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Abstract

Multivariate stochastic volatility models are expected to play important roles in finan-

cial applications such as asset allocation and risk management. However, these models

suffer from two major difficulties: (1) there are too many parameters to estimate using only

daily asset returns and (2) estimated covariance matrices are not guaranteed to be positive

definite. Our approach takes advantage of realized covariances to attain the efficient es-

timation of parameters by incorporating additional information for the co-volatilities, and

considers Cholesky decomposition to guarantee the positive definiteness of the covariance

matrices. In this framework, we propose a flexible modeling for stylized facts of financial

markets such as dynamic correlations and leverage effects among volatilities. Taking a

Bayesian approach, we describe Markov Chain Monte Carlo implementation with a simple

but efficient sampling scheme. Our model is applied to nine U.S. stock returns data, and

the model comparison is conducted based on portfolio performances.
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1 Introduction

Modeling time-varying co-volatilities of multiple asset returns has become increasingly

important in recent years for financial risk management. Although there is by now

large literature on univariate volatility models such as GARCH and stochastic volatil-

ity (SV) models, their extension to multivariate models has not been straightforward.

The major concern in this field is the flexible and intuitive modeling of time-varying

variances and correlations, but these multivariate volatility models suffer from two

major difficulties: (1) there are too many parameters to estimate using only daily

asset returns and (2) estimated covariance matrices are not guaranteed to be positive

definite. This paper proposes a promising solution to overcome these problems for

a multivariate SV model using a Cholesky decomposition of the covariance matrices

and additional information of realized covariances.

Among multivariate SV models, factor models are intuitive to describe the high

dimensional asset returns with common volatility dynamics and have been successful

to reduce the number of parameters to estimate (Harvey et al. (1994), Pitt and

Shephard (2003), Aguilar and West (2000), Chib et al. (2006) and Lopes and Carvalho

(2007)). However, we have to decide the number of factor a priori and choose the

factor structure for parameter identification (Geweke and Zhou (1996), Aguilar and

West (2000), Lopes andWest (2004)). For more flexible modeling, this paper considers

Cholesky decomposition of the covariance matrices, which guarantees the positive

definiteness.

The Cholesky stochastic volatility (CSV) models introduce the dynamic struc-

ture to the diagonal and off-diagonal components of Cholesky decomposed covari-

ance matrices. Pourahmadi (1999) proposes to model components of (time-invariant)

Cholesky decomposed inverse covariance matrices as a linear function of predictors,

and Fox and Dunson (2011) propose a Bayesian nonparametric approach for the co-

variance regression. For the time-varying covariance structure, Lopes et al. (2012)

consider the Cholesky stochastic volatility model which incorporate dynamic struc-

tures to each diagonal and off-diagonal components of Cholesky decomposed covari-

ance matrices. This approach enables us to utilize parallel computing methods due to

the conditional independence property of each rows of decomposed components, thus

it is efficient and fast even in high dimensional cases. In the class of GARCH models

(see e.g., Bauwens et al. (2006) for a recent survey), Dellaportas and Pourahmadi
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(2012) propose Cholesky-GARCH model where conditional variances are assumed to

follow GARCH(1,1) process, but non-diagonal elements of the lower triangular matrix

of Cholesky decomposition are constant over time.

On the other hand, high-frequency (intraday) data of asset prices have become

available recently in the financial market, and various realized measures have been

proposed to estimate daily volatilities, which attracts attention in financial economet-

rics. They are, for example, realized volatility, realized kernel and realized covariance

(Andersen and Bollerslev (1998), Barndorff-Nielsen and Shephard (2001), Barndorff-

Nielsen et al. (2008) and Barndorff-Nielsen and Shephard (2004)). These measures

have more information regarding true volatilities or covariance matrices than those

estimators based solely on daily returns, but have some biases primarily due to market

microstructure noises and non-trading hours. To adjust these biases in SV models,

realized stochastic volatility (RSV) models are proposed by Takahashi et al. (2009)

where they consider simultaneous modeling of daily returns and realized volatilities,

since daily returns are less subject to these biases. The RSV models are expected

to provide more accurate estimates of volatilities while removing biases of realized

measures than conventional SV models with solely daily returns.

Several econometric models for realized covariances have been proposed in the

literature. Jin and Maheu (2013) incorporates the realized covariance information

into Wishart Autoregressive processes by extending models of Philipov and Glick-

man (2006) and Asai and McAleer (2009). Windle and Carvalho (2014) propose a

state space model whose observations and latent states take values on the manifold of

symmetric positive-definite matrices. This paper considers multivariate RSV models

in the context of CSV models. We incorporate realized covariances into the CSV mod-

els as additional information resources for true covariance matrices. Furthermore, we

extend these original models so as to incorporate dynamic leverage effects and corre-

lations among volatilities. In empirical studies of nine U.S. stock returns, we compare

our proposed model with standard CSV models based on portfolio performances with

several strategies.

The organization of the paper is as follows. Section 2 introduces CSV and RSV

models. In Section 3, we describe Bayesian estimation procedure using Markov chain

Monte Carlo (MCMC) simulation. We also discuss prior specifications for each pa-

rameters. Section 4 illustrate our estimation algorithm using simulated data. In

Section 5, we apply our model to nine U.S. stock returns data and show the empirical
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estimation results. Finally, in Section 6, we compare the performances of proposed

models with those of standard CSV models based on the different types of portfolio

strategies.

2 Cholesky realized stochastic volatility model

In this section we introduce our Cholesky realized SV (CRSV) model. However, we

start by briefly reviewing Lopes et al. (2012) Cholesky stochastic volatility (CSV)

model and Barndorff-Nielsen et al. (2011) multivariate realized SV (RSV) model.

These models tackle the two major difficulties in modeling multivariate volatility:

positive-definiteness of estimated covariance matrices and the curse of dimensionality

when estimating highly parameterized models for daily asset returns.

2.1 Cholesky stochastic volatility model

The Cholesky decomposition is unique and guarantees positive definiteness of the

covariance matrix when the diagonal components of the decomposed covariance are

positive. More specifically, let yt = (y1t, . . . , ypt)
′ be a p-dimensional vector of assets

returns, such that

yt ∼ N (mt,Σt) (1)

where mt = (m1t, . . . ,mpt)
′ and Σt are, respectively, the mean vector and the covari-

ance matrix at time t. We consider the Cholesky decomposition of Σt as follows, for

t = 1, . . . , n:

Σt = H∗−1
t VtH

∗−1′

t , (2)

where Vt = diag{exp(h11,t), . . . , exp(hpp,t)} and

H∗
t =



1 0 0 . . . 0

−h21,t 1 0 . . . 0

−h31,t −h32,t 1
. . .

...
...

...
. . . . . . 0

−hp1,t −hp2,t . . . −hp p−1,t 1


, (3)

Recursive conditional regressions. It follows that

H∗
t (yt −mt) ∼ N (0,Vt),
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where the quantities hij,t’s (i > j) are the regression coefficients in p recursive condi-

tional regressions:

yit
∣∣{yjt}i−1

j=1 ∼ N

(
mi,t +

i−1∑
j=1

hij,t(yjt −mjt), exp(hii,t)

)
, i = 1, . . . , p.

Lopes et al. (2012) propose the Cholesky stochastic volatility (CSV) models by as-

suming mt = 0 and autoregressive processes for ht = (h11,t, h22,t, . . . , hpp,t)
′ and

h∗
t = (h21,t, h31,t, . . . , hp p−1,t)

′,

ht+1 = µ+Φ(ht − µ) + ηt, ηt ∼ i.i.d. N (0,D), (4)

h∗
t+1 = µ∗ +Φ∗(h∗

t − µ∗) + η∗
t , η∗

t ∼ i.i.d. N (0,D∗), (5)

where µ = (µ11, µ22, . . . , µpp)
′, µ∗ = (µ21, µ31, . . . , µp p−1)

′,Φ = diag(ϕ), ϕ = (ϕ11, ϕ22,

. . . , ϕpp)
′, Φ∗ = diag(ϕ∗), ϕ∗ = (ϕ21, ϕ31, . . . , ϕp p−1)

′, D = diag(τ 211, τ
2
22, . . . , τ

2
pp), and

D∗ = diag(τ 221, τ
2
31, . . . , τ

2
p p−1). They implement the highly efficient estimation based

on the mixture sampler (see, Kim et al. (1998) and Omori et al. (2007)) by using the

normal mixture approximation. The CSV model enables us to utilize parallel comput-

ing procedures for estimating each components due to the conditional independence

of each rows.

2.2 Realized stochastic volatility model

Another major difficulty in the multivariate volatility model is that there are too many

parameters to estimate using only daily asset returns. In addition to daily returns,

recently, the high frequency datasets have become available and attracted attentions

in financial econometrics. Using high frequency data, Andersen and Bollerslev (1998)

and Barndorff-Nielsen and Shephard (2002) propose more accurate volatility estima-

tor which is called the realized volatility. However, in the presence of the market

microstructure noises, it becomes a biased estimator and Barndorff-Nielsen et al.

(2008) further propose the realized kernel which is a robust estimator to such noises.

Several other extensions of these estimators have been proposed under different as-

sumptions for the stochastic processes of assets. For multivariate asset returns, the

realized covariance, RCt, is defined by

RCt =
m∑
j=1

rj,tr
′
j,t,
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where rj,t = y j
m
,t − y j−1

m
,t, j = 1, . . . ,m, t = 1, . . . , n, and y j

m
,t is a p × 1 log-

price vector at j-th time of the day t. Barndorff-Nielsen and Shephard (2004) show

that, in the absence of the market microstructure noise, it converges to the quadratic

covariation of y as m→ ∞. Barndorff-Nielsen et al. (2011) propose the multivariate

realized kernel which is robust to such noises. Although various extensions of these

estimators have been proposed, their properties depend on assumptions imposed on

the price processes.

The realized measures have more information regarding true volatilities and co-

variance matrices, while there may be a bias due to the market microstructure noise.

