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Abstract

This paper presents a new approximation formula for pricing multi-dimensional discretely
monitored average options in a local-stochastic volatility (LSV) model with jumps by apply-
ing an asymptotic expansion technique. Moreover, it provides a justification of the approx-
imation method with some asymptotic error estimates for general payoff functions. Partic-
ularly, our model includes local volatility functions and jump components in the underlying
asset price as well as its volatility processes. To the best of our knowledge, the proposed
approximation is the first one which achieves analytic approximations for the average option
prices in this environment.

In numerical experiments, by employing several models, we provide approximate prices for
the listed average and calendar spread options on the WTI futures based on the parameters
through calibration to the listed (plain-vanilla) futures options prices. Then, we compare
those with the CME settlement prices, which confirms the validity of the method.

Moreover, we show that the LSV with jumps model is able to replicate consistently and
precisely listed futures option, calendar spread option and average option prices with common
parameters.
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1 Introduction

It is well-known that discretely monitoring average options are mainly traded in over-the-counter
(OTC) commodity markets. However, it is a tough task to compute an average option price with
the computational speed fast enough for the practical purpose, mainly due to the difficulty of
the analytical tractability. For instance, although the Monte Carlo method is easy to implement,
it requires a substantial computational time to obtain an accurate value. On the other hand,
analytic approximations for pricing discrete average options are rarely known except for models
which are too simple to replicate the volatility smile and skew.

To overcome the difficulties, this paper develops a new analytical approximation formula for
average option prices with the model which is able to reproduce the market volatility structures
consistently.

Our contribution is summarized as follows:

• Derived asymptotic expansions for approximating average option prices under multi-dimensional
general diffusion processes with jumps, which is a necessary setup for applications in prac-
tice. To obtain this formula, we need new conditional expectation formulae with some
approximation techniques, which are not shown in previous papers: We note that al-
though LSV with jumps models for basket option is considered in [34], the formula derived
by [34] cannot be applied to pricing average options.

• Showed that the LSV with jumps model is able to replicate consistently and precisely listed
futures option, calendar spread option and average option prices with common parameters.
Although the similar analyses are done in [32] or [33], they used models without jumps
and did not take account of spread options for calibration of the correlations between
two futures prices underlying in target average options. In particular, we demonstrated
that our method works well for SABR and Heston-type stochastic volatility with LV(local
volatility) plus jumps models which are able to calibrate to the futures, spread and exotic
option markets better than the models without jumps. Hence, the current work provides
an important extension of our previously developed methods.

• Provided a justification of our approximation method with some asymptotic error estimates
for general payoff functions in Section 3. The previous papers (e.g. [32], [33], [34] and [35])
did not provide such a consideration. Moreover, we confirmed the consistency between the
theoretical asymptotic errors in Theorem 3.2 with Appendix C and the numerical errors
in Figures from 3 to 8 as well as the ones in Figures 9 and 10 showing stress tests with
regard to parameters.

As for pricing discretely monitored average option, Cai et al. [6] derived an approxima-
tion formula under one-dimensional general diffusion processes by the recursive method. Fusai
- Meucci [17] provided a recursive algorithm as well as a control variate technique to price
discretely monitored average options under the general exponential Lévy process. Fusai - Kyr-
iakou [16] derived lower and upper bound under processes whose characteristic functions are
known. For the one-dimensional time-changed Lévy process, Yamazaki [43] calculated the price
by applying Gram-Charlier expansion, and Zeng - Kwok [45] derived accurate lower and upper
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bounds. For more general case, Cai et al. [7] recently proposed a general framework for average
option prices under general one-dimensional Markov processes. For continuous average options,
Cai et al. [8] derives analytical approximations under general regime-switching Markov models.

However, in order to evaluate most of the average options traded in commodity markets, we
need multi-dimensional models with multiple underlying assets to describe the concrete feature
of the products. For example, in WTI average options, the underlying price is the average of the
settlement prices of the first nearby WTI futures contract during the last one month prior to the
maturity of the option. We also note that the expiration of an average option is the last business
day of a calendar month, while trading of a WTI futures contract usually ceases on the third
business day prior to the twenty-fifth calendar day. For example, we assume time-t prices of two
futures contracts with maturities T1 and T2 as f1(t, T1) and f2(t, T2), respectively. In addition,
let the reference dates t1, · · · , tn1 for the first contract and t′1, · · · , t′n2

for the subsequent contract
with relation t < t1 < · · · < tn1 < t′1 < · · · < t′n2

= T . Then, the underlying price AT of the
WTI average option with maturity T is expressed as follows:

AT =
1

n1 + n2

(
n1∑
i=1

f1(ti, T1) +

n2∑
i=1

f2(t
′
i, T2)

)
, (1)

and the payoff functions of average call and put options with strike price K are given by
max {AT −K, 0} and max {K −AT , 0}, respectively. Hence, the settlement prices of WTI fu-
tures contracts with two consecutive maturities are relevant for the underlying price of the
average option. Similarly, calibrations to listed WTI futures option with two consecutive matu-
rities are relevant for pricing an average option based on the market information. Clearly, these
features are also true for a calendar spread option by definition of the contract.

The proposed models in the current work take the specific features embedded in commodity
derivatives into consideration, which have not been incorporated in other papers for pricing
average and spread options. While Shiraya - Takahashi [32], [33] approximated the option
values under multi-dimensional local-stochastic volatility models, it only considered the models
without jumps, which are less capable of duplicating the real markets than the models treated
in this paper. We remark that there exist other interesting works on spread options such as Alòs
et al. [2], Alòs - León [1], and Caldana - Fusai [9].

Although local-stochastic volatility (LSV) models are mainly used in the market practice,
they are not always enough to fit a volatility smile and skew. Hence, some advanced researches
investigated a local-stochastic volatility with jump model. For instance, Among them, Eraker
[14] found that the models with jump components in the underlying price and volatility pro-
cesses showed better performance in fitting to option prices and the underlying price returns’
data simultaneously in stock markets. Sepp [30] showed the necessity of jumps on volatility to
calibrate to SPX and VIX skews simultaneously. Pagliarani - Pascucci [29] derived an analytical
approximation of plain-vanilla option prices by applying the adjoint expansion method. Li [26]
introduced the closed-form likelihood expansions for jump-diffusion models as an application
in statistics. More recently, Shiraya - Takahashi [34], [35] obtained an analytical approxima-
tion formula for basket option prices with local-stochastic volatility with jump diffusion model.
However, they have not provided asymptotic error or justifications for the approximation of
non-smooth functions, and their conditional expectation formulae can not be directly applied to
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pricing the average options. This paper is the first one that derives an analytical approximation
formula for the discretely monitored average option price and its asymptotic error, which means
the order of the approximation error with respect to a small noise parameter ϵ, under a model
which admits a local volatility function and jumps both in the underlying asset price and its
volatility processes. Our closed form approximation has an advantage in making use of the
better calibration to the traded listed options whose underlying assets are included in average
and spread options’ underlying. We also note that the formula is general enough to be appli-
cable to pricing discretely monitored average options, which are popularly traded in practice.
In addition, since continuously monitored average options can be calculated in a very similar
way, and there are no continuously monitored options in real markets, we omit the details in
this paper. We also remark that there exist mathematically interesting researches on continu-
ously monitored average options such as a recent work by Cai - Kou [5]. On applications of an
asymptotic expansion for Wiener functionals to continuously monitored average options, please
see Kunitomo - Takahashi [24] [25], Shiraya et al. [37] and Takahashi [39].

The numerical experiments provide estimates of average and spread option prices based on
the parameters obtained by calibration to the market prices of WTI futures options in local-
stochastic volatility with jump models. Then, those estimated prices are compared with the
settlement prices of average options and spread options traded on CME Group, and we show
our model and method work well in practice.

For the 3rd order (ϵ3) corrections, we use the ones obtained by a model without jumps
rather than with jumps because of the substantial increase in the computational burdens of the
3rd order expansion for the jump components. However, the 3rd order corrections only for the
diffusion terms improves approximations effectively in numerical experiments, whose details will
be shown in Figures from 3 to 8. We note that deriving more conditional expectation formulae
enables us to obtain the full 3rd order corrections.

We also remark that in principle, our method can be applied to general local stochastic
volatility with jumps models. However, infinite activity models are not treated, because we
need to develop some computational technique other than the one applied in the current work.
Hence, the explicit numerical evaluation in expansions for models including jumps with infinite
activity will be one of our future research topics.

