

n2

)
trS2/p− â21 −

1

np
Q
]

=a2 − a21 +
p

n2
a21 −

2

np
a2 −

1

np
K4a20

=a2 − a21 +
p

n2
a21 +O((np)−1).

The leading term of the bias (p/n2)a21 is enhanced in the case that n is small, but p is
large.

For the weight ŵRBLW of Chen, Wiesel, Eldar and Hero (2010) given in (1.3), it can
be rewritten as ŵRBLW = max(0, w∗

RBLW ), where

w∗
RBLW =

{(
1− n− 2

n(n+ 2)

)
trS2/p−

(
1 +

p

n+ 2

)
â21

}
/
(
trS2/p− â21

)
.

The expectation of the numerator is evaluated as

E
[(

1− n− 2

n(n+ 2)

)
trS2/p−

(
1 +

p

n+ 2

)
â21

]
=a2 − a21 +

p

n2
a21 +

1

n
K4a20 +O((np)−1) +O(n−2),

which implies that the leading term of the bias (p/n2)a21 + n−1K4a20 may affect the
performance for small n.

For the weight ŵOAS of Chen, Wiesel, Eldar and Hero (2010) given in (1.4), it can be
rewritten as ŵOAS = max(0, w∗

OAS), where

w∗
OAS =

{(
1− p− 2

p(n+ 1− 2/p)

)
trS2/p−

(
1 +

p

n+ 1− 2/p

)
â21

}
/
(
trS2/p− â21

)
.
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The expectation of the numerator is evaluated as

E
[(

1− p− 2

p(n+ 1− 2/p)

)
trS2/p−

(
1 +

p

n+ 1− 2/p

)
â21

]
=a2 − a21 +

1

n
K4a20 +O((np)−1) +O(n−2),

which implies that the leading term of the bias n−1K4a20 may affect the performance for
small n in non-normal distributions.

For the weight ŵFS of Fisher and Sun (2011) given in (1.5), from (2.9), it can be
rewritten as

ŵFS =
n(â2 − â21)

n(â2 − â21) + pâ21 + â2
=

â2 − â21
â2 − â21 + (p/n)â21 + â2/n

,

where the denomenator is rewritten as â2 − â21 + (p/n)â21 + â2/n = trS2/p− â21 + 2â2/n
2,

which is close to trS2/p− â21, the denomenator of the other estimators of the weight. The
expectation of the numerator is evaluated as

E[â2 − â21] = a2 − a21 +
1

n
K4a20 +O((np)−1) +O(n−2),

which implies that the leading term of the bias n−1K4a20 may affect the performance for
small n in non-normal distributions.

In the above arguments, it is noted that the expectations of the numerators in ŵOAS

and ŵFS are identical up to O(n−1). Then, it is expected that the OAS estimator of Chen,
Wiesel, Eldar and Hero (2010) is asymptotically close to the estimator of Fisher and Sun
(2011). In fact, it follows from (1.6) that ŵOAS can be rewritten as

ŵOAS = min

(
1,

c1â2 − nâ21
c2â2 + (p− n)â21

)
,

where c1 = (n − 1)(n + 2)/(n + 1 − 2/p) and c2 = (n − 1)(n + 2)/n. Since c1 = n +
O(n−1) +O(p−1) and c2 = n+ 1 +O(n−1), it is seen that

ŵOAS =min

(
1,

(n+O(n−1) +O(p−1))â2 − nâ21
(n+ 1 +O(n−1))â2 + (p− n)â21

)
=min

(
1, ŵFS +Op(n

−1p−1) +Op(n
−2)

)
,

when a2 = O(1). This demonstrates that ŵOAS and ŵFS are almost equivalent.

The numerators of the weights in Σ̂FS and ΣOAS are unbiased in the normal case, but
not unbiased in non-normal cases. As illustrated in the next section, this property affects
the risk performance of Σ̂FS and ΣOAS.
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4 Simulation Studies

We now investigate the numerical performances of the risk functions of the ridge-type
estimators through simulation.