On the other hand, daily returns have less information about true volatilities, while

they are less affected by these noises. Thus Takahashi et al. (2009) propose real-

ized stochastic volatility models (RSV), which is the simultaneous modeling of daily

returns and realized volatilities, and there is a growing literature on similar simulta-

neous modeling (Koopman and Scharth (2013), Venter and de Jongh (2014), Shirota

et al. (2014) and Zheng and Song (2014)). In addition to the standard stochastic

volatility model with leverage

yt = exp{ht/2}ϵt, (6)

ht+1 = µ+ ϕ(ht − µ) + ηt, (7)

for t = 1, . . . , n and (
ϵt

ηt

)
∼ i.i.d. N

((
0

0

)
,

(
1 ρση

ρση σ2
η

))
, (8)

where yt is an asset returns at time t, Takahashi et al. (2009) consider another mea-

surement equation for the logarithm of the realized volatility at time t

xt = ξ + ht + ut, (9)

where ut ∼ i.i.d. N (0, σ2
u) and independent of (ϵt, ηt)

′. This model automatically

adjusts the bias of the realized measure without any additional adjustment such as

selecting the optimal sampling frequency to compute the realized volatility. The

parameter ξ is the bias adjustment term to account for the effects of the market mi-

crostructure noise and non-trading hours simultaneously. When it is negative (posi-

tive), the realized volatility is considered to underestimate (overestimate) the latent

volatility. Although we could extend it by replacing ht with ψht in (9), where ψ is
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another adjustment coefficient, it has been pointed out that this extension does not

necessarily improve the forecasting performances in the empirical studies.

2.3 Cholesky realized stochastic volatility model

We now extend the CSV model in two directions. Firstly, we consider additional

measurement equations to incorporate the information of the realized measures. Sec-

ondly, we incorporate leverage effects that are often observed to exist in the empirical

studies of stock markets.

Consider the Cholesky decomposition of the realized covariance RCt given by

RCt = X∗−1
t diag{exp(x11,t), exp(x22,t), . . . , exp(xpp,t)} X∗−1′

t ,

where

X∗
t =



1 0 0 · · · 0

−x21,t 1 0 · · · 0

−x31,t −x32,t 1
. . .

...
...

...
. . . . . . 0

−xp1,t −xp2,t · · · −xp p−1,t 1


,

and defining xt = (x11,t, x22,t, . . . , xpp,t)
′ and x∗

t = (x∗21,t, x
∗
31,t, . . . , x

∗
p p−1,t)

′. The infor-

mation of the realized covariances are added to the following measurement equations:

xt = ξ + ht + ut, ut ∼ i.i.d. N (0,C), (10)

x∗
t = ξ∗ + h∗

t + u∗
t , u∗

t ∼ i.i.d. N (0,C∗), (11)

where ξ = (ξ11, ξ22, . . . , ξpp)
′, ξ∗ = (ξ21, ξ31, . . . , ξp p−1)

′,C = diag(σ2
u,11, σ

2
u,22, . . . , σ

2
u,pp)

′,

and C∗ = diag(σ2
u,21, σ

2
u,31, . . . , σ

2
u,p p−1)

′.

The ut and u∗
t are measurement error terms for realized covariances, which are

assumed to be independent of each other. Further, we assume the common bias ξ for

realized covariances, i.e., ξ = ξ1p where 1p is a p × 1 vector with all elements equal

to one so that

RCt = exp(ξ)X∗−1
t diag(exp(h11,t + u1t), , . . . , exp(hpp,t + upt)) X

∗−1′
t .

We note that the common scale bias exp(ξ) does not affect the correlation structure

of realized covariances, while the bias adjustment terms for off-diagonal components

ξ∗ may affect the correlation structure of covariance matrices. Also we could consider
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additional bias adjustment coefficient matrices for h and h∗, but assume that they

are unit matrices for simplicity.

Second, we consider leverage and cross leverage effects which are observed to exist

in stock markets to improve the model predictive performance (e.g., Ishihara and

Omori (2012), Ishihara et al. (2014), Trojan (2014)). The cross leverage effects are

defined as the negative correlation between the i-th asset return at time t and the j-th

log volatility at time t + 1 for i ̸= j. Given yt,ht and mt, we incorporate dynamic

leverage effects through the following equations:

ht+1 = µ+Φ(ht − µ) +RV
−1/2
t H∗

t (yt −mt) + ζt,

where ζt ∼ N (0,Ω), with Ω = S−1DS−1′ and

S =



1 0 0 · · · 0

−s21 1 0 · · · 0

−s31 −s32 1
. . .

...
...

...
. . . . . . 0

−sp1 −sp2 · · · −sp p−1 1


.

The p× p matrix R captures the influence of daily returns at time t on the diagonal

elements of covariance matrices at time t + 1. We could consider similar effects for

h∗t+1, but their interpretations are not clear in empirical studies. Moreover, they will

introduce a large number of many parameters (order p4) to estimate such effects.

Thus we focus on leverage effects only for ht+1. Further, the matrix S describes the

dependence among ht+1 in a sequential regression form. Since time-varying variances

of multiple asset returns move in the similar direction in financial market, we expect

them to have high correlation and hence incorporate the correlation through the

matrix S. Setting R = O and S = Ip where Ip denotes a p × p identity matrix, it

reduces to the model without leverage as in Lopes et al. (2012).

Finally, we assume a random walk process for the mean process of yt to allow

possible dynamic movement in mean levels rather than setting mt ≡ 0. We note

that the introduction of such a mean process is important to improve the portfolio

performance in empirical studies.

In summary, we propose the Cholesky realized stochastic volatility (CRSV) model
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given by three measurement equations

yt = mt +H∗−1
t V

1/2
t ϵt, (12)

xt = ξ1p + ht + ut, ut ∼ i.i.d. N (0,C), (13)

x∗
t = ξ∗ + h∗

t + u∗
t , u∗

t ∼ i.i.d. N (0,C∗), (14)

for t = 1, . . . , n and three state equations

ht+1 = µ+Φ(ht − µ) + ηt, (15)

h∗
t+1 = µ∗ +Φ∗(h∗

t − µ∗) + η∗
t , η∗

t ∼ i.i.d. N (0,D∗), (16)

mt+1 = mt + νt, νt ∼ i.i.d. N (0,Ωm), Ωm = diag(σ2
m1, . . . , σ

2
mp), (17)

for t = 1, . . . , n− 1 where(
ϵt

ηt

)
∼ i.i.d. N

(
0,

(
Ip R′

R RR′ + S−1DS−1′

))
.

For initial values of state variables, we assume, for simplicity,

h1 ∼ N (µ, λS−1DS−1′), h∗
1 ∼ N (µ∗, λ∗D∗), m1 ∼ N (0∗, λmΩm),

where λ, λ∗, λm are set to some known large constant.

3 Posterior inference

3.1 Prior distributions

We consider the vague prior for each component of parameters if we do not have

sufficient prior information on parameters. For example, we assume univariate nor-

mal distribution for ξ and independent multivariate normal distributions for ξ∗, µ

and µ∗ with large variance. For the vectorized components of S and R, we assume

independent multivariate normal distribution with large variance. Furthermore, for

the components of C, C∗, D, D∗ and Ωm, we consider inverse gamma distribution

with large variance for the conjugacy property. For the prior distribution for ϕ, we

assume Beta distribution for (ϕ + 1)/2 that is often used in the previous empirical

studies for the univariate models.

As for the prior distribution of ϕ∗, we need more careful discussion. Lopes et al.

(2012) introduce variable selection priors for ϕ∗. This approach is flexible in the sense

9



that it includes several dynamic patterns for h∗
t such as the constant plus noise, and

the random walk process. Since the constant plus noise process has almost similar

path to that of the random walk with a small error variance, we consider the prior

distribution for ϕ∗ to include random walk processes for h∗
t . Noting that the random

walk process is nonstationary with the unit root, we considered three types of unit

root priors for ϕ∗ proposed in the literature: (1) the beta prior defined not on (−1, 1),

but on a slightly extended range so as to allow for slightly explosive values (Lubrano

(1995)):

π(ϕ∗
i ) ∝ (1 + v − ϕ∗2

i )−1/2, −
√
1 + v < ϕ∗

i <
√
1 + v,

where v is a small positive number, (2) the reference prior (Berger and Yang (1994))

given by

π(ϕ∗
i ) =


(
2π
√

1− ϕ∗2
i

)−1

, |ϕ∗
i | < 1,(

2π|ϕ∗
i |
√
ϕ∗2
i − 1

)−1

, |ϕ∗
i | ≥ 1,

and (3) the uniform prior on (−
√
1 + v,

√
1 + v), ϕ∗

i ∼ U(−
√
1 + v,

√
1 + v), by set-

ting φ =
√
1+v+ϕ
2
√
1+v

∼ B(1, 1). In empirical studies, we take v = 0.3 since it is sufficient

to cover the support of posterior probability density function of ϕ∗
i , and any differ-

ences are not found in the sensitivity analysis for these three different prior settings.

Thus we focus on the simple uniform prior on (−
√
1 + v,

√
1 + v) with v = 0.3.

Since we include the realized covariance as an additional source of information of

covariance matrices in CRSV models, the estimation of ϕ∗ is more stable and efficient

than in CSV models. However, the off-diagonal components of realized covariance are

still noisy as shown in the empirical studies, and allowing for h∗
t to follow the smooth

random walk process is more appropriate to estimate ϕ∗ rather than imposing the

conventional stationarity conditions.

3.2 Customized MCMC scheme

Taking Bayesian approach, we implement Markov chain Monte Carlo simulation

and estimate posterior distributions of parameters to conduct statistical inferences.