The organization of the paper is as follows: The next section discusses an asymptotic expan-
sion method for general stochastic differential equations (SDEs) with jumps. Section 3 shows
the validity of our method for option pricing, which is a special case of an asymptotic expan-
sion for a non-smooth functional of the solution to the SDEs with jumps. Particularly, we
discuss in details on local stochastic volatility with compound Poisson jumps models used for
the numerical analyses in the following sections. In Section 4, after describing the structure
and our model specific for the average options on commodities, we derive a new approximate
pricing formula based on the asymptotic expansion technique given in Section 2 and 3 for local
stochastic volatility with compound Poisson jumps models. Section 5 shows numerical examples
of approximate prices for average and calendar spread options on the WTI futures by using the
parameters through calibration to the plain vanilla option prices, which are compared with the
CME settlement prices. Section 6 concludes. Appendix A provides two propositions used in
Section 3. Appendix B gives proofs of Theorem 3.2 and Corollary 3.3. Appendix C discusses
error estimates of our asymptotic expansions. Appendix D shows the effect of the third-order
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expansion for jump components.
An online appendix (Shiraya-Takahashi [31]) provides results omitted in this paper. Namely,

it explains all the definitions and equations necessary for practical computations of an option
pricing formula in Theorem 4.3. It also lists up the conditional expectation formulas used in the
derivation of the theorem.

2 Asymptotic Expansion for SDE with Jumps

In this section, we describe an asymptotic expansion of the solution to a multi-dimensional
perturbed SDE with jumps, which is an ingredient for deriving approximations of the underlying
random variables for average and spread options.

On Wiener-Poisson space (Ω,F , P ), suppose a filtered probability space satisfying the usual
conditions (Ω,F , P, {Ft}t≥0) is given. Then, let Xt (t ∈ [0, T ]) be a D-dimensional process which
satisfies the following SDE:

Xt = x+

∫ t

0
µ(s,Xs−)ds+

∫ t

0
Φ(s,Xs−)dWs +

N∑
l=1

∫ t

0

∫
El

γl(s, z,Xs−)Ñl(ds, dz), (2)

with x ∈ RD; µ : [0, T ]×RD×Ω → RD, Φ : [0, T ]×RD×Ω → RD×Rm, γl : [0, T ]×El×RD×
Ω → RD, are predictable processes; W is a m-dimensional Brownian motion; Each Nl(dt, dz) is
a Poisson random measure on [0, T ] × El where (El,El) is a measurable space with El ⊂ Rel ,
el ∈ N; The intensity measure of Nl is dt× νl(dz), where νl(dz) is a positive σ-finite measure on
(El,El). Then, Ñl(dt, dz) := Nl(dt, dz)− dt× νl(dz) is a compensated Poisson random measure.

Let us next introduce a perturbation parameter ϵ ∈ [0, 1] to the processes X, and the
perturbed process X(ϵ), which is the solution to the SDE:

X
(ϵ)
t = x+

∫ t

0
µ(s,X

(ϵ)
s−)ds+ ϵ

∫ t

0
Φ̃(s,X

(ϵ)
s−)dWs +

N∑
l=1

∫ t

0

∫
Ẽl

γl(s, ϵz̃,X
(ϵ)
s−)Ñl(ds, dz̃),

with γl(s, 0, x) = 0. Hereafter, let us use the same notations Φ, z El instead of Φ̃, z̃ and Ẽl as
in the original process: That is,

X
(ϵ)
t = x+

∫ t

0
µ(s,X

(ϵ)
s−)ds+ ϵ

∫ t

0
Φ(s,X

(ϵ)
s−)dWs +

N∑
l=1

∫ t

0

∫
El

γl(s, ϵz,X
(ϵ)
s−)Ñl(ds, dz), (3)

with γl(s, 0, x) = 0. Please see an example in Appendix C (particularly after the equation (109))
on a discussion for an error estimate of an asymptotic expansion of a perturbed SDE. Here, we

introduce the notation |A| =
√∑

i,j a
2
i,j for any matrix A = (ai,j), |a| =

√∑
i a

2
i for any vector

a = (ai). Then, we suppose the following conditions.

Condition (A)

i γl(t, z, x) ∈ C∞(z), µ(t, x), Φ(t, x), γl(t, z, x)/ηl(z),
∂j

∂ϵj
γl(t, ϵz, x)/ηl(z) ∈ C∞

b (x) (j ∈ N),
(l = 1, · · · ,m) with ηl : El → R, ηl ∈ ∩p≥2L

p(El, νl).
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ii |µ(t, 0)|, |Φ(t, 0)|, |γl(t, z, 0)/ηl(z)|, | ∂j

∂ϵj
γl(t, ϵz, 0)/ηl(z)| < Zt for j ∈ N. There exits a

predictable process Zt, such that Zt satisfies |||ZT |||p ≡
(∫ T

0 E[|Zt|p]dt
) 1

p
< ∞ for ∀p ≥ 1.

Under Condition (A), we are able to apply Proposition C.4 (or the subsequent related results)
in Appendix C to obtain the Lp-boundedness for all p ∈ [1,∞) of the solutions to a (graded)

system of the SDEs, which consists of X
(ϵ)
t and ∂j

∂ϵj
X

(ϵ)
t , 1 ≤ j ≤ J for an arbitrary J ∈ N: that

is, for any p ≥ 1, 0 ≤ i ≤ D and 0 ≤ j ≤ J ,

E

[
sup

0≤t≤T

∣∣∣∣ ∂j

∂ϵj
X

i,(ϵ)
t

∣∣∣∣p
]
< ∞. (4)

We note that X
(ϵ)
T has a smooth asymptotic expansion in a sense that for an arbitrary

N ∈ Z+(N = 0 or N ∈ N),

X
(ϵ)
T −

N∑
n=0

ϵn

n!
X

(n)
T = O(ϵN+1C(T )),

with X
(n)
T := (X

1,(n)
T , · · · , XD,(n)

T )′, X
i,(n)
T =

∂nX
i,(ϵ)
T

∂ϵn

∣∣∣
ϵ=0

∈ Lp, where C(T ) is an increasing

function of T . It means that

lim sup
ϵ↓0

∥∥∥X(ϵ)
T −

∑N
n=0

ϵn

n!X
(n)
T

∥∥∥
Lp

ϵN+1
< ∞, for ∀p > 1,

that is, for ∀p > 1,

lim sup
ϵ↓0

1

ϵN+1
E

[∣∣∣∣∣X(ϵ)
T −

N∑
n=0

ϵn

n!
X

(n)
T

∣∣∣∣∣
p]

= lim sup
ϵ↓0

1

ϵN+1
E

[∣∣∣∣∫ 1

0

(1− u)N ϵN+1

N !
X

(N+1),(ϵu)
T du

∣∣∣∣p]
≤ 1

(N + 1)!
sup

u∈[0,1]
E
[∣∣∣X(N+1),(ϵu)

T

∣∣∣p] < ∞. (5)

Moreover, ∂n

∂ϵnX
(ϵ)
t =

(
∂n

∂ϵnX
1,(ϵ)
t , · · · , ∂n

∂ϵnX
D,(ϵ)
t

)
is recursively determined by the following:

For any multi-index α = α(r) := (α1, · · · , αr) ∈ {1, · · · , D}r, r ≥ 1 with the length |α(r)| = r,

and α̂
(r)
l := (α̂l,1, · · · , α̂l,r) ∈ {1, · · · , el}r, we denote by ∂r

α(r) the partial derivative ∂r

∂xα1 ···∂xαr
,

and by ∂ r̂

α̂
(r̂)
l

the partial derivative ∂r̂

∂zα̂l,1
···∂zα̂l,r̂

. Let

X i,(ϵ),n
t :=

1

n!