As a structure of the covariance matrix, we follow Chen, Wiesel, Eldar and Hero
(2010). Namely we set

(Model 1) Σi,j = ρ|i−j|,
(Model 2) Σi,j = (|i− j + 1|2h − 2|i− j|2h + |i− j − 1|2h)/2,

which, respectively, correspond to the covariance structure of an autoregressive process
and a fractional Brownian Motion (fBM), where Σi,j is the (i, j)-th element of Σ. Note
that the above settings satisfy that ai = O(1), i = 1, 2, and a20 = O(1).

We vary the value of ρ and h as ρ = 0, 0.3, 0.6 and 0.9 in Model 1 and h = 0.2,
0.5 and 0.8 in Model 2. Note that the case ρ = 0 in (Model 1) is identical to the case
h = 0.5 in (Model 2), since in both cases Σ reduces to the identity matrix. As models for
underlying distributions, we treat the following three cases: Random observations xi’s,
i = 1, . . . , n, are generated as xi = Σ1/2zi for zi = (zi1, . . . , zpi) with zi1, . . . , zpi being
mutually independent:

(Case 1) zij ∼ N (0, 1),
(Case 2) zij = (uij −m)/

√
2m, uij ∼ χ2

m for m = 2.
Case 2 is a non-normal case. Note that the skewness and kurtosis (K4 + 3) of χ2

m is,
respectively, (8/m)1/2 and 3 + 12/m.

We investigate the risk performance of the estimators given in Section 2, namely Σ̂LW

given in (1.2), RBLW estimator Σ̂RBLW in (1.3), Σ̂FS given in (1.5), Σ̂OAS given in (1.4)

and the proposed estimator Σ̂U in (2.8). Additionally, we add the oracle estimator Σ̂0,
i.e., the estimator whose weight is the optimal one given in (2.11).

The simulation experiments are carried out under the above model for fixed p = 100
and N = 5, 10, 15,. . ., 50. Based on 5,000 replications, we calculate empirical risk of these
estimators and show them on graphs in the two cases of the underlying distributions. The
results are shown in several figures at the end of the paper, where Σ̂LW , Σ̂RBLW , Σ̂FS,
Σ̂OAS, Σ̂U and the oracle estimator are denoted by LW, RBLW, FS, OAS, U and Oracle.

In the cases of normal distributions, as shown in Figure 1 in whichΣ is identity matrix,
Σ̂LW looks to be unstable for small N . Our proposed estimator Σ̂U performs some what
worse than Σ̂FS and Σ̂OAS, but the difference converges to zero as N increases. In other
cases with normal distributions, we get similar results and omit the details here.

In the non-normal cases , on the other hand, one sees that the proposed estimator
Σ̂U performs best of these in most cases (other than the oracle estimator) as shown in

Figure 2-8. Especially in the case close to the sphericity (i.e., small ρ and h), only Σ̂U

performs closely to the oracle estimator even when the sample size is small. Note that,
however, when ρ = 0.9 in (Model 1), Σ̂FS and Σ̂OAS perform some what better than Σ̂U

with N = 5. However, in such cases, some other shrinkage target than spherical one is
more appropriate. Compared to Σ̂FS and Σ̂OAS, the estimator Σ̂LW performs better in
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that they converge to the oracle estimator faster. It is probably because Σ̂OAS and Σ̂FS

is more affected by the outliers from non-normal distributions.

Although Σ̂OAS and Σ̂FS are slightly better than Σ̂ in the case of normal distributions,
they are more unstable than Σ̂U in the cases of non-normal distributions. In practice we
often encounter the situation in which we do not know whether underlying distribution
is normal or not. Thus, we recommend the suggested estimator Σ̂U , since Σ̂LW performs
worse than Σ̂U with small number of samples.

Lastly, Figure 9 shows sample average estimated weights of S; ŵLW , ŵRBLW , ŵOAS,
ŵFS and ŵU with the optimal weight w∗ given in (2.11). It is seen that the optimal weight
w∗ are estimated more unbiasedly by ŵU in every sample size N than the other estimators
of the weight. Results in other non-normal cases are similar and omitted.