Let z = {y,x} denote the set of observations where y = {y1,y2, . . . ,yn}, x =

{x1,x2, . . . ,xn}, and x∗ = {x∗
1,x

∗
2, . . . ,x

∗
n}. Further let θ denote the set of parame-

ters {ξ, ξ∗,µ,µ∗,ϕ,ϕ∗,R,S,C,C∗,D,D∗,Ωm}, and define the set of latent variables
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asm = {m1,m2, . . . ,mn}, h = {h1,h2, . . . ,hn}, and h∗ = {h∗
1,h

∗
2, . . . ,h

∗
n}. We

generate random samples from the posterior distribution with the probability density

function π(θ,m,h,h∗|z) given by

log π(θ,m,h,h∗|z) (18)

= const. + log π(θ)− 1

2

n∑
t=1

p∑
i=1

hii,t −
n

2

p∑
i=1

i∑
j=1

log σ2
u,ij −

n

2

p∑
i=1

log σ2
mi −

n

2

p∑
i=1

i∑
j=1

log τ 2ij

−1

2

n∑
t=1

(yt −mt)
′H∗′

t V
−1
t H∗

t (yt −mt)−
1

2

n∑
t=1

(xt − ξ1p − ht)
′C−1(xt − ξ1p − ht)

−1

2

n∑
t=1

(x∗
t − ξ∗ − h∗

t )
′C∗−1(x∗

t − ξ∗ − h∗
t )−

1

2

n∑
t=1

(mt+1 −mt)
′Ω−1

m (mt+1 −mt)

−1

2

n−1∑
t=1

{ht+1 − µ−Φ(ht − µ)−RV
−1/2
t H∗

t (yt −mt)}′S′D−1S

{ht+1 − µ−Φ(ht − µ)−RV
−1/2
t H∗

t (yt −mt)}

−1

2

n−1∑
t=1

{h∗
t+1 − µ∗ −Φ∗(h∗

t − µ∗)}′D∗−1{h∗
t+1 − µ∗ −Φ∗(h∗

t − µ∗)}

− 1

2λm
m′

1Ω
−1m1 −

1

2λ
(h1 − µ)′S′D−1S(h1 − µ)− 1

2λ∗
(h∗

1 − µ∗)′D∗−1(h∗
1 − µ∗),

where π(θ) denote the prior density function of θ.

The MCMC algorithm is implemented in ten blocks:

1. Initialize θ,m,h and h∗.

2. Generate h|θ,m,h∗,z

3. Generate h∗|θ,m,h,z

4. Generate m|θ,h,h∗,z

5. Generate (ξ, ξ∗,µ,µ∗)|θ\(ξ,ξ∗,µ,µ∗),m,h,h∗, z

6. Generate (ϕ,ϕ∗)|θ\(ϕ,ϕ∗),m,h,h∗,z

7. Generate R|θ\R,m,h,h∗,z

8. Generate S|θ\S,m,h,h∗,z
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9. Generate (C,C∗,D,D∗,Ωm)|θ\(C,C∗,D,D∗,Ωm),m,h,h∗,z

10. Go to Step 2

where θ\δ denote the parameter θ excluding δ. Details of the MCMC algorithm are

described in Appendix A.

4 Simulation exercise

Simulation set up. To illustrate the MCMC estimation for our proposed model, we

generate n = 2, 000 observations where the dimension of asset returns is p = 9, which

is the same dimension as in empirical studies. We set the true values of parameters

as µii = µij = 0, ξ = ξij = −0.5, ϕii = 0.97, ϕij = 0.99, sij = 0.2, τii = 0.1, τij = 0.01,

σu,ii = 0.1, σu,ij = 0.1, σmi = 0.002, for i = 1, . . . , p, and j = 1, . . . , i − 1, and

R = {−0.05× 1p,O}.

Prior set up. The prior distributions of parameters are assumed to be

µii ∼ N (0, 102), µij ∼ N (0, 102), ξ ∼ N (0, 102), ξij ∼ N (0, 102),

ϕii ∼ U(−1, 1), ϕij ∼ U(−
√
1.3,

√
1.3), sij ∼ N (0, 102),

τ 2ii ∼ IG(5, 0.05), σ2
u,ii ∼ IG(5, 0.05), σ2

u,ij ∼ IG(5, 0.05),

τ 2ij ∼ IG(10−4, 10−4), σ2
mi ∼ IG(10−6, 10−6),

for i = 1, . . . , p, and j = 1, . . . , i−1, and rij ∼ N (0, 102) for i, j = 1, . . . , p. We assume

fairly flat prior distributions for µ, µ∗, ξ, ξ∗, r, s and flat prior distributions for ϕ, ϕ∗.

For error variances of the diagonal components (τ 2ii) and realized measures (σ2
u,ii, σ

2
u,ij),

we assume inverse gamma prior distributions IG(5, 0.05) which are often used in

the literature. For error variances of no-diagonal components (τ 2ij) and the mean

return process mt, we put IG(ϵ, ϵ) prior distributions with small ϵ as discussed in the

previous section. For the hyperparameters, (λ, λ∗, λm), we set λ = λ∗ = λm = 100 to

remove the influence of initial values.

MCMC set up. The number of iteration for MCMC is 90,000. The first 60,000

samples are discarded as the burn-in period. The detailed estimation results for each

parameters are shown in Appendix A1. Tables 1 to 3 show the estimation results for

(µ,ϕ, ξ,C,D,Ωm), R and S for diagonal components h, while Tables 4 to 8 show
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the estimation results for (µ∗,ϕ∗, ξ∗,C∗,D∗) for non-diagonal components h∗. The

posterior means of parameters are close to their true values and 95% credible intervals

include these true values in most cases.

Figure 1 shows estimated 95% credible intervals for ht with true values. The

estimated intervals cover the true values and capture the dynamic behavior of these

diagonal components. Further, estimated dynamic correlations between asset returns

for (ρ21,t, . . . , ρ62,t) are shown in Figure 2. These true values are also included in 95%

credible intervals and well estimated.

5 Application to U.S. stock returns

The proposed model is applied to daily returns and realized covariances of nine U.S.

stocks (p = 9): JP Morgan (JPM), International Business Machine (IBM), Microsoft

(MSFT), Exxon Mobil (XOM), Alcoa (AA), American Express (AXP), Du Pont

(DD), General Electric (GE), and Coca Cola (KO). The realized covariance for these

assets can be downloaded from Oxford Man Institute website1 (see, Heber et al.

(2009), Noureldin et al. (2012)). The daily returns for i-th stock are defined as

yit = 100× (log pit− log pi,t−1), where pit is the close value of i-th asset at time t. The

realized covariance is calculated via 5 minutes intraday returns with subsampling.

The number of observations is n = 2242 (February 1, 2001 to December 31, 2009).

We note that this dataset includes the high volatility period after the financial crisis

in 2008 as shown in Figure 3.

5.1 Estimation results

Estimation efficiencies for CSV and CRSV models. First, we compare esti-

mation results of CSV and CRSV models, using the single-move sampler. The number

of iteration for MCMC is 90,000. The first 60,000 samples are discarded as the burn-

in period. Table 9 shows a part of estimation results for diagonal components. It

is shown that the estimation of the CRSV model is more efficient than that of the

CSV model in terms of inefficiency factors (IF)2. Since we incorporate diagonal and

1The dataset also includes Bank of America (BA). However, since it has the extremely high

volatility period after the financial crisis, it is excluded from our empirical studies.
2The inefficiency factor is the ratio of the numerical variance of the estimate from the MCMC

samples relative to that from hypothetical uncorrelated samples, and is defined as 1 + 2
∑∞

s=1 ρs
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off-diagonal components of decomposed realized covariance as additional source of

information regarding latent covariance variables. It improves sampling efficiencies

as well as standard deviations of parameters.

Estimation results for diagonal elements ht. Table 9 shows estimation results

(posteior means, posterior standard deviations, 95% credible intervals and inefficiency

factors) for µ, ϕ, ξ, C, D and Ωm.

Since posteriror means of ϕii’s are over 0.9, the persistence of diagonal elements

ht are high for all i, but they are relatively smaller than those in univariate SV

models. This is consistent with empirical studies in the past literature (Takahashi

et al. (2009)). Estimates of some means of diagnal elements, such as µ11 and µ55, are

much larger than others (especially µ88 and µ99), suggesting that there are differences

among the magnitude of conditional volatilities. The bias adjustment term ξ is esti-

mated to be −0.366 with 95% credible interval [−0.387,−0.345]. It implies the scale

bias for the realized covariance is close to exp(−0.366) ≈ 0.693. This is partly be-

cause non-trading hours are not considered to calculate the realized variances. Thus,

the construction of covariance estimators solely from the realized covariance would

overestimate true volatilities, while one could adjust such a scale bias within CRSV

models. Finally, the variances of mean process mt are estimated to be small as we

expected, suggesting that there are only small fluctuations in means of yt.

Figure 4 shows estimated posterior 95% credible intervals for ξ1p + ht with blue

lines, where the observed xt(= ξ1p + ht + ut) are shown with red lines. The 95%

credible intervals are much narrower in comparison with the sharp fluctuation of xt,

and succeeded to extract the smooth mean trends of ξ+hii,t for all i after eliminating

measurement errors.

Table 11 shows posterior means of elements of R, and the red figure indicates that

95% credible interval does not include 0 (in other words, Pr(rij < 0|data) > 0.975).

The elements of the first column of R are found to be much smaller than those of

other columns, which implies credible negative effects of y1t −m1t on ht+1. Figure 6

shows the time series plots of dynamic leverage effects of the first elementH∗
t (yt−mt)

on ht+1, i.e., the first column l1t = (L11,t, . . . , L91,t)
′ of Lt = RV

−1/2
t H∗

t . Posterior

where ρs is the sample autocorrelation at lag s. It suggests the relative number of correlated draws

necessary to attain the same variance of the posterior sample mean from the uncorrelated draws

(Chib (2001)).
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means of all l1j,t’s are negative (shown with red lines) and indciate leverage effects on

conditional log volatilities. The effect l11,t on the first components h11,t+1 is the largest

in its absolute value and credible in the sense that 95% credible intervals (shown with

blue lines) are below zero. Table 12 shows the posterior means of S. There are some

positive posterior means with Pr(sij > 0|data) > 0.975, and hence there is a credible

positive dependence among ht+1 given yt.