∂n

∂ϵn
X

i,(ϵ)
t . (6)

Then,

X i,(ϵ),n
t =

(n)∑
n(r),α(r)

∫ t

0

(
r∏

l=1

Xαl,(ϵ),nl
u

)
∂r
α(r)µi(u,X

(ϵ)
u )du
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+

(n−1)∑
n(r),α(r)

∫ t

0

(
r∏

l=1

Xαl,(ϵ),nl
u

)
m∑
j=1

∂r
α(r)Φi,j(u,X

(ϵ)
u )dW j

u

+ϵ

(n)∑
n(r),α(r)

∫ t

0

(
r∏

l=1

Xαl,(ϵ),nl
u

)
m∑
j=1

∂r
α(r)Φi,j(u,X

(ϵ)
u )dW j

u

+

N∑
l′=1

n∑
r′=0

(n−r′)∑
n̂(r̂),α̂

(r̂)

l′

(r′)∑
n(r),α(r)

∫ t

0

∫
El′

(
r∏

l=1

Xαl,(ϵ),nl
u

)

×∂ r̂

α̂
(r̂)

l′
γl′,i(u, ϵz,X

(ϵ)
u )

 r̂∏
l̂=1

(zα̂
l′,l̂
)n̂l̂

 Ñl′(du, dz), (7)

where i = 1, · · · , D, zα̂l′,l̂
stands for the α̂l′,l̂-th element of zl′ = (zl′,1, · · · , zl′,el′ ), and

(n)∑
n(r),α(r)

:=
n∑

r=1

∑
n1+···+nr=n,nl≥1

∑
α(r)∈{1,··· ,D}r

1

r!
, (8)

(n̂)∑
n̂(r̂),α̂

(r̂)

l′

:=
n̂∑

r̂=1

∑
n̂1+···+n̂r̂=n̂,n̂l′≥1

∑
α̂
(r̂)

l′ ∈{1,··· ,el′}r̂

1

r̂!
. (9)

Further, let us define a notation when ϵ = 0 as X (r)
t := 1

r!
∂rX

(ϵ)
t

∂ϵr |ϵ=0, and X j,(r)
t , j = 1, · · · , D

denote the j-th elements of X (r)
t . For r ≥ 1, X j,(r)

t , j = 1, · · · , D is recursively determined.

Example 2.1. For an example to introduce the perturbation parameter into a model, we show
the case of Merton jump diffusion model which is expressed as

St = s0 +

∫ t

0
µSs−ds+

∫ t

0
σSs−dWs +

M∑
j=1

(
eYj − 1

)
Sτj− −

∫ t

0
ΛSs−E[eY1 − 1]ds, (10)

where µ and σ are constants, Nt is a Poisson process with a constant intensity Λ independent
of W , τj is the j-th jump time of Nt, and Yj (j = 1, 2, · · · ) follow an i.i.d. normal distribution
N(m,υ).

Then, the perturbation parameter ϵ is introduced as follows:

S
(ϵ)
t = s0 +

∫ t

0
µS

(ϵ)
s−ds+ ϵ

∫ t

0
σS

(ϵ)
s−dWs +

Nt∑
j=1

(
h(ϵ)j

)
S
(ϵ)
τj− −

∫ t

0
ΛS

(ϵ)
s−E[h

(ϵ)
1 ]ds, (11)

h
(ϵ)
j = eϵYj − 1. (12)

Here, we use the same notation of the coefficients with those of the original SDE.
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In the case of ϵ = 0, the jump term h
(0)
j = eϵYj − 1|ϵ=0 = 0, thus, we obtain S

(0)
t =

s0 +
∫ t
0 µS

(0)
s ds, and its solution is expressed as S(0) = s0e

µt. In a similar way, we obtain

S
(1)
T =

∫ T

0
eµ(T−t)σS

(0)
t− dWt +

NT∑
j=1

h
(1)
j eµ(T−τj)S

(0)
τj− −

∫ T

0
ΛE

[
h
(1)
1

]
eµ(T−t)S

(0)
t− dt

= eµTσs0WT +

NT∑
j=1

h
(1)
j eµT s0 − ΛE

[
h
(1)
1

]
eµT s0T, (13)

h
(1)
j = Yj , (14)

S
(2)
T = 2

∫ T

0
eµ(T−t)σS

(1)
t− dWt +

NT∑
j=1

h
(2)
j eµT s0 − ΛE

[
h
(2)
1

]
eµT s0T

+2

NT∑
j=1

h
(1)
j eµ(T−τj)S

(1)
τj− − 2

∫ T

0
ΛE

[
h
(1)
1

]
eµ(T−t)S

(1)
t− dt

)
, (15)

h
(2)
j = Y 2

j . (16)

3 Asymptotic Expansion for Non-smooth Function of the Solu-
tion to SDE with Jumps

This section develops an asymptotic expansion method for non-smooth functions of the solutions
to SDEs with Jumps. Firstly, let us introduce a smooth function g : RD → RM (D,M ∈ N)
of which all derivatives have polynomial growth orders. Then, we can apply Proposition C.4

(or the subsequent related results) in Appendix C to obtain the Lp-boundedness of g(X
(ϵ)
T ) and

g
(ϵ)
n,T := 1

n!
∂ng(X

(ϵ)
T )

∂ϵn for all p ∈ [1,∞), where

g
(ϵ)
n,T =

(n)∑
n(r),α(r)

∂r
α(r)g(X

(ϵ)
T )Xα1,(ϵ),n1

T · · · Xαr,(ϵ),nr

T , (17)

with ∂jg(x) =
∂

∂xj
g(x), j = 1, · · · , D. Hence, g(X

(ϵ)
T ) has a smooth asymptotic expansion: for

an arbitrary M ∈ Z+,

g(X
(ϵ)
T ) = g0,T + ϵg1,T + ϵ2g2,T + · · ·+ ϵMgM,T +O(ϵM+1C(T )), (18)

where gn,T := 1
n!

∂ng(X
(ϵ)
T )

∂ϵn

∣∣
ϵ=0

, and C(T ) is an increasing function of T .
Here, gn,T can be written as

g0,T = g(X
(0)
T ), (19)

g1,T =

D∑
j=1

∂jg(X
(0)
T )X j,(1)

T , (20)
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gn,T =

(n)∑
n(r),α(r)

∂r
α(r)g(X

(0)
T )Xα1,(n1)

T · · · Xαr,(nr)
T . (21)

Next, we put the next condition.
Condition (B)
For ∀l,

sup
t,x,z

∣∣∣∣∣
(
I +

∂

∂x
γl(t, ϵz, x)

)−1
∣∣∣∣∣ < ∞, (22)

Φ(t, x) ̸= 0 for all (t, x) ∈ R+ ×R. (23)

Under Condition (A) and (B), there exist unique processes V
(ϵ)
t and (V

(ϵ)
t )−1 such that

sup
0≤t≤T

|V (ϵ)
t |, sup

0≤t≤T
|(V (ϵ)

t )−1| ∈ Lp, (24)

for ∀t ≥ 0, 1 < p < ∞. V
(ϵ)
t and (V

(ϵ)
t )−1 satisfy the following stochastic differential equations.

V
(ϵ)
t = I +

∫ t

0

∂

∂x
µ(u,X

(ϵ)
u−)V

(ϵ)
u−du+ ϵ

∫ t

0

∂

∂x
Φ(u,X

(ϵ)
u−)V

(ϵ)
u−dWu

+
N∑
l=1

∫ t

0

∫
El

∂

∂x
γl(u, ϵz,X

(ϵ)
u−)V

(ϵ)
u− Ñl(du, dz), (25)

(V
(ϵ)
t )−1 = I −

∫ t

0
(V

(ϵ)
u− )−1

{
∂

∂x
µ(u,X

(ϵ)
u−)−

(
ϵ
∂

∂x
Φ(u,X

(ϵ)
u−)

)2

−
N∑
l=1

∫
El

(
I +

∂

∂x
γl(u, ϵz,X

(ϵ)
u−)

)−1( ∂

∂x
γl(u, ϵz,X

(ϵ)
u−)

)2

ν(dz)

}
du

−
N∑
l=1

∫ t

0

∫
El

(V
(ϵ)
u− )−1

(
I +

∂

∂x
γl(u, ϵz,X

(ϵ)
u−)

)−1 ∂

∂x
γl(u, ϵz,X

(ϵ)
u−)Ñl(du, dz)

−
∫ t

0
(V

(ϵ)
u− )−1ϵ

∂

∂x
Φ(u,X

(ϵ)
u−)dWu. (26)

Then, the Malliavin derivative in the Wiener direction DsX
(ϵ)
t− satisfies the following equation

(see e.g. Cass [10] Theorem 2, Delong [12] Theorem 4.1.2).

DsX
(ϵ)
t− = V

(ϵ)
t (V

(ϵ)
s− )−1ϵΦ(s,X

(ϵ)
s−, ϵ)1{s≤t}. (27)

Let us next define U
(ϵ)
T as

U
(ϵ)
T :=

1

ϵ

(
g(X

(ϵ)
T )− g(X

(0)
T )
)
. (28)

9



Then, due to the asymptotic expansion of g(X
(ϵ)
T ), U

(ϵ)
T has a smooth expansion: for an arbitrary

M ∈ Z+,

U
(ϵ)
T = U

(0)
T + ϵU

(1)
T + ϵ2U

(2)
T + · · ·+ ϵMU

(M)
T +O(ϵM+1C(T )), (29)

with U
(n)
T := gn+1,T .