5 Concluding Remarks

In this paper, we have addressed the problem of constructing an invertible and well-
conditioned estimator of a large covariance matrix in both normal and non-normal cases,
which is the plug-in estimator based on the optimal convex combination of S and â1Ip.
The performance of such a linear shrinkage estimator depends on an estimator of the
optimal weight. Our proposal for estimation of the weight is the ratio estimator based on
approximated or exact unbiased estimators of the numerator and denominator of the opti-
mal weight in non-normal distributions. We have shown that the estimator of Ledoit and
Wolf (2004) and the RBLW estimator have second-order biases in normal and non-normal
distributions. It has been also shown that the estimator of Fisher and Sun (2011) and
the OAS estimator are almost indentical and that they are second-order unbiased in the
normal case, but have second-order biases in non-normal cases. This is why, in simulation
studies, their estimators perform slightly better in the normal case than our proposal,
but worse in non-normal cases. Some simulation results tell us about how important the
unbiased estimation of the optimal weight is, and our proposal is recommended as an
estimator of the optimal weight.

Although we treat the sphericity assumption a1Ip as the shrinkage target. The shrink-
age target may be extended to the general assumption Λ(θ) for unknown parameter
θ = (θ1, . . . , θq). For example, we consider a diagonal matrix, an autoregressive structure
and an intra-class correlation structre as Λ(θ). A consistent estimator of θ under the

constraint Σ = Λ(θ) is denoted by θ̂. Then, linear shrinkage estimators which shrinkage

S toward Λ(θ̂) is written as Σ̂(Λ) = wS + (1−w)Λ(θ̂), and the optimal weight is given
by

w∗(Λ) = E[tr [(S −Λ(θ̂))(Σ−Λ(θ̂))]]/E[tr (S −Λ(θ̂))2]. (5.1)

Assume that the numerator E[tr [(S − Λ(θ̂))(Σ − Λ(θ̂))]] can be unbiasedly estimated
by G(S) in non-normal distributions. It follows from the arguments in Section 2 that the
optimal weight is estimated by

ŵU(Λ) = G(S)/tr (S −Λ(θ̂))2, (5.2)
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which is an extension of our proposal to the general target.

For example, consider the diagonal matrix Λ = D = diag (θ1, . . . , θp) as a target.

Under the constraint Σ = D, the restricted estimator is θ̂i = sii for S = (sij). Let

D̂ = diag (θ̂1, . . . , θ̂p). Then, the numerator in (5.1) is written as E[tr [(S−D̂)(Σ−D̂)]] =

E[tr [(S − D̂)Σ]] = pa2 − pa20, which is unbiasedly estimated as G(S) = p(â2C − â20).

Since the denomenator of (5.1) is trS2 − tr D̂
2
= trS2 − pâ20, we have

ŵU(D) =
â2C − â20

trS2/p− â20

and the estimator of Σ is ŵU(D)S + {1 − ŵU(D)}D̂. Asymptotic properties of linear
shrinkage estimators toward such a general target would be worth investigating in a future.
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Figure 1: Comparison of estimators in normal case; Σ = Ip (ρ = 0 in (Model 1) or h = 0.5
in (Model 2))
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Figure 2: Comparison of estimators in non-normal case; Σ = Ip (ρ = 0 in (Model 1) or
h = 0.5 in (Model 2))
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Figure 3: Comparison of estimators in non-normal case; ρ = 0.3 in (Model 1)
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Figure 4: Comparison of estimators in non-normal case; ρ = 0.6 in (Model 1)
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Figure 5: Comparison of estimators in non-normal case; ρ = 0.9 in (Model 1)
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Figure 6: Comparison of estimators in non-normal case; h = 0.6 in (Model 2)
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Figure 7: Comparison of estimators in non-normal case; h = 0.7 in (Model 2)
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Figure 8: Comparison of estimators in non-normal case; h = 0.8 in (Model 2)
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Figure 9: Comparison of sample average of estimated weights of S in non-normal case
with the optimal weight; Σ = Ip (ρ = 0 in (Model 1) or h = 0.5 in (Model 2))
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