Estimation results for non-diagonal elements h∗
t . Tables 13–17 show estima-

tion results (posteior means, posterior standard deviations) for µ∗, ϕ∗, ξ∗, C∗ and

D∗. The posterior means of µ∗ are all positive, which suggests the positive depen-

dence among yt −mt. Taking account of their standard deviations, all but µ9j’s are

credibly positive. The ϕij’s are estimated to be close to one as expected, and the

error standard deviations τij’s are relatively small. The small τij indicates that the

corresponding hij,t are close to constant. Figure 5 shows estimated posterior 95%

credible intervals for off-diagonal components, ξij + hij,t for i = 2, . . . , 6 and j = 1, 2

with blue lines, and the red lines show the corresponding off-diagonal components of

realized covariance xij,t = ξij + hij,t + uij,t. While observed xij,t’s seem to have large

noises, the 95% credible intervals are much narrower and stable. This is consistent

with the posterior estimates of σu,ij whose magnitude is much larger than that of the

τij. We note that, for some off-diagonal components such as h61, h52 and h54, there

are sharp increases in trends after the financial crisis. Also, there seems to be no

clear bias direction in x∗
t since some bias terms ξij are estimated to be positive while

others are negative.

Finally, Figure 7 shows the posterior means (with red lines) and 95% credible

intervals (with blue lines) for time-varying correlation ρij,t’s (i = 2, . . . , 6 and j = 1, 2).

We observe the co-movement of the correlation processes among stock returns with

the upward trend after financial crisis in 2008.

5.2 Model Comparison based on portfolio performances

For univariate volatility models, it is straightforward to evaluate the forecasting per-

formances: we compare the predictive mean square error (PMSE) using several kinds

of loss functions (such as mean square loss, mean absolute loss and quasi likelihood

loss. see Patton (2011)). However, for multivariate volatility models, it is not straight-
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forward to choose appropriate distance measures between two covariance matrices.

Furthermore, it certainly is not obvious that all elements of the difference should be

treated as equally important. Engle and Colacito (2006), on the other hand, propose

the model comparison based on the variances of portfolios given expected returns.

Univariate loss functions may be used for such a comparison of variances of port-

folios. In this section, we compare the forecasting performance based on the three

portfolio strategies: (1) minimum-variance strategy, (2) mean-variance strategy, and

(3) maximum-expected return strategy (see, e.g. Han (2006)) for three multivariate

SV models: CSV model, CRSV model without leverage (by settingR = O and S = I)

and CRSV model.

Predictive mean and covariance. The procedures for volatility forecasting are

as follows. We first estimate parameters using 1742 (n = 1742) observations from

February 1, 2001 to January 8, 2008, and forecast the volatility for January 9, 2008.

Then we shift the sample period one day (from February 2, 2001 to January 9, 2008)

to estimate parameters and forecast the volatility for January 10, 2008. We continue

this one-day ahead forecast by rolling the sample period until we forecast the volatility

for December 31, 2009, which results in 500 one-day ahead forecasts.

Let N denote the number of MCMC iterations used in the parameter estimation,

and (θ(i), {h(i)
t }nt=1, {h

∗(i)
t }nt=1, {m

(i)
t }nt=1) denote the MCMC sample of (θ, {ht}nt=1, {h∗

t}nt=1, {mt}nt=1)

at the i-th iteration (i = 1, . . . , N). Further, let mt+1|t ≡ E[yt+1|Ft] and Σt+1|t ≡
V ar[yt+1|Ft] denote the conditional mean and covariance of stock returns yt+1, given

the current information set Ft at time t. Then, the one-step-ahead volatility forecast

is obtained by adding the following several steps to each MCMC iteration:

1. Generate h
(i)
n+1,h

∗(i)
n+1,m

(i)
n+1|{zt}nt=1,θ

(i), {h(i)
t }nt=1, {h

∗(i)
t }nt=1, {m

(i)
t }nt=1.
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2. Store

V
(i)
n+1|n = diag

(
exp(h

(i)
11,n+1), exp(h

(i)
22,n+1), . . . , exp(h

(i)
pp,n+1)

)
,

H
∗(i)
n+1|n =



1 0 0 · · · 0

−h(i)21,n+1 1 0 · · · 0

−h(i)31,n+1 −h(i)32,n+1 1
. . .

...
...

...
. . . . . . 0

−h(i)p1,n+1 −h(i)p2,n+1 · · · −h(i)p p−1,n+1 1


,

Ω(i)
m = diag(σ

2(i)
m1 , . . . , σ

2(i)
mp ),

to compute the posterior predictive means of mn+1|n and Σn+1|n given by

m̂n+1|n =
1

N

N∑
i=1

m
(i)
n+1|n,

Σ̂n+1|n =
1

N

N∑
i=1

Σ
(i)
n+1|n =

1

N

N∑
i=1

(
H

∗−1(i)
n+1|nV

(i)
n+1|nH

∗−1′(i)
n+1|n +Ω(i)

m

)
.

We set N = 3, 000 with the burn-in period 1,000 for each one-step-ahead prediction.

The initial values for parameters and latent variables are set to their posterior means

of previous MCMC iteration.

Portfolio performance. We describe three strategies: (1) minimum-variance strat-

egy, (2) mean-variance strategy, and (3) maximum-expected return strategy. Let

µp,t+1 and σ2
p,t+1 denote the conditional mean and variance of the portfolio returns,

rp,t+1, and let rf denote the risk free asset return where we use the federal funds rate

for rf . If we let ωt denote the vector of portfolio weights for stock returns, then

µp,t+1 = ω
′

tmt+1|t + (1− ω
′

t1)rf ,

σ2
p,t+1 = ω

′

tΣt+1|tωt.

• Minimum-variance strategy

This strategy is to minimize the conditional variance σ2
p,t+1 for given levels

of conditional expected return µp,t+1 = µ∗
p. The investors solve the following

quadratic problem at time t:

min
ωt

σ2
p,t+1 s.t. µ2

p,t+1 = µ∗
p,
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where µ∗
p is the target expected return. The solution is

ω̂t = Σ−1
t+1|t(mt+1|t − rf1)

µ∗
p − rf

κt
,

κt = (mt+1|t − rf1)
′
Σ−1

t+1|t(mt+1|t − rf1).

• Mean-variance strategy

This strategy is to maximize an expected mean-variance utility function. Then

the investors solve the following utility maximization problem,

max
wt

{
µp,t+1 −

γ

2
σ2
p,t+1

}
,

where γ is the coefficient of the absolute risk aversion. The high value of the

risk aversion γ implies that people tend to be risk aversive. The solution is

ω̂t =
1

γ
Σ−1

t+1|t(mt+1|t − rf1).

Thus the risk aversion coefficient γ can influence not to the relative weights of

individual risky assets but to the sum of their weights.

• Maximum expected return strategy

This strategy is to maximize the conditional expected return µp,t+1 for a given

level of conditional volatility σ2
p,t+1 = σ∗2

p . The investors solve the following

problem at time t:

max
ωt

µp,t+1 s.t σ2
p,t+1 = σ∗2

p ,

where σ∗2
p the target level of variance. The solution is given by

ω̂t = Σ−1
t+1|t(mt+1|t − rf1)

√
σ∗2
p

κt
,

κt = (mt+1|t − rf1)
′
Σ−1

t+1|t(mt+1|t − rf1).

Estimation results.

The cumulative realized returns are shown in Table 18 for (1) minimum-variance

strategy with µ∗
p = 0.004, 0.01 and 0.1, (2) mean-variance strategy with γ = 6,

10 and 15, and (3) maximum-return strategy with σ∗
p = 0.001, 0.01 and 0.1. For

the minimum-variance strategy, CRSV models outperform CSV models, while CRSV

model without leverage (R = O and S = I) shows the better performance than CRSV
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model with leverage (no restriction on R and S). For the mean-variance strategy,

CSV and CRSV models outperform CRSV without leverage model, and there is

little difference between two models. For maximum-return strategies, CRSV model

without leverage outperforms other two models. Overall, CRSV models outperform

CSV model.

Figures 8 to 10 show the time series plots of the weight for the i-th stock, ωit,

for three strategies in CRSV models. Under the riskiest settings in each strategy

(i.e., µ∗
p = 0.1, γ = 6, σ∗

p = 0.1), it is found that the portfolio weights fluctuate more

drastically than those under two other less risky settings in each strategy during the

prediction period. Also we note that the weights for the mean-variance strategy do

not change so much during the prediction period, and the weights for the risk free

asset are more than 95% weight under all levels of the risk aversion. Furthermore,

the weights for the maximum-return strategy take more stable values relatively than

those for the minimum-variance strategy.

Furthermore, Figure 14 illustrates the cumulative realized return for three models.

Since the weighs for risk assets under the mean-variance strategy are close to zero,

the differences of cumulative realized returns among three models are very small for

this strategy. For the minimum-variance and the maximum-return strategies, CSV

model demonstrates the higher performance from the end of 2008 to the middle of

2009 than other two models , but its performance fluctuates drastically during the

prediction period. On the other hand, CRSV models show more stable performance

during the period.

6 Conclusion

In this paper, we propose CRSV model, simultaneous modeling of multiple daily as-

set returns and realized covariance, where the well-known bias problems in realized

measures due to market microstructure noise and non-trading hours biases are auto-

matically solved within our proposed framework. Furthermore, we extend them to

incorporate the leverage effects that have been observed in the literature in univariate

SV models. Taking a Bayesian approach, the efficient MCMC algorithm is described

for the parameter estimation. In our empirical studies, our proposed CRSV models

capture the dynamic behaviors of diagonal and off-diagonal components of Cholesky

decomposed covariance matrices and are shown to outperform CSV models. The dy-
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namic leverage effects R and the correlation matrix S for ht+1 given yt are shown to

improve the portfolio performances. Furthermore, the cumulative returns for CRSV

models are less volatile than that of the CSV model.

As our future work, we could consider several directions. First, more parsimonious

modeling by detecting the sparsity of off-diagonal components may improve the fore-

casting performances of the multivariate SV model, using such as Bayesian threshold

dynamic modeling (Nakajima and West (2013a), Nakajima and West (2013b)). Sec-

ond, the long memory property of diagonal components may need be taken in to

account. Since the realized volatilities are well-known to have high persistence, a

superposition model can be used to describe such a long range dependence and to

improve the goodness of fit to the data. Finally, although our specification of stock

returns is a simple random walk process, the more sophisticated mean structures, in

such as factor SV models, may be useful to improve the portfolio performances.
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Appendix

A The details of MCMC algorithm

A.1 Generation of h

Lopes et al. (2012) implement the mixture sampler (Kim et al. (1998), Omori et al.