In this setting, the Malliavin covariance U
(ϵ)
T is defined as

σ
U

(ϵ)
T

:=

∫ T

0
∂g(X

(ϵ)
T )V

(ϵ)
T (V

(ϵ)
u− )−1Φ(u,X

(ϵ)
u−)⊗ ∂g(X

(ϵ)
T )V

(ϵ)
T (V

(ϵ)
u− )−1Φ(u,X

(ϵ)
u−)du. (30)

Remark 3.1. When det(σ
U

(ϵ)
T

)−1 ∈ Lp (for ∀p ≥ 2) is satisfied, U
(ϵ)
T has a smooth density (see

Di Nunno et al. [13] Theorem 18.5).

In order to justify the asymptotic expansion of f(U
(ϵ)
T ) with a Schwartz distribution (f ∈ S ′)

around ϵ = 0, we put the following condition.
Condition (C) For ∀p > 1,

lim sup
ϵ↓0

det(σ
U

(ϵ)
T

)−1 ∈ Lp. (31)

From Proposition A.1, A.2 and C.4, we obtain the following theorem.

Theorem 3.2. X
(ϵ)
t is a perturbed process defined as

X
(ϵ)
t = x+

∫ t

0
µ(s,X

(ϵ)
s−)ds+ ϵ

∫ t

0
Φ(s,X

(ϵ)
s−)dWs +

k∑
l=1

∫ t

0

∫
El

γl(s, ϵz,X
(ϵ)
s−)Ñl(ds, dz),(32)

where x ∈ RD; µ : [0, T ] × RD × Ω → RD, Φ : [0, T ] × RD × Ω → RD × Rm, γl : [0, T ] ×
El ×RD ×Ω → RD are predictable processes satisfying Condition (A); W is an m-dimensional
Brownian motion. Each Nl(dt, dz) is a Poisson random measure on [0, T ] × El, where (El,El)
is a measurable space, which is defined in Rel, el ∈ N; The intensity measure of Nl is dt×νl(z),
where νl(z) is a positive σ-finite measure on (El,El); Ñl(dz, dt) := Nl(dt, dz) − dt × νl(z) is a

compensated Poisson random measure. We also define U
(ϵ)
T := 1

ϵ

(
g(X

(ϵ)
T )− g(X

(0)
T )
)
on [0, T ].

Assume that g is a RM-valued smooth, of which all derivatives have polynomial growth orders
function on X. Suppose also f satisfies f ∈ S ′(RM), Condition (B) and (C).

Then, we obtain an approximation of E
[
f(U

(ϵ)
T )

]
as

E
[
f(U

(ϵ)
T )

]
= E

[
f0,T + ϵf1,T + ϵ2f2,T + · · ·+ ϵMfM,T

]
+O(ϵM+1C(T )), (33)

where C(T ) is an increasing function of T , and for n ∈ N,

E[f0,T ] =

∫
R
f(x)pU

(0)
T (x)dx, (34)

E[fn,T ] =

(n)∑
n(r)

∫
R
f(x)(−∂)r

(
E
[
U

(n1)
T · · ·U (nr)

T |U (0)
T = x

]
pU

(0)
T (x)

)
dx, (35)
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(n)∑
n(r)

:=

n∑
r=1

∑
n1+···+nr=n,nl≥1

1

r!
. (36)

The proof of this theorem is given in Appendix B.
Next, let us discuss a particular case that the jump term is a compound Poisson process,

whence Condition (C) and Theorem 3.2 are expressed more specifically. We first consider a
process X̂ with fixed jump times and sizes.

X̂
x̂,Z,(ϵ)
s,T = x̂+

∫ T

s

{
µ(t, X̂

x̂,Z,(ϵ)
s,t− )−

N∑
l=1

ΛlE[hl(ϵz)]γ̂l(t, X̂
x̂,Z,(ϵ)
s,t− )

}
dt

+ϵ

∫ T

s
Φ(t, X̂

x̂,Z,(ϵ)
s,t− , ϵ)dWt +

N∑
l=1

kl(T )∑
jl=kl(s)+1

hl(ϵZl,jl)γ̂l(τjl , X̂
x̂,Z,(ϵ)
τjl ,τjl−

)

= x̂+

∫ T

s

{
µ(t, X̂

x̂,Z,(ϵ)
s,t− )−

N∑
l=1

ΛlE[hl(ϵz)]γ̂l(t, X̂
x̂,Z,(ϵ)
s,t− )

}
dt

+ϵ

∫ T

s
Φ(t, X̂

x̂,Z,(ϵ)
s,t− , ϵ)dWt +

N∑
l=1

∫ T

0
γ̂l(t−, X̂

x̂,Z,(ϵ)
s,t− )dΥl,t, (37)

where kl(t) is jump times of the l-th jump term until time t, Λl is an intensity of the l-th jump,
Zl,jl is a jump size, Υl is a piecewise constant finite many jump cadlag trajectory Υl : [0, T ] →
RN with Υl,0 = 0, γ̂l : [0, T ] ×RD × Ω → RD and hl : El → RD ×RD. Hereafter, we denote
kl = kl(T ) when a maturity of the option is T .

Next, let us arrange the jump times as t1 < t2 < · · · < tK(T ), and the jump sizes are also

arranged as Zl,1, · · · ,Zl,K(T ), where K(t) =
∑N

l=1 kl(t)−#{τl,j = τl′,i, (l ̸= l′)} and hl(ϵZl,jl) = 0
if τl,i ̸= tj for 1 ≤ ∀i ≤ kl(t).

Then, as in Forster et al. [15], (X̂
x̂,Z,(ϵ)
s,T )s≥0 can be given explicitly in terms of the jump

times τjl for jl ≥ 0 and the diffusion process between two consecutive jumps. We define X̂
x,Z,(ϵ)
t

as

X̂
x,Z,(ϵ)
t := X̂

x̂,Z,(ϵ)
0,t for 0 ≤ t < t1,

X̂
x,Z,(ϵ)
t := X̂

x̂,Z,(ϵ)
t1,t

∣∣
x̂=X̂

x̂,Z,(ϵ)
0,t1−

+
∑N

l=1 hl(ϵZl,1)γ̂l(t1−,X̂
x̂,Z,(ϵ)
0,t1−

)
for t1 ≤ t < t2,

...

X̂
x,Z,(ϵ)
t := X̂

x̂,Z,(ϵ)
tK(T ),t

∣∣
x̂=X̂

x̂,Z,(ϵ)
0,tK(T )−

+
∑N

l=1 hl(ϵZl,n)γ̂l(tK(T )−,X̂
x̂,Z,(ϵ)
0,tK(T )−

)
for tK(T ) ≤ t ≤ T, (38)

Next, we define the process X̂x,Ẑ,(ϵ) by inserting Poisson jump times for τj , and i.i.d random

variables Ẑl,j for Zl,j for each l. Then, the process X̂x,Ẑ is indistinguishable from X which is
the solution of (3) (see e.g. Forster et al. [15] Theorem 1).
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Let us define the first variation process for X̂x,Z,(ϵ) as V̂ x,Z,(ϵ) which satisfies the following
stochastic differential equation.

V̂
x̂,Z,(ϵ)
t = I +

∫ t

0

{ ∂

∂x
µ(u−, X̂

x̂,Z,(ϵ)
0,u− )−

N∑
l=1

ΛlE[hl(ϵz)]
∂

∂x
γ̂l(u, X̂

x̂,Z,(ϵ)
0,u− )

}
V̂

x̂,Z,(ϵ)
u− du

+

∫ t

0
ϵ
∂

∂x
Φ(u, X̂

x̂,Z,(ϵ)
0,u )V̂

x̂,Z,(ϵ)
u− dWu +

N∑
l=1

K(t)∑
j=1

∂

∂x
hl(ϵZl,j)γ̂l(uj , X̂

x̂,Z,(ϵ)
0,uj− )V̂

x̂,Z,(ϵ)
u− .

(39)

Then, the Malliavin derivative in the Wiener direction DsX̂
x,Z,(ϵ)
t satisfies the following equation

(Poissonian trajectory-wise).