(2007)) for diagonal components of the decomposed covariance matrix, which trans-

forms the nonlinear measurement equation of individual SV models into a linear

equation by taking the logarithm of squared daily returns and approximates the dis-

tribution of the non-normal disturbances (logχ2
1 distribution) by mixture of normals.

Given the component of mixture normals, the model reduces to the linear and Gaus-

sian state space model, and hence we are able to sample {hii,t}nt=1 for i = 1, . . . , p

simutaneously using a simulation smoother (de Jong and Shephard (1995), Durbin

and Koopman (2002)). The mixture sampler approach is the highly efficient esti-

mation strategy, but it needs to correct the approximation error by the additional

reweighting step. Alternatively, the multi-move sampler which samples a block of

{hijt}t=s+m
t=s given other hijs’s is also known to be efficient to sample these latent

volatility variables in the univariate SV models (Shephard and Pitt (1997), Watan-

abe and Omori (2004), Omori and Watanabe (2008)). However, such estimation

approaches based on the univariate SV model cannot be applied to our model unless

R is diagonal and S = Ip. Thus, in this paper, we use the single-move sampler which

sample ht given other hs’s instead and improve the estimation efficiency by incorpo-

rating additional measurement equations of the logarithm of the realized variances ,

xt, without approximating the error distribution by normal mixtures. We shall show

that this is a simple but efficient estimation strategy.

We conduct MH algorithm using a single-move sampler to generate ht given other

parameters and latent variables. Let I(A) denote an indicator function such that

I(A) = 1 when A is true and 0 otherwise. The log conditional posterior density is

log π(ht|θ,h−t,h
∗,m, z) = const. + g(ht)−

1

2
(ht − ft)

′F−1
t (ht − ft),
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where

g(ht) = −1

2
(yt −mt)

′H∗′
t V

−1/2
t (I+R′S′D−1SR)V

−1/2
t H∗

t (yt −mt)

+(yt −mt)
′H∗′

t V
−1/2
t R′S′D−1S{ht+1 − µ−Φ(ht − µ)}I(t < n),

F−1
t = ΦS′D−1SΦI(t < n) + λ−I(t=1)S′D−1S+C−1,

ft = Ft

[
−1

2
1p +ΦS′D−1S {ht+1 − (Ip −Φ)µ} I(t < n) +C−1(xt − ξ1p)

+λ−I(t=1)S′D−1S
{
(Ip −Φ)µ+Φht−1 +RV

−1/2
t−1 H∗

t−1(yt−1 −mt−1)
}]

,

with y0 ≡ m0 and h0 ≡ µ. We generate a candidate h†
t ∼ N (ft,Ft) and accept it

with probability min{1, exp(g(h†
t)− g(ht))}.

A.2 Generation of h∗

Similar to the generation of h, we consider the simple single-move sampling as follows.

Consider the representation H∗
t (yt −mt) ≡ (yt −mt) +Ath

∗
t where At is the p× k

matrix composed of the linear functions of yt −mt. Then generate

h∗
t ∼ N (f ∗

t ,F
∗
t ),

where

F∗−1
t = A′

tV
−1
t At + λ∗−I(t=1)D∗−1 +C∗−1

+{A′
tV

−1/2
t R′S′D−1SRV

−1/2
t At +Φ∗D∗−1Φ∗}I(t < n),

and

f ∗
t = F∗

t

[
−A′

tV
−1
t yt +C∗−1(x∗

t − ξ∗) + λ∗−I(t=1)D∗−1
{
(IK −Φ∗)µ∗ +Φ∗h∗

t−1

}
+A′

tV
−1/2
t R′S′D−1S

{
ht+1 − µ−Φ(ht − µ)−RV

−1/2
t (yt −mt)

}
I(t < n)

+Φ∗D∗−1
{
h∗

t+1 − (IK −Φ∗)µ∗} I(t < n)

]
,

with h∗
0 ≡ µ∗ and K = p(p− 1)/2. Although above algorithm is simple and efficient,

we note that we could instead use a simulation smoother to generate {hijt}nt=1 for

i > j given {hikt}nt=1 (k ̸= j) as in Lopes et al. (2012) when R is diagonal and S = Ip.
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A.3 Generation of m

Noting that ϵt|ηt ∼ N (R′(RR′ +S−1DS−1′)−1ηt, Ip −R′(RR′ +S−1DS−1′)−1R), we

define

ỹt = yt −H∗−1
t V

1/2
t R′(RR′ + S−1DS−1′)−1{ht+1 − µ−Φ(ht − µ)}I(t < n),

Γt = H∗−1
t V

1/2
t

{
Ip −R′(RR′ + S−1DS−1′)−1RI(t < n)

}
V

1/2
t H∗−1′

t ,

and consider the following linear Gaussian state space model

ỹt = mt + ϵ̃t, ϵ̃t ∼ N (0,Γt),

mt+1 = mt + νt, νt ∼ N (0,Ωm),

where ϵ̃t and νt are independent. Generate m using a simulation smoother.

A.4 Generation of (ξ, ξ∗,µ,µ∗)

We assume that prior distributions are

ξ ∼ N (ξ0, σ
2
ξ0), ξ∗ ∼ N (ξ∗0,Ξ

∗
0), µ ∼ N (µ0, M̃0), µ∗ ∼ N (µ∗

0, M̃
∗
0).

Then the conditional posterior distributions of (ξ, ξ∗,µ,µ∗) are independent given

other parameters, m,h and h∗. The posterior distributions are

ξ ∼ N (ξ1, σ
2
ξ1), ξ∗ ∼ N (ξ∗1,Ξ

∗
1), µ ∼ N (µ1, M̃1), µ∗ ∼ N (µ∗

1, M̃
∗
1),

where

σ−2
ξ1 = σ−2

ξ0 + n1′
pC

−11p, ξ1 = σ2
ξ1

{
σ−2
ξ0 ξ0 + 1′

pC
−1

n∑
t=1

(xt − ht)

}
,

Ξ∗−1
1 = Ξ∗−1

0 + nC∗−1, ξ∗1 = Ξ∗
1

{
Ξ∗−1

0 ξ∗0 +C∗−1

n∑
t=1

(x∗
t − h∗

t )

}
,

and

M̃−1
1 = M̃−1

0 + (n− 1)(Ip −Φ)S′D−1S(Ip −Φ) + λ−1S′D−1S,

µ1 = M̃1

[
M̃−1

0 µ0 + (Ip −Φ)S′D−1S
n−1∑
t=1

{
ht+1 −Φht −RV

−1/2
t H∗

t (yt −mt)
}

+λ−1S′D−1Sh1

]
,

M̃∗−1
1 = M̃∗−1

0 + (n− 1)(IK −Φ∗)D∗−1(Ik −Φ∗) + λ∗−1D∗−1,

µ∗
1 = M̃∗

1

[
M̃∗−1

0 µ∗
0 + (IK −Φ∗)D∗−1

n−1∑
t=1

(
h∗

t+1 −Φ∗h∗
t

)
+ λ∗−1D∗−1h∗

1

]
.
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A.5 Generation of ϕ and ϕ∗

Given other parameters and variables, ϕ and ϕ∗ are conditionally independent. For

the prior distribution of ϕ, we assume (ϕi + 1)/2 ∼ B(a0i, b0i) for i = 1, . . . , p, and

denote the prior probability density function by π(ϕ). Then

log π(ϕ|θ\ϕ,ϕ∗ ,m,h,h∗, z) = const. + log π(ϕ)− (ϕ− µϕ)
′Σ−1

ϕ (ϕ− µϕ),

where

Σ−1
ϕ =

(
S′D−1S

)
⊙

{
n−1∑
t=1

(ht − µ)(ht − µ)′

}
, µϕ = Σϕbϕ, (19)

and bϕ is the column vector with diagonal elements of

S′D−1S
n−1∑
t=1

{
ht+1 − µ−RV

−1/2
t H∗

t (yt −mt)
}
(ht − µ)′.

We generate a candidate ϕ† from a truncated multivariate normal distribution T NRϕ
(µϕ,Σϕ)

whereRϕ = {ϕ| |ϕi| < 1, i = 1, . . . , p} and accept it with probability min{1, π(ϕ†)/π(ϕ)}.

Let π(ϕ∗) denote the prior probability density function of ϕ∗. Then

log π(ϕ∗|θ\ϕ,ϕ∗ ,m,h,h∗,z) = const. + log π(ϕ∗)− (ϕ∗ − µϕ∗)′Σ−1
ϕ∗ (ϕ

∗ − µϕ∗),

where

Σ−1
ϕ∗ = D∗−1 ⊙

{
n−1∑
t=1

(h∗
t − µ∗)(h∗

t − µ∗)′

}
, µϕ∗ = Σϕ∗b∗ϕ, (20)

and b∗ϕ is the column vector with diagonal elements of

D∗−1

n−1∑
t=1

(
h∗

t+1 − µ∗) (h∗
t − µ∗)′.

When we take a uniform prior on (−
√
1 + v,

√
1 + v), we generate a candidate ϕ∗†

from a truncated multivariate normal distribution T NRϕ∗ (µϕ∗ ,Σϕ∗) where Rϕ∗ =

{ϕ∗| |ϕ∗
i | <

√
1 + v, i = 1, . . . , K}.
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A.6 Generation of R

Let r = vec(R) = (r′
1, . . . , r

′
p)

′ where rj denotes the j-th column of R. For the prior

distribution of r, we assume

r ∼ N (γ0,Γ0).

Noting that vec(AB) = (B′⊗ In)vec(A) for an n×m matrix A and an m× q matrix

B, we have

vec
{
RV

−1/2
t H∗

t (yt −mt)
}
=
{
(yt −mt)

′H∗′
t V

−1/2
t ⊗ Ip

}
r,

and obtain the conditional posterior distribution of r:

r|θ\R,m,h,h∗,z ∼ N (γ1,Γ1) ,

where

Γ−1
1 = Γ−1

0 +

{
n−1∑
t=1

V
−1/2
t H∗

t (yt −mt)(yt −mt)
′H∗′

t V
−1/2
t

}
⊗ (S′D−1S),

γ1 = Γ1

[
Γ−1

0 γ0 +
{
Q⊗ (S′D−1S)

}
vec(Ip)

]
,

Q =
n−1∑
t=1

V
−1/2
t H∗

t (yt −mt)(ht+1 − µ−Φ(ht − µ))′.

Alternative parsimonious specification. In the empirical studies of the factor-

based models, it is often that only the first factor (which corresponds to the market

factor) shows the leverage effects. Taking account of such empirical results which

we shall also see in our empirical studies, it is useful to consider the parsimonious

parameterization R = {r1,0, . . . ,0}. It implies only the first component of the

standardized vector V
−1/2
t H∗

t (yt − mt), which is expected to include the market

factor, produces the leverage effect. Thus, we assume

R = {r1,0, . . . ,0}, r1 ∼ N (γ10,Γ10),

and then vec(R) = (r′
1,0

′, . . . ,0′)′ = e1⊗r1 where e1 = (1, 0, . . . , 0)′ is a p×1 vector.

Noting that

vec
{
RV

−1/2
t H∗

t (yt −mt)
}

=
{
(yt −mt)

′H∗′
t V

−1/2
t ⊗ Ip

}
{e1 ⊗ r1}

= {(yt −mt)
′H∗′

t V
−1/2
t e1}r1,
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we obtain the conditional posterior distribution of r1:

r1|θ\R,m,h,h∗,z ∼ N (γ11,Γ11) ,

where

Γ−1
11 = Γ−1

10 +

[
n−1∑
t=1

{e′
1V

−1/2
t H∗

t (yt −mt)}2
]
S′D−1S,

γ11 = Γ11

[
Γ−1

10 γ10 + S′D−1S
n−1∑
t=1

{e′
1V

−1/2
t H∗

t (yt −mt)}(ht+1 − µ−Φ(ht − µ))

]
.

A.7 Generation of S

Let s = (s21, . . . , sp1, s32, . . . , sp p−1)
′ denote a stacked vector of lower off-diagonal

elements of S. For the prior distrbution of s, we assume

s ∼ N (δ0,∆0).

Using the representation of Sh̃t+1 = h̃t+1 +Bt+1s where h̃t+1 = ht+1 − µ−Φ(ht −
µ)−RV

−1/2
t H∗

t (yt −mt), we obtain the conditional posterior distribution of s:

s|θ\S,m,h,h∗, z ∼ N (δ1,∆1),

where

∆−1
1 = ∆−1

0 +
n∑

t=1

λ−I(t=1)B′
tD

−1Bt, δ1 = ∆1

[
∆−1

0 δ0 −
n∑

t=1

λ−I(t=1)B′
tD

−1h̃t

]
.

A.8 Generation of C,C∗,D,D∗ and Ωm

Note that elements ofC,C∗,D,D∗ andΩm are conditionally independent. We assume

their prior distributions are

τ 2ij ∼ IG(aτ,ij/2, bτ/2), σ2
u,ij ∼ IG(au,ij/2, bu,ij/2), σ2

mi ∼ IG(ami/2, bmi/2),

for i = 1, . . . , p and j = 1, . . . , i.

In empirical studies, the diagonal components, ht, fluctuate more drastically than

off-diagonal components, h∗
t . Actually, the time series plots of h∗

t are found to be

almost constant or those of the random walk process with small variance. Hence, we

shall assume IG(ϵ, ϵ) prior for D∗, (τ 2ij, i < j) with e.g., ϵ = 10−4. Also we expect the
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variance of the random walk process for the mean vector mt to be small and hence

assume the IG(ϵ, ϵ) prior, with e.g., ϵ = 10−6.

The conditional posterior distributions of τ 2ij’s are

τ 2ii|· ∼ IG
(
aτ,ii + n

2
,
bτ,ii +

∑n
t=1w

2
it

2

)
, τ 2ij|· ∼ IG

(
aτ,ij + n

2
,
bτ,ij +

∑n
t=1w

∗2
ij,t

2

)
,

for i = 1, . . . , p and j = 1, . . . , i− 1, where

wt =

 λ−1/2S(h1 − µ), t = 1,

S
{
ht − µ−Φ(ht−1 − µ)−RV

−1/2
t−1 H∗

t−1(yt−1 −mt−1)
}
, t = 2, . . . , n,

w∗
ij,t =

{
λ∗−1/2(hij,1 − µij), t = 1,

hij,t+1 − µij − ϕij(hij,t − µij), t = 2, . . . , n.

Similarly, the conditional posterior distributions of σ2
u,ij’s are

σ2
u,ii|· ∼ IG

(
au,ii + n

2
,
bu,ii +

∑n
t=1(xii,t − ξ − hii,t)

2

2

)
,

σ2
u,ij|· ∼ IG

(
au,ij + n

2
,
bu,ij +

∑n
t=1(xij,t − ξij − hij,t)

2

2

)
,

for i = 1, . . . , p and j = 1, . . . , i − 1. Finally, the conditional posterior distributions

of σ2
mi’s are

σ2
mi|· ∼ IG

(
ami + n

2
,
bmi + λ−1

m m2
i1 +

∑n−1
t=1 (mi,t+1 −mit)

2

2

)
,

for i = 1, . . . , p.
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B Tables and Figures

B.1 Simulated data

Table 1: Estimation results for (µ,ϕ, ξ,C,D,Ωm) for simulated

data

Parameter True Mean 95% interval IF Parameter True Mean 95% interval IF

µ11 0 0.047 [-0.099, 0.207] 11.0 ϕ11 0.97 0.971 [0.963, 0.979] 5.9

µ22 0 0.148 [-0.002, 0.313] 8.4 ϕ22 0.97 0.970 [0.962, 0.978] 4.7

µ33 0 0.104 [-0.028, 0.247] 13.1 ϕ33 0.97 0.967 [0.959, 0.974] 6.0

µ44 0 0.043 [-0.102, 0.201] 11.3 ϕ44 0.97 0.968 [0.960, 0.975] 4.2

µ55 0 0.169 [0.048, 0.296] 13.0 ϕ55 0.97 0.959 [0.951, 0.967] 3.7

µ66 0 0.128 [-0.041, 0.306] 7.8 ϕ66 0.97 0.969 [0.962, 0.977] 5.4

µ77 0 0.065 [-0.104, 0.243] 7.5 ϕ77 0.97 0.969 [0.962, 0.976] 5.1

µ88 0 0.155 [-0.044, 0.364] 6.5 ϕ88 0.97 0.970 [0.963, 0.977] 5.3

µ99 0 0.142 [-0.059, 0.346] 5.7 ϕ99 0.97 0.968 [0.961, 0.974] 2.9

τ11 0.1 0.098 [0.093, 0.104] 26.8 ξ -0.5 -0.496 [-0.518, -0.478] 569.0

τ22 0.1 0.100 [0.095, 0.106] 21.2

τ33 0.1 0.094 [0.089, 0.100] 25.5

τ44 0.1 0.098 [0.093, 0.105] 21.4

τ55 0.1 0.101 [0.095, 0.107] 17.8

τ66 0.1 0.104 [0.098, 0.110] 26.9

τ77 0.1 0.096 [0.090, 0.103] 33.0

τ88 0.1 0.104 [0.098, 0.110] 22.3

τ99 0.1 0.107 [0.101, 0.113] 22.6

σu,11 0.1 0.103 [0.098, 0.108] 18.7 σm1 0.002 0.0021 [0.0009, 0.0043] 561.8

σu,22 0.1 0.099 [0.095, 0.104] 17.1 σm2 0.002 0.0020 [0.0008, 0.0047] 592.5

σu,33 0.1 0.101 [0.096, 0.106] 22.9 σm3 0.002 0.0016 [0.0006, 0.0050] 654.3

σu,44 0.1 0.104 [0.098, 0.108] 22.7 σm4 0.002 0.0022 [0.0009, 0.0045] 569.5

σu,55 0.1 0.0977 [0.093, 0.102] 17.4 σm5 0.002 0.0010 [0.0003, 0.0025] 642.1

σu,66 0.1 0.0978 [0.092, 0.103] 18.7 σm6 0.002 0.0029 [0.0014, 0.0053] 528.9

σu,77 0.1 0.100 [0.095, 0.106] 32.1 σm7 0.002 0.0022 [0.0011, 0.0041] 533.3

σu,88 0.1 0.094 [0.088, 0.100] 25.0 σm8 0.002 0.0015 [0.0006, 0.0037] 620.4

σu,99 0.1 0.094 [0.088, 0.104] 20.1 σm9 0.002 0.0010 [0.0004, 0.0028] 636.2
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Table 2: Posterior means of R for simulated data: red font means

that 95% credible interval includes true value.

rij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 -0.0480 -0.0008 -0.0025 0.0011 0.0010 -0.0042 -0.0042 0.0015 -0.0015

i = 2 -0.0522 0.0016 0.0009 0.0009 -0.0039 0.0023 -0.0044 -0.0004 0.0010

i = 3 -0.0524 -0.0020 -0.0017 0.0029 -0.0003 0.0014 0.0010 -0.0024 -0.0012

i = 4 -0.0510 -0.0054 -0.0002 0.0054 -0.0008 0.0007 -0.0030 -0.0053 -0.0008

i = 5 -0.0532 -0.0041 -0.0030 0.0005 0.0021 -0.0014 -0.0003 0.0035 0.0065

i = 6 -0.0485 -0.0019 -0.0059 0.0013 0.0010 -0.0002 -0.0098 0.0000 0.0020

i = 7 -0.0497 -0.0040 -0.0049 -0.0020 0.0034 -0.0053 -0.0045 0.0039 -0.0028

i = 8 -0.0520 0.0021 -0.0036 -0.0012 0.0039 -0.0017 -0.0039 -0.0026 -0.0049

i = 9 -0.0464 -0.0036 0.0002 0.0003 0.0046 0.0040 -0.0020 0.0006 -0.0005

Table 3: Posterior means of S for simulated data: red font

means that 95% credible interval includes true value.

sij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 1

i = 2 0.212 1

i = 3 0.266 0.126 1

i = 4 0.245 0.189 0.178 1

i = 5 0.179 0.193 0.194 0.244 1

i = 6 0.180 0.218 0.214 0.193 0.204 1

i = 7 0.163 0.253 0.274 0.223 0.213 0.100 1

i = 8 0.180 0.236 0.255 0.218 0.179 0.204 0.173 1

i = 9 0.277 0.183 0.165 0.189 0.183 0.266 0.224 0.133 1

Table 4: Posterior means of µ∗ for simulated data: red font means

that 95% credible interval includes true value.