DsX̂
x,Z,(ϵ)
t = V̂

x,Z,(ϵ)
t (V̂

x,Z,(ϵ)
s− )−1ϵΦ(s, X̂

x,Z,(ϵ)
s− , ϵ)1{s≤t}, (40)

where

(V̂
x̂,Z,(ϵ)
t )−1 = I −

∫ t

0
(V̂

x̂,Z,(ϵ)
u− )−1

{
∂

∂x
µ(u−, X̂

x̂,Z,(ϵ)
0,u− )−

N∑
l=1

ΛE[hl(ϵz)]
∂

∂x
γ̂l(u, ϵz, X̂

x̂,Z,(ϵ)
0,u− )

−
(
ϵ
∂

∂x
Φ(u, X̂

x̂,Z,(ϵ)
0,u )

)2
}
du−

N∑
l=1

K(t)∑
j=1

(V̂
x̂,Z,(ϵ)
uj− )−1hl(ϵZl,j)

∂

∂x
γ̂l(uj , X̂

x̂,Z,(ϵ)
0,uj− )

+
N∑
l=1

K(t)∑
j=1

(V̂
x̂,Z,(ϵ)
u− )−1

(
I + hl(ϵZl,j)

∂

∂x
γ̂l(uj , X̂

x̂,Z,(ϵ)
0,uj− )

)−1

×
(
hl(ϵZl,j)

∂

∂x
γ̂l(uj , X̂

x̂,Z,(ϵ)
0,uj− )

)2

−
∫ t

0
(V̂

x̂,Z,(ϵ)
u− )−1ϵ

∂

∂x
Φ(u, X̂

x̂,Z,(ϵ)
0,u )dWu.(41)

We also define Û
(ϵ)
T as

Û
(ϵ)
T :=

1

ϵ

(
g(X̂

(ϵ)
T )− g(X̂

(0)
T )
)
, (42)

In this setting, Û has an asymptotic expansion, and the Malliavin covariance is defined as

σ
Û

(ϵ)
T

=

K(T )∑
j=0

∫ tj+1

tj

∂g(X̂
(ϵ)
T )V̂T (V̂

x,Z,(ϵ)
s )−1Φ(s, X̂

(ϵ)
s−)⊗ ∂g(X̂

(ϵ)
T )V̂T (V̂

x,Z,(ϵ)
s )−1Φ(s, X̂

(ϵ)
s−)ds,(43)

where tK(T )+1 = T .

In order to justify the asymptotic expansion of f(Û
(ϵ)
T ) around ϵ = 0, we put the following

condition.
Condition (C’) For ∀p > 1,

lim sup
ϵ↓0

∣∣∣σ
Û

(ϵ)
T

∣∣∣−1
∈ Lp. (44)

Then, we obtain a special case of Theorem 3.2 as the next corollary.
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Corollary 3.3. Suppose that the Û (ϵ) (ϵ ∈ (0, 1]) satisfies Condition (A), (B) and (C’). More-
over, the jump term is assumed as a compound Poisson process.

Then, for every f ∈ S ′(RM), E[f(Û
(ϵ)
T )] has an asymptotic expansion:

E[f(Û
(ϵ)
T )] = E

[
f0,T + ϵf1,T + ϵ2f2,T + · · ·+ ϵMfM,T

]
+O(ϵM+1C(T )), (45)

where C(T ) is an increasing function of T .
E[fn,T ] are calculated as follows:

E[f0,T ] =

∞∑
k=0

∑
∑N

l=1 kl=k

p{kl}

(
n∏

l=1

kl!

T kl

)
⃗∫ T

0

∫
R
f(x)p

Û
(0)

{τl=t⃗l},T (x)dxd⃗t, (46)

E[fn,T ] =

∞∑
k=0

∑
∑N

l=1 kl=k

p{kl}

(
n∏

l=1

kl!

T kl

)
(n)∑

n(r),α(r)

⃗∫ T

0

∫
R
f(x)(−∂α(r))n

(
E
[
Xα1,(n1)
T · · · Xαr,(nr)

T |Û (0)

{τl=t⃗l},T
= x, {Nl,T = kl}, {τl = t⃗l}

]
p

Û
(0)

{τl=t⃗l},T (x)
)
dxd⃗t,

(47)

where {Nl = kl} = {N1,T = k1, · · · , Nn,T = kn}, {τl = t⃗l} = {τ1,1 = t1,1, · · · , τ1,k1 = t1,k1 , · · · , τn,1 =
tn,1, · · · , τn,kn = tn,kn}, p{kl} =

∏n
l=1

(ΛlT )kle−ΛlT

kl!
, and τl,j is the j-th jump time of the jump pro-

cess of the l-th type. p
Û

(0)

{τl=t⃗l},T is a density function of Û
(0)

{τl=t⃗l},T
, and Û

(0)

{τl=t⃗l},T
stands for Û

(0)
T

conditioned on jumps at {τl = t⃗l} with {Nl,T = kl}. Moreover,

⃗∫ T

0
=

n∏
l=1

∫ T

0

∫ tl,kl

0
· · ·
∫ tl,2

0
; d⃗t =

n∏
l=1

dtl,1 · · · dtl,kl . (48)

The conditional expectations in (47) are calculated based on the formulas in Section B of the
online appendix [31], as well as formulas in Appendix B of Shiraya - Takahashi [34].

The proof of this corollary is provided in Appendix B.

Example 3.4. In the case of one-dimensional Merton jump diffusion model defined in Example

2.1 with g(x) = x, Û
(ϵ)
T is expanded as follows:

Û
(ϵ)
T = S

(1)
T +

ϵ

2!
S
(2)
T +

ϵ2

3!
S
(3)
T + · · · , (49)

where S
(1)
T , S

(2)
T are given in Example 2.1, and S

(3)
T is obtained similarly. Then, for a path-

independent option with the payoff f(Û
(ϵ)
T ), E[f0,T ], E[f1,T ] and E[f2,T ] are expressed as follows:

E[f0,T ] =
∞∑
k=0

(ΛT )ke−ΛT

k!

∫
R
f(x)n(x; ξ,Σ

{k}
T )dx, (50)

E[f1,T ] = −
∞∑
k=0

(ΛT )ke−ΛT

k!

∫
R
f(x)∂x

(
E
[
S
(2)
T |S(1)

T = x, {NT = k}
]
n(x; ξ,Σ

{k}
T )

)
dx,(51)
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E[f2,T ] =
∞∑
k=0

(ΛT )ke−ΛT

k!

∫
R
f(x)

{
− ∂x

(
E
[
S
(3)
T |S(1)

T = x, {NT = k}
]
n(x; ξ,Σ

{k}
T )

)
+∂2

x

(
E
[1
2

(
S
(2)
T

)2
|S(1)

T = x, {NT = k}
]
n(x; ξ,Σ

{k}
T )

)}
dx, (52)

where ξ = (k − ΛT )meµT s0, and Σ
{k}
T := Var

[
S
(1)
T

]
= (eµTσs0)

2T + k(υeµT s0)
2.

4 Approximation Formula of Average and Spread Option Prices
under Stochastic Volatility with Jumps Models

This section first describes the structure of average and spread options in practice, where the
underlying assets are the averages or spreads of future prices. Let us note that the other types
of average options, which don’t have rollovers, are contained in our formulation. Then, based on
the previous section, we present an approximate pricing formula for average and spread options
under local stochastic volatility with jump diffusion models, which will be used in the next
section.

To explain the structure of discrete average options, let us introduce new processes Ai
t defined

by

Ai
t =

mi∑
j=1

w
(i)
j Si

t
(i)
j

1{t(i)j ≤t}, (53)

where 0 ≤ t
(i)
1 < · · · < t

(i)
mi ≤ T , mi denotes the number of the underlying asset price Si to which

the average option refers, each w
(i)
j stands for the weight for the price of the contract i at date

t
(i)
j , and the dynamics of each Si is described by the stochastic differential equation. Then, we
can deal with an average option whose underlying asset price g(At) is given by the following:

g(At) =

d∑
i=1

Ai
t. (54)

Next, let us define the underlying asset of a spread option as the spread of futures prices
with two different maturities (T1 < T2). More precisely, the spread consists of a long position in
the first expiring futures (S1) in the spread and a short position in the second expiring futures
(S2). Then, the underlying of a spread option is expressed as:

Ai
t = wiSi

Ti
1{Ti≤t}, (i = 1, 2, w1 = 1, w2 = −1),

g(At) = A1
t −A2

t . (55)

In this way, we are able to treat pricing problems for average and spread options in a unified
manner, since the spread option is a special case of discrete average options. Thus, in the
remaining part of this section, we concentrate on the discrete average option. Then, we define
the payoff function of an average option with maturity T and strike K as (g(AT ) − K)+(:=
max{g(AT ) − K, 0}) for a call option and (K − g(AT ))

+(:= max{K − g(AT ), 0}) for a put
option.
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Remark 4.1. We are able to obtain an approximation formula for pricing the continuously
monitored average options by simply changing the process A and the function g as

At =

∫ t

0
Sudu, (56)

g(At) = At. (57)

However, since the continuously monitored options are not traded in the real world, and the
derivation is very similar as in the discretely monitored case, we omit the details.