µij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.024

i = 3 -0.009 0.010

i = 4 -0.032 0.003 -0.007

i = 5 -0.001 -0.033 0.008 -0.006

i = 6 0.012 -0.045 0.028 0.034 -0.013

i = 7 -0.050 0.017 -0.016 0.023 -0.014 -0.017

i = 8 -0.016 -0.059 0.031 0.028 -0.008 -0.013 -0.001

i = 9 -0.003 0.005 -0.057 -0.012 0.011 0.035 -0.025 -0.012
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Table 5: Posterior means of ϕ∗ for simulated data: red font means

that 95% credible interval includes true value.

ϕij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.993

i = 3 0.987 0.991

i = 4 0.987 0.986 0.990

i = 5 0.990 0.989 0.986 0.994

i = 6 0.986 0.988 0.989 0.991 0.989

i = 7 0.975 0.989 0.986 0.989 0.980 0.988

i = 8 0.990 0.989 0.987 0.994 0.989 0.988 0.982

i = 9 0.987 0.985 0.989 0.989 0.992 0.980 0.993 0.989

Table 6: Posterior means of ξ∗ for simulated data: red font means

that 95% credible interval includes true value.

µij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 -0.4916

i = 3 -0.5022 -0.5005

i = 4 -0.4920 -0.4966 -0.4979

i = 5 -0.5137 -0.4788 -0.4961 -0.4917

i = 6 -0.5032 -0.4815 -0.5288 -0.5299 -0.5356

i = 7 -0.4754 -0.5009 -0.4889 -0.5212 -0.5070 -0.5098

i = 8 -0.5059 -0.4681 -0.5165 -0.5216 -0.5122 -0.5069 -0.4843

i = 9 -0.5021 -0.4793 -0.4557 -0.4775 -0.4989 -0.5061 -0.4843 -0.4721

Table 7: Posterior means of C∗ for simulated data: red font means

that 95% credible interval includes true value.

µij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.099

i = 3 0.099 0.103

i = 4 0.101 0.099 0.099

i = 5 0.101 0.100 0.101 0.099

i = 6 0.101 0.099 0.100 0.097 0.103

i = 7 0.098 0.098 0.100 0.098 0.101 0.099

i = 8 0.098 0.098 0.099 0.099 0.100 0.101 0.101

i = 9 0.100 0.099 0.099 0.098 0.100 0.100 0.100 0.0972
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Table 8: Posterior means of D∗ for simulated data: red font means

that 95% credible interval includes true value.

τij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.0098

i = 3 0.0096 0.0098

i = 4 0.0101 0.0120 0.0097

i = 5 0.0106 0.0112 0.0099 0.0078

i = 6 0.0088 0.0105 0.0115 0.0105 0.0093

i = 7 0.0119 0.0103 0.0105 0.0102 0.0117 0.0105

i = 8 0.0098 0.0087 0.0106 0.0089 0.0097 0.0107 0.0110

i = 9 0.0104 0.0102 0.0103 0.0108 0.0099 0.0119 0.0098 0.0106
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Figure 1: 95% credible intervals (blue) and true values (red) for h11,t, . . . , h99,t.
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Figure 2: 95% credible intervals (blue) and true values (red) for dynamic correlations

ρ21,t, . . . , ρ62,t

35



B.2 U.S. stock returns data

Table 9: Estimation results for µ,ϕ,D for U.S. stock returns

CRSV and CSV models

CRSV Mean Stdev 95% interval IF CSV Mean Stdev 95% interval IF

µ11 1.097 0.133 [0.833, 1.360] 3.5 µ11 1.086 0.241 [0.603, 1.560] 21.1

µ22 0.278 0.088 [0.104, 0.452] 4.3 µ22 0.192 0.099 [-0.004, 0.389] 31.8

µ33 0.405 0.091 [0.225, 0.585] 4.1 µ33 0.127 0.106 [-0.085, 0.329] 146.6

µ44 0.290 0.084 [0.126, 0.456] 5.5 µ44 0.259 0.072 [0.117, 0.400] 80.4

µ55 1.095 0.092 [0.913, 1.279] 5.0 µ55 1.023 0.078 [0.870, 1.178] 86.5

µ66 0.435 0.132 [0.178, 0.695] 3.0 µ66 0.225 0.114 [0.002, 0.451] 61.5

µ77 0.296 0.086 [0.126, 0.469] 5.4 µ77 -0.070 0.080 [-0.232, 0.085] 226.7

µ88 0.125 0.106 [-0.083, 0.333] 3.9 µ88 -0.120 0.102 [-0.320, 0.081] 91.5

µ99 -0.169 0.083 [-0.332, -0.004] 5.3 µ99 -0.418 0.095 [-0.608, -0.232] 87.4

ϕ11 0.947 0.004 [0.938, 0.955] 103.1 ϕ11 0.982 0.005 [0.970, 0.991] 431.1

ϕ22 0.930 0.006 [0.917, 0.941] 82.6 ϕ22 0.921 0.014 [0.888, 0.946] 363.3

ϕ33 0.936 0.006 [0.924, 0.947] 78.9 ϕ33 0.867 0.018 [0.830, 0.902] 341.5

ϕ44 0.935 0.006 [0.923, 0.948] 76.5 ϕ44 0.899 0.015 [0.868, 0.926] 367.7

ϕ55 0.944 0.006 [0.933, 0.956] 114.7 ϕ55 0.875 0.020 [0.826, 0.908] 413.5

ϕ66 0.955 0.004 [0.947, 0.963] 122.0 ϕ66 0.931 0.007 [0.914, 0.944] 310.8

ϕ77 0.942 0.005 [0.931, 0.953] 118.2 ϕ77 0.849 0.021 [0.796, 0.882] 394.3

ϕ88 0.941 0.005 [0.931, 0.951] 94.3 ϕ88 0.892 0.011 [0.869, 0.912] 283.7

ϕ99 0.938 0.006 [0.925, 0.950] 72.3 ϕ99 0.848 0.017 [0.811, 0.878] 287.2

τ11 0.328 0.010 [0.308, 0.347] 89.1 τ11 0.179 0.027 [0.134, 0.243] 599.2

τ22 0.140 0.009 [0.122, 0.159] 151.2 τ22 0.333 0.035 [0.269, 0.405] 467.7

τ33 0.129 0.008 [0.113, 0.146] 129.9 τ33 0.535 0.047 [0.440, 0.627] 425.6

τ44 0.141 0.007 [0.127, 0.157] 86.6 τ44 0.251 0.026 [0.204, 0.305] 474.3

τ55 0.113 0.009 [0.096, 0.131] 229.0 τ55 0.345 0.045 [0.269, 0.453] 544.3

τ66 0.109 0.008 [0.093, 0.125] 196.2 τ66 0.251 0.028 [0.194, 0.302] 545.6

τ77 0.087 0.008 [0.072, 0.104] 234.7 τ77 0.316 0.048 [0.247, 0.426] 573.0

τ88 0.127 0.009 [0.108, 0.146] 198.1 τ88 0.308 0.034 [0.253, 0.383] 510.4

τ99 0.128 0.010 [0.109, 0.148] 187.8 τ99 0.419 0.045 [0.343, 0.515] 449.7
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Table 10: Estimation result for µ,ϕ, ξ,C,D,Ωm

for U.S. stock returns. CRSV model.

Parameter Mean 95% interval IF Parameter Mean 95% interval IF

µ11 1.097 [0.833, 1.360] 3.5 ϕ11 0.947 [0.938, 0.955] 103.1

µ22 0.278 [0.104, 0.452] 4.3 ϕ22 0.930 [0.917, 0.941] 82.6

µ33 0.405 [0.225, 0.585] 4.1 ϕ33 0.936 [0.924, 0.947] 78.9

µ44 0.290 [0.126, 0.456] 5.5 ϕ44 0.935 [0.923, 0.948] 76.5

µ55 1.095 [0.913, 1.279] 5.0 ϕ55 0.944 [0.933, 0.956] 114.7

µ66 0.435 [0.178, 0.695] 3.0 ϕ66 0.955 [0.947, 0.963] 122.0

µ77 0.296 [0.126, 0.469] 5.4 ϕ77 0.942 [0.931, 0.953] 118.2

µ88 0.125 [-0.083, 0.333] 3.9 ϕ88 0.941 [0.931, 0.951] 94.3

µ99 -0.169 [-0.332, -0.004] 5.3 ϕ99 0.938 [0.925, 0.950] 72.3

τ11 0.328 [0.308, 0.347] 89.1 ξ -0.366 [-0.387, -0.345] 156.9

τ22 0.140 [0.122, 0.159] 151.2

τ33 0.129 [0.113, 0.146] 129.9

τ44 0.141 [0.127, 0.157] 86.6

τ55 0.113 [0.096, 0.131] 229.0

τ66 0.109 [0.093, 0.125] 196.2

τ77 0.087 [0.072, 0.104] 234.7

τ88 0.127 [0.108, 0.146] 198.1

τ99 0.128 [0.109, 0.148] 187.8

σu,11 0.326 [0.312, 0.341] 60.9 σm1 0.0010 [0.0004, 0.0027] 583.0

σu,22 0.314 [0.299, 0.328] 63.9 σm2 0.0017 [0.0005, 0.0036] 561.2

σu,33 0.316 [0.302, 0.330] 56.0 σm3 0.0012 [0.0003, 0.0034] 623.8

σu,44 0.310 [0.298, 0.322] 27.6 σm4 0.0034 [0.0013, 0.0071] 554.2

σu,55 0.356 [0.342, 0.370] 57.1 σm5 0.0015 [0.0005, 0.0039] 654.1

σu,66 0.361 [0.347, 0.375] 54.6 σm6 0.0012 [0.0004, 0.0053] 626.8

σu,77 0.341 [0.327, 0.354] 56.8 σm7 0.0011 [0.0003, 0.0026] 565.4

σu,88 0.333 [0.318, 0.348] 61.9 σm8 0.0009 [0.0004, 0.0020] 528.2

σu,99 0.313 [0.299, 0.327] 57.4 σm9 0.0014 [0.0005, 0.0039] 608.7
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Table 11: Posterior means of R for U.S. stock returns. CRSV

model: red font indicates that 95% credible interval does not in-

clude 0.