In the following, we show the model of the underlying asset prices and its volatility processes,
which is used for pricing discrete average options. In particular, suppose that the filtered prob-
ability space (Ω,F,P, {Ft}t≥0) is given, where P is an equivalent martingale measure and the
filtration satisfies the usual conditions. Then, (Si

t)t∈[0,T ] and (σi
t)t∈[0,T ], i = 1, · · · , d represent

the underlying asset prices and their volatilities, respectively. Particularly, let us assume that
Si
T and σi

T are given by the solutions to the next stochastic integral equations:

Si
T = si0 +

∫ T

0
αi
t−S

i
t−dt+

∫ T

0
ϕSi (σt−, St−) dWt

+
n∑

l=1

Nl,T∑
j=1

hSi,l,jS
i
τj,l− −

∫ T

0
ΛlS

i
t−E[hSi,l,1]dt

 , (58)

σi
T = σi

0 +

∫ T

0
µσi (σt−, t−) dt+

∫ T

0
ϕσi (σt−) dWt

+

n∑
l=1

Nl,T∑
j=1

hσi,l,jσ
i
τj,l− −

∫ T

0
Λlσ

i
t−E[hσi,l,1]dt

 , (59)

where si0 and σi
0, i = 1, · · · , d are given constants. αi

t is a deterministic function of t. µσi(σi, t),
ϕSi(x, y), ϕσi(x) are some deterministic functions with appropriate regularity conditions in Sec-
tion 2. W is a 2d-dimensional Brownian motion. Each Nl, (l = 1, · · · , n) is a Poisson process
with constant intensity Λl, which is independent of each other. Nl, (l = 1, · · · , n) are also inde-
pendent of all W ; τj,l stands for the j-th jump time of Nl; For each l = 1, · · · , n and i = 1, · · · , d,
both

(∑Nl,t

j=1 hSi,l,j

)
t≥0

and
(∑Nl,t

j=1 hσi,l,j

)
t≥0

are compound Poisson processes. (
∑Nl,t

j=1 ≡ 0 when

Nl,t = 0).
For each l and xi, hxi,l,j (j ∈ N) are independent, identically distributed random variables,

where xi stands for one of Si, σi (i = 1, · · · , d). For instance, we can consider a log-normal jump
case as hxi,l,j = eYxi,l,j −1, where Yxi,l,j is a random variable which follows a normal distribution
N(mxi,l, υ

2
xi,l

). Also, hxi,l,j and hxi′ ,l′,j′ (l ̸= l′) are independent. Nl and hxi,l′,j are independent,

too. On the other hand, for the same l and j, hSi,l,j and hσi′ ,l,j (i, i′ = 1, · · · , d) are allowed to
be dependent, that is YSi,l,j and Yσi′ ,l,j (i, i′ = 1, · · · , d) are generally correlated.

Remark 4.2. We briefly comment on the relation of the model above to the SDE (2) in Section
2. Firstly, the dimension 2d above corresponds to D and m (i.e. 2d = D = m) in (2). Also, the
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jump term in (2) is specified as follows: for X = Si or σi,∫ T

0

∫
El

γl(t, z,Xt−)Ñl(ds, dz) =

∫ T

0

∫
R\{0}

Xt−γ̃x,l(z)Ñl(ds, dz), (60)

(That is, El = R \ {0}, γl(t, z,Xt−) = Xt−γ̃x,l(z)) . (61)

Moreover, for the log-normal jump case,

Ñl(ds, dz) = Nl(ds, dz)− Λlds µ(dz) , (62)

Nl([0, t], A) =

Nl,t∑
j=1

IA

(
eξx,l,j − 1

)
, A ∈ B(R \ {0}), ξx,l,j ∼ N(mx,l, υ

2
x,l), i.i.d., (63)

where Nl,t is a Poisson process with the intensity Λl.

Then, we introduce perturbations to the models (58), (59) with the same notation of the
coefficients as those of the original SDEs, as in Section 2. That is, for a known parameter
ϵ ∈ [0, 1] we consider the following stochastic integral equations: for i = 1, · · · , d,

S
i,(ϵ)
T = si0 +

∫ T

0
αi
t−S

i,(ϵ)
t− dt+ ϵ

∫ T

0
ϕSi

(
σ
(ϵ)
t− , S

(ϵ)
t−

)
dWt

+

n∑
l=1

Nl,T∑
j=1

h
(ϵ)

Si,l,j
S
i,(ϵ)
τj,l− −

∫ T

0
ΛlS

i,(ϵ)
t− E[h

(ϵ)

Si,l,1
]dt

 , (64)

σ
i,(ϵ)
T = σi

0 +

∫ T

0
µσi

(
σ
(ϵ)
t− , t−

)
dt+ ϵ

∫ T

0
ϕσi

(
σ
(ϵ)
t−

)
dWt

+
n∑

l=1

Nl,T∑
j=1

h
(ϵ)

σi,l,j
σ
i,(ϵ)
τj,l− −

∫ T

0
Λlσ

i,(ϵ)
t− E[h

(ϵ)

σi,l,1
]dt

 , (65)

where s0, σ0 are given constants, and αt is a deterministic function of t. We assume that

µ
(ϵ)
xi , ϕ

(ϵ)
xi , h

(ϵ)
xi,l,j

satisfy Condition (A) and (B). We also suppose that h
(ϵ)
xi,l,j

= ϵmxi,l (mxi,l: a

constant), or h
(ϵ)

xi,l,j
= eϵYxi,l,j − 1 where Yxi,l,j ∼ N(mxi,l, υ

2
xi,l

).
Next, by applying Corollary 3.3 with approximations for reduction of computational burdens,

we derive a pricing formula of an average call option with strike K and maturity T , whose payoff

function is given by f(g(A
(ϵ)
T )) with f(x) = (x −K)+. Also, for some fixed constants w

(i)
j and

reference dates t
(i)
j (i = 1, · · · , d, j = 1, · · · ,mi) with the function (54), g(A

(ϵ)
T ) is specified as

g(A
(ϵ)
T ) =

d∑
i=1

A
i,(ϵ)
T , A

i,(ϵ)
T =

mi∑
j=1

w
(i)
j S

i,(ϵ)

T
(i)
j

1{t(i)j ≤T}. (66)

Then, the call payoff is expanded as follows:

f(g(A
(ϵ)
T )) =

(
g(A

(ϵ)
T )−K

)+
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= ϵ

(
g(A

(ϵ)
T )− g(A

(0)
T )

ϵ
+ Y

)+

= ϵ
(
g(A

(1)
T ) + Y

)+
+

ϵ2

2
1{

g(A
(1)
T )>−Y

}g (A(2)
T

)
+ϵ3

(
1

6
1{

g(A
(1)
T )>−Y

}g (A(3)
T

)
+

1

8
δ{

g(A
(1)
T )=−Y

}g (A(2)
T

)2)
+ o(ϵ3), (67)

where

g(A
(n)
T ) = g

(
∂n

∂ϵn
A

(ϵ)
T

∣∣
ϵ=0

)
=

d∑
i=1

mi∑
j=1

w
(i)
j

∂n

∂ϵn
S
i,(ϵ)

t
(i)
j

∣∣
ϵ=0

1{t(i)j ≤T} =
d∑

i=1

mi∑
j=1

w
(i)
j S

i,(n)

t
(i)
j

1{t(i)j ≤T}.

(68)

Hence, the calculation of g(A
(n)
T ) is reduced to that of S

(n)
t . Here, the strike price is expressed

as K = g(A
(0)
T ) − ϵY for an arbitrary Y ∈ R. We also note that

g(A
(ϵ)
T )−g(A

(0)
T )

ϵ and g(A
(1)
T )

with A
(1)
T =

∂A
(ϵ)
T

∂ϵ |ϵ=0 in (67) corresponds to Û
(ϵ)
T and Û

(0)
T in Corollary 3.3, respectively. We

suppose that Condition (C’) is satisfied for Û
(ϵ)
T .

In particular, given {Nl = kl} = {N1,T = k1, · · · , Nn,T = kn} (i.e. given the number of jumps

until T ), let us obtain a concrete expression of g(A
(1)
T ) and its approximate distribution, which

is a basis in derivation of our formula for average option prices. We set kl,t :=
∑∞

p=1 1{τp,l≤t},

kl = kl,T , and Š :=
(
Š1, · · · , Šd

)
which is defined as

Ši
t :=

2d∑
q=1

∫ t

0
e
∫ t
u αsdsϕSi,q

(
σ
(0)
u−, S

(0)
u−

)
dW q

u +

n∑
l=1

kl,t∑
p=1

υSi,lζSi,p,le
∫ t
0 αi

sdssi0, (69)

where each ζSi,p,l follows N(0, 1) which is independent among p, l, but possibly correlated for
among Si.

In this setting, we have g(A
(1)
T ) = g(ǍT ) + g(ξ{kl},T )(=

∑d
i=1 Ǎ

i
T +

∑d
i=1 ξ

i
{kl},T ), where

Ǎi
T :=

mi∑
j=1

w
(i)
j Ši

t
(i)
j

1{t(i)j ≤T},

ξi{kl},T :=

mi∑
j=1

w
(i)
j

n∑
l=1

(
k
l,t

(i)
j

− Λlt
(i)
j

)
mSi,le

∫ t
(i)
j

0 αi
sdssi0. (70)

Then, for ease of numerical computation, i.e. to avoid the multiple time-integrals appear-
ing in Corollary 3.3, given {Nl = kl} we approximate ξi{kl},t and the distribution of g(ǍT ) so as to

make them independent of timing of jumps: With new notations w̄i(t) :=
∑mi

j=1w
(i)
j 1{t≤t

(i)
j }e

∫ t
(i)
j

t αsds

and w̃i :=
1
T

∑mi
j=1w

(i)
j t

(i)
j e

∫ t
(i)
j

0 αsds, let us approximate ξi{kl},t by ξi{kl}, which is defined as

ξi{kl} :=
n∑

l=1

w̃i (kl − ΛlT )mSi,ls
i
0, (71)
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where the number of jumps until t
(i)
j (i.e. k

l,t
(i)
j

) is replaced by the number of jumps until T

(i.e. kl = kl,T ). Moreover, the distribution of g(ǍT ) is approximated as N
(
0,Σ

{kl}
T

)
, that is

the normal distribution with mean zero and variance Σ
{kl}
T defined as

Σ
{kl}
T :=

d∑
i=1

2d∑
q=1

d∑
i′=1

2d∑
q′=1

∫ T

0

(
w̄i(t)ϕSi,q

(
σ
(0)
t , S

(0)
t

))(
w̄i′(t)ϕSi′ ,q′

(
σ
(0)
t , S

(0)
t

))
dt

+

d∑
i=1

d∑
i′=1

n∑
l=1

kl
(
w̃iυSi,ls

i
0

)
ϑSi,Si′

(
w̃i′υSi′ ,ls

i′
0

)
, (72)

where ϑSi,Si′ denotes the correlation between ζSi,j,l and ζSi′ ,j,l for given j and l. In the case

of d = 1 and n = 1, Σ
{kl}
T corresponds to Σ

{k}
T (T ) in Remark B.2 of the online appendix

[31]. In sum, given {Nl = kl}, we obtain an approximation for the distribution of g(A
(1)
T ) as

N(g(ξ{kl}),Σ
{kl}
T ) with g(ξ{kl}) =

∑d
i=1 ξ

i
{kl}.

Next, we need to calculate E[fi,T ] in Corollary 3.3, where we apply the approximations in
Remark B.2 of the online appendix [31] to the multiple time-integrals. Furthermore, we use the
3rd order (ϵ3) corrections obtained by a no-jump model, which is defined as

S
i,LSV (ϵ)
T = si0 +

∫ T

0
αi
tS

i,LSV (ϵ)
t dt+ ϵ

∫ T

0
ϕSi

(
σ
i,LSV (ϵ)
t , S

i,LSV (ϵ)
t

)
dWt, (73)

σ
i,LSV (ϵ)
T = σi

0 +

∫ T

0
µσi

(
σ
i,LSV (ϵ)
t , t

)
dt+ ϵ

∫ T

0
ϕσi

(
σ
i,LSV (ϵ)
t

)
dWt. (74)

Hereafter, we call this approximation the partial 3rd order (asymptotic) expansion. Then, for
the numerical evaluation of conditional expectations appearing in E[fi,T ], we can use formulas
in Appendix B of Shiraya - Takahashi [34], as well as Lemma B.1 of the online appendix [31]
which is an extension of [34] and Takahashi et al. [42].

Finally, we summarize an approximate pricing formula for average call options as the follow-
ing theorem.

Theorem 4.3. An approximation formula for the initial value C(K,T ) of an average call option
with maturity T and strike price K is given as follows:

C(K,T ) ≈
∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}e
−rT

{
ϵ

{
yklN

 ykl√
Σ
{kl}
T

+Σ
{kl}
T n(ykl ; 0,Σ

{kl}
T )

}

+ϵ2
{
C1,klN

 ykl√
Σ
{kl}
T

+

(
C2,klΣ

{kl}
T + C3,kl

H1(ykl ; Σ
{kl}
T )

Σ
{kl}
T

)
n(ykl ; 0,Σ

{kl}
T )

}

+ϵ3
{(

C4
H2(Y ; ΣT )

(ΣT )2
+ C5

H4(Y ; ΣT )

(ΣT )4
+ C6

)
n(Y ; 0,ΣT )

}}
, (75)
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where p{kl} =
∏n

l=1
(ΛlT )kle−ΛlT

kl!
, ΣT = Σ

{0}
T , r is a constant risk-free rate, K is expressed as K =

g(A
(0)
T )− ϵY for an arbitrary Y ∈ R, y{kl} = g(ξ{kl}) + Y , N(x) denotes the standard normal

distribution function and n(x; 0,Σ) = 1√
2πΣ

exp
(
−x2

2Σ

)
. Here, g, ξ{kl} = (ξ1{kl}, · · · , ξ

d
{kl}) and

Σ
{kl}
T are given by (54), (71) and (72), respectively. The coefficients C1,kl , · · · , C3,kl , C4, · · · , C6

are some constants, and Hk

(
x; Σ

{kl}
T

)
denotes the k-th order Hermite polynomial.

The concrete expressions of coefficients C1,kl , · · · , C3,kl , C4, · · · , C6 and the details of the
derivation are provided in Section A of the online appendix [31].

Remark 4.4. When we do not have closed-forms for the multiple integrals on the time parameter
that appear in the calculation of the conditional expectation formulas, some numerical method
is necessary.

However, all the multiple integrals necessary for the evaluation of C1,k, · · · , C3,k, C4, · · · , C6

are computed by the program code with only one loop against the time parameter. For instance,
a multiple integral is approximated for the numerical integration as follows:∫ T

0
f(s)

∫ t

0
g(u)

∫ s

0
h(v)dvduds

≈
M∑
i=1

∆tif(ti)
i∑

j=1

∆tjg(tj)

j∑
k=1

∆tkh(tk)

=

M∑
i=1

∆tif(ti) (G(ti−1) + ∆tig(ti) (H(ti−1) + ∆tih(ti))) ,

where ∆ti = (ti − ti−1), H(ti) = H(ti−1) + ∆tih(tj) and G(ti) = G(ti−1) + ∆tig(ti)H(ti).
Hence, the order of the computational effort is at most M , where M is the number of time-

steps for the discretization in the numerical integral. Note that we have no problems in terms of
computational complexity and speed since various fast numerical integration methods are avail-
able such as the extrapolation method.

Remark 4.5. To calculate the option premium with our approximation method numerically, we
need to truncate the number of jumps. In the numerical examples, we ignore the jumps whose
probability is less than 1/100, 000.

5 Numerical Examples on WTI Average and Spread Options

This section shows concrete numerical examples based on our method developed in the previous
sections. Firstly, to calculate the option values, we adopt two types of stochastic volatility
models for the numerical experiments under the risk-neutral probability measure. In particular,
each underlying asset price process has a CEV (constant elasticity of variance)-type diffusion
term with compound Poisson component. On volatility processes, one has a log-normal diffusion
term with no drift and compound Poisson component, which is an extension of the SABR model
(see [19]), and we call it as extended SABR ((76), (77)). The other is the Heston type variance
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process, which is an extension of Bates model (see [3]), and we call it as extended Bates ((78),
(79)). The explicit form of the processes are as follows:

Si
T = Si

0 +

∫ T

0
viσi

t−(S
i
t−)

βidWSi

t +
n∑

l=1

Nl,T∑
j=1

hSi,l,jS
i
τj,l− −

∫ T

0
ΛlS

i
t−E[hSi,l,1]dt

 ,(76)

σi
T = σi

0 +

∫ T

0
νiσi

t−dW
σi

t +
n∑

l=1

Nl,T∑
j=1

mσi,lσ
i
τj,l− −

∫ T

0
Λlσ

i
t−mσi,ldt

 , (77)

Si
T = Si

0 +

∫ T

0
vi
√

σi
t−(S

i
t−)

βidWSi

t +
n∑

l=1

Nl,T∑
j=1

hSi,l,jS
i
τj,l− −

∫ T

0
ΛlS

i
t−E[hSi,l,1]dt

 ,

(78)

σi
T = σi

0 +

∫ T

0
κi(θi − σi

t−)dt+

∫ T

0
νi
√

σi
t−dW

σi

t , (79)

where the jump size mσi,l in the volatility process is a constant, while the jump size in the

futures price process is a constant or log-normally distributed, that is hSi,l,j = eYSi,l,j − 1 with
YSi,l,j following a normal distribution N(mSi,l, υ

2
Si,l

) for all j. We remark that in the diffusion
component, adopting a local volatility with Heston model rather than the original Heston is due
to its well-known advantage in calibration to the option prices in practice. (For the CEV-Heston
model, see [38] for instance.)