rij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 -0.0585 -0.0119 -0.0113 -0.0177 -0.0042 -0.0152 0.0047 0.0063 -0.0152

i = 2 -0.0291 -0.0319 0.0031 -0.0062 -0.0029 -0.0169 -0.0010 -0.0052 -0.0086

i = 3 -0.0167 -0.0144 -0.0095 -0.0007 -0.0002 -0.0064 -0.0022 -0.0040 0.0002

i = 4 -0.0319 -0.0049 -0.0180 -0.0206 -0.0063 -0.0141 -0.0107 -0.0038 -0.0029

i = 5 -0.0276 -0.0049 -0.0086 -0.0110 -0.0063 -0.0019 -0.0026 -0.0015 -0.0025

i = 6 -0.0315 0.0016 -0.0000 -0.0211 -0.0005 -0.0247 0.0006 -0.0115 0.0028

i = 7 -0.0271 -0.0125 -0.0081 -0.0064 -0.0075 -0.0072 -0.0002 0.0026 -0.0047

i = 8 -0.0295 -0.0004 -0.0035 -0.0110 -0.0020 -0.0038 0.0042 -0.0306 -0.0106

i = 9 -0.0289 -0.0004 -0.0044 -0.0139 0.0007 -0.0127 -0.0062 -0.0082 -0.0219

Table 12: Posterior means of S for U.S. stock returns. CRSV

model: red font indicates that 95% credible interval does not in-

clude 0.

sij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9

i = 1 1

i = 2 0.761 1

i = 3 0.227 0.591 1

i = 4 0.273 0.206 0.227 1

i = 5 0.407 -0.023 -0.045 0.397 1

i = 6 0.657 -0.188 0.227 0.239 -0.095 1

i = 7 -0.043 -0.091 0.195 0.236 0.193 0.402 1

i = 8 0.134 0.159 0.055 -0.146 0.309 0.579 -0.125 1

i = 9 -0.072 0.337 -0.112 0.015 -0.071 0.148 0.507 0.0639 1
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Table 13: Posterior means (standard deviation) of µ∗ for U.S. stock

returns. CRSV model: red font indicates that 95% credible interval

does not include 0.

µij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2 0.333

i = 3 0.210 0.484

i = 4 0.170 0.177 0.120

i = 5 0.263 0.168 0.151 0.424

i = 6 0.419 0.160 0.105 0.151 0.070

i = 7 0.139 0.114 0.085 0.135 0.184 0.113

i = 8 0.135 0.145 0.111 0.106 0.057 0.167 0.119

i = 9 0.058 0.050 0.060 0.128 0.014 0.055 0.037 0.058

Table 14: Posterior means (standard deviation) of ϕ∗:

U.S. stock returns. CRSV model.

ϕij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2
0.941

(0.016)

i = 3
0.971 0.987

(0.011) (0.007)

i = 4
0.968 0.962 0.961

(0.010) (0.016) (0.012)

i = 5
0.984 0.997 0.975 0.997

(0.005) (0.002) (0.013) (0.002)

i = 6
0.994 0.976 0.958 0.970 0.984

(0.003) (0.010) (0.015) (0.012) (0.007)

i = 7
0.993 0.996 0.917 0.993 0.985 0.986

(0.005) (0.005) (0.045) (0.004) (0.006) (0.011)

i = 8
0.958 0.964 0.978 0.975 0.991 0.979 0.983

(0.031) (0.030) (0.010) (0.011) (0.004) (0.007) (0.037)

i = 9
0.993 0.484 0.943 0.989 0.979 0.995 0.965 0.990

(0.005) (0.146) (0.070) (0.007) (0.013) (0.005) (0.016) (0.005)
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Table 15: Posterior means (standard deviation) of ξ∗:

U.S. stock returns. CRSV model.

ξij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2
-0.0431

(0.0161)

i = 3
-0.0013 -0.0682

(0.0120) (0.0173)

i = 4
-0.0250 0.0321 0.0668

(0.0115) (0.0180) (0.0147)

i = 5
-0.0724 0.0398 0.0168 -0.1304

(0.0132) (0.0167) (0.0249) (0.0183)

i = 6
-0.1736 0.0253 0.0374 -0.0109 0.0123

(0.0195) (0.0089) (0.0147) (0.0224) (0.0139)

i = 7
-0.0361 0.0315 0.0299 0.0291 -0.0504 0.0088

(0.0107) (0.0066) (0.0136) (0.0194) (0.0092) (0.0135)

i = 8
-0.0264 0.0044 0.0173 0.0298 -0.0013 -0.0524 0.0014

(0.0080) (0.0231) (0.0174) (0.0160) (0.0073) (0.0107) (0.0196)

i = 9
-0.0023 0.0444 0.0085 -0.0387 0.0099 0.0032 0.0329 0.0380

(0.0096) (0.0179) (0.0164) (0.0145) (0.0098) (0.0052) (0.0120) (0.0083)

Table 16: Posterior means (standard deviation) of C∗:

U.S. stock returns. CRSV model.

σu,ij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2
0.126

(0.002)

i = 3
0.134 0.182

(0.002) (0.003)

i = 4
0.138 0.179 0.151

(0.002) (0.003) (0.002)

i = 5
0.202 0.272 0.231 0.245

(0.003) (0.004) (0.003) (0.004)

i = 6
0.150 0.208 0.178 0.189 0.123

(0.002) (0.003) (0.002) (0.003) (0.002)

i = 7
0.140 0.195 0.153 0.173 0.116 0.162

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002)

i = 8
0.124 0.183 0.153 0.175 0.103 0.139 0.150

(0.002) (0.003) (0.002) (0.003) (0.002) (0.002) (0.001)

i = 9
0.114 0.142 0.126 0.140 0.092 0.130 0.130 0.138

(0.001) (0.006) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002)
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Table 17: Posterior means (standard deviation) of D∗:

U.S. stock returns. CRSV model.

τij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

i = 2
0.0283

(0.0041)

i = 3
0.0143 0.0198

(0.0028) (0.0042)

i = 4
0.0177 0.0205 0.0220

(0.0027) (0.0046) (0.0035)

i = 5
0.0119 0.0097 0.0123 0.0132

(0.0018) (0.0019) (0.0038) (0.0026)

i = 6
0.0125 0.0117 0.0127 0.0232 0.0062

(0.0017) (0.0027) (0.0029) (0.0051) (0.0014)

i = 7
0.0048 0.0062 0.0182 0.0098 0.0093 0.0072

(0.0011) (0.0022) (0.0065) (0.0018) (0.0018) (0.0027)

i = 8
0.0071 0.0097 0.0088 0.0181 0.0044 0.0070 0.0101

(0.0025) (0.0045) (0.0022) (0.0040) (0.0007) (0.0014) (0.0018)

i = 9
0.0042 0.0512 0.0069 0.0082 0.0040 0.0034 0.0077 0.0057

(0.0010) (0.0151) (0.0028) (0.0020) (0.0010) (0.0013) (0.0017) (0.0012)
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Figure 3: Time series plot of daily returns, yt1, . . . , y9t.
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Figure 4: 95% credible intervals (blue) for ξ+h11,t, . . . , ξ+h99,t, and x1t, . . . , x9t (red)
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Figure 5: 95% credible intervals (blue) for ξ∗21+h21,t, . . . , ξ
∗
62+h62,t, and x

∗
21,t, . . . , x

∗
62,t

(red)
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Figure 6: Posterior means (red) and 95% credible intervals (blue) for L11,t, . . . , L91,t

where Lt = RV
−1/2
t H∗

t :
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Figure 7: Posterior means (red) and 95% credible intervals (blue) for ρ21,t, . . . , ρ62,t.
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B.3 Portfolio performance: U.S. stock returns data

Table 18: Cumulative realized returns for three strategies.

Minimum-Variance µ∗
p=0.004 µ∗

p=0.01 µ∗
p=0.1

CSV -0.538 -2.282 -28.45

CRSV (R = O,S = I) 2.367 3.052 13.31

CRSV 1.609 1.683 2.786

Mean-Variance γ = 6 γ = 10 γ = 15

CSV 1.256 1.316 1.347

CRSV (R = O,S = I) 1.108 1.227 1.287

CRSV 1.279 1.330 1.356

Maximum-Return σ∗2
p = 0.001 σ∗2

p = 0.01 σ∗2
p = 0.1

CSV 1.124 0.511 -1.427

CRSV (R = O,S = I) 1.142 0.569 -1.243

CRSV 1.172 0.662 -0.947
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Figure 8: Time series plot of the portfolio weight ωit for minimum-variance strategy:

µ∗
p = 0.004 (red), µ∗

p = 0.01 (green) and µ∗
p = 0.1 (blue). CRSV model.
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Figure 9: Time series plot of the portfolio weight ωit for mean-variance strategy:

γ = 6 (red), γ = 10 (green) and γ = 15 (blue). CRSV model.
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Figure 10: Time series plot of the portfolio weight ωit for maximum return strategy:

σ∗2
p = 0.001 (red), σ∗2

p = 0.01 (green) and σ∗2
p = 0.1 (blue). CRSV model.
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Figure 11: Time series plot of the portfolio weight ωit for minimum-variance strategy:

µ∗
p = 0.004 (red) and µ∗

p = 0.01 (green). CRSV model.
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Figure 12: Time series plot of the portfolio weight ωit for mean-variance strategy:

γ = 10 (green) and γ = 15 (blue). CRSV model.
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Figure 13: Time series plot of the portfolio weight ωit for maximum return strategy:

σ∗2
p = 0.001 (red) and σ∗2

p = 0.01 (green). CRSV model.
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Figure 14: Cumulative realized return: red (CSV), green (CRSV (R = O,S = I))

and blue (CRSV)
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Figure 15: Realized portfolio variance ω̂′
tΣ̂tω̂t, where Σ̂t is realized covariance at time

t: red (CSV), green (CRSV (R = O,S = I)) and blue (CRSV)
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