We apply the formula with ϵ = 1 in Theorem 4.3, and calculate the average options on
WTI futures, which are regarded as examples of the average option described in Section 4. In

particular, we set d = 2, w
(i)
j = 1

M , M = d1 + d2 for all w
(i)
j in (54) where d1, d2 express the

numbers of the reference dates of each underlying asset, because two WTI futures are relevant
for one average option in a listed contract in CME.

Although we are able to treat more general cases, we consider a systematic jump (i.e. all the
jumps of the underlying asset prices and their volatilities occur at the same time) and perfectly
correlated jump size case, that is n = 1 and ϑSi,Si′ = 1. Also, the intensity parameter Λ is fixed
as 1.

Then, we set the calculation date for average option prices as of November 28, 2014, and
report the target average option contracts in CME with their underlying average prices on the
date, the time to the maturities and the relevant interest rates in Table 1. We also show the WTI
futures contracts relevant for each average contract, their prices, and the time to the maturities
with interest rates on November 28, 2014 in Table 2:
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Average Price Maturity Interest Rate

MAY 15 67.16 0.499 0.3%
NOV 15 68.26 1.005 0.4%

Table 1: Market data for average options

Average Price is the underlying asset price of
the average option. Maturity is the time to matu-
rity of the option.

Contract Month Futures Price Maturity Interest Rate

JUN 15 67.1 0.458 0.3%
JUL 15 67.26 0.551 0.3%
DEC 15 68.22 0.970 0.4%
JAN 16 68.38 1.049 0.4%

Table 2: Market data for futures options

Futures Price is the underlying asset price of
the listed option. Maturity is the time to maturity
of the option.

Here, JUN 15 and JUL 15 are the relevant futures contracts for the MAY 15 average option,
and DEC 15 and JAN 16 for the NOV 15 average option.

Moreover, we compute the average option prices by our approximation formula to compare
those with the corresponding CME prices. Hence, we first need to obtain the model parameters
through calibration to the relevant WTI futures options prices. Figure 1 and Figure 2 show the
implied volatilities of the WTI futures options.

Figure 1: Original Implied Volatilities
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Figure 2: Interpolated Implied Volatilities

20%

23%

26%

29%

32%

35%

38%

41%

45 50 55 60 65 70 75 80 85 90

JUN 15 JUL 15 DEC 15 JAN 16 JUN 16

X axis is strike prices of the listed options, and Y
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Figure 1 (”original implied volatilities”) reports the implied volatilities of JUN15, JUL15,
DEC15, JAN16, JUN16 contracts of the WTI futures options.

However, as it is well-known that the odd term options, JUL15 and JAN16 are illiquid.
Thus we do not use these implied volatilities calculated from their quoted prices but employ the
volatilities based on the interpolations of the implied volatilities for the liquid term options, that
is, JUN15, DEC15 and JUN16. In Figure 2 (”interpolated implied volatilities”), the volatilities
of JUN15 and JAN16 contracts are the interpolated volatilities, where JUN15 and DEC15
contracts are used for JUL15, while DEC15 and JUN16 for JAN16. That is, we get the implied
volatility σ for the illiquid option with the time to maturity T by the following formula: for
T1 < T < T2,

σ2T = ((T2 − T )σ2
1T1 + (T − T1)σ

2
2T2)/(T2 − T1), (80)
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where σ1 and σ2 are the implied volatilities of the liquid options with the time to maturities T1

and T2, respectively.
It is common in practice that pricing an average option is based on the calibration to the

prices of the liquid vanilla options whose underlying assets are the same spot or futures contracts
as those of the average option. For the calibration, the parameter βi in the diffusion term of
the futures price process in (76) is set as 0.5, and v ≡ 1 for extended SABR for the stability of
calibration. On the other hand, for extended Bates model, we need to estimate βi by calibration,
because the original Bates model (βi = 1) is too restrictive to fit the model to the market skews.
Moreover, we fix the parameters σ0 = θ ≡ 1 and κ ≡ 1 to stabilize the other parameters. In
the jump component, the parameters are assumed to take common values for the two relevant
futures price processes used for the calculation of an average option price and are obtained by
calibration to the market futures options prices. This is true for the volatility processes of the
two futures prices.

The correlations and local volatility parameters between the futures prices and their volatili-
ties are assumed to take common values for the two relevant futures, which are used to calculate
an average option. Then, the correlations are obtained by calibration to the market futures
options prices, which are shown in Table 4. In order to avoid a degenerate correlation matrix,
we implement a joint calibration for the two associated futures options contracts.

Further, for the two relevant futures contracts, the correlation between a futures price and
the futures price’s volatility of the different contract is assumed to be the same as the correlation
between the price and its volatility.

Moreover, the correlations between the two futures price processes are estimated by the past
one month historical data of future prices. The correlations between the corresponding volatility
processes of the two futures prices are assumed to be the same as the correlations of the futures
prices. Then, we obtain the following estimates: the correlation between JUN 15 and JUL 15 is
0.99986, and the correlation between DEC 15 and JAN 16 is 0.99992.

For computational efficiency, the settlement prices of American options are transformed to
those of the European options before calibration: More precisely, after an implied volatility of
each American option price is estimated under a binomial version of the Black-Scholes model,
the corresponding European option price is computed. Hereafter, this European option price
is called the “transformed CME” option price. Then, calibration is implemented against the
“transformed CME” option prices with different strikes simultaneously, where out-of-the-money
(OTM) prices are used for the calibration; the strikes of the options range USD (us dollar) 35
to USD 75 with every 5 dollars for JUN15 and JUL15 futures options, and those of range USD
40 to USD 80 with every 5 dollars for DEC15 and JAN16 futures options.

Given the above assumptions in the calibration, we compare the following six specifications
of the model:

(i) Local stochastic volatility model without jump (SABR model, i.e. hSi,l,j = 0, mσi,l,j = 0
in (76), (77))

(ii) Local stochastic volatility with constant jumps in the futures prices model (SABR + con-
stant jump model, i.e. hSi,l,j = mSi,l,j (a constant), mσi,l,j = 0 in (76), (77))

(iii) Local stochastic volatility with log-normal jumps in the futures prices model (SABR +
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log-normal jump model i.e. hSi,l,j = eYSi,l,j − 1, mσi,l,j = 0 in (76), (77))

(iv) Local stochastic volatility with constant jumps in the futures prices and volatilities model
(SABR + constant jumps in the futures prices and volatilities model, i.e. hSi,l,j = mSi,l,j ,
mσi,l,j (̸= 0) in (76), (77))

(v) Local stochastic volatility with log-normal jumps in the futures prices and constant jumps
in the volatilities model (SABR + log-normal jumps in the futures prices and constant
jumps in the volatilities model, i.e. hSi,l,j = eYSi,l,j − 1, mσi,l,j( ̸= 0) in (76), (77))

(vi) Local stochastic volatility with log-normal jumps in the futures prices model (Bates + local
volatility model, i.e. hSi,l,j = eYSi,l,j − 1 in (78), (79))

We choose these models to demonstrate that our method is well applicable to models such as
SABR and Heston with local volatility models, which are very popular and frequently used
in practice, but have no explicit characteristic functions nor closed form probability density
functions.

Due to limitations of space, the results of the 6 month maturity cases are given upon request.
The parameters obtained by calibration to the WTI futures options with 1 year maturity

are shown in Table 3.

v σ(0) β ν ρ mS υS mσ

DEC 15 (i) 1 215.5% 0.5 44.9% -0.215 - - -
(ii) 1 118.2% 0.5 148.5% 0.072 -0.171 - -
(iii) 1 159.5% 0.5 44.1% -0.801 -0.024 0.192 -
(iv) 1 128.9% 0.5 151.9% -0.377 -0.151 - -0.685
(v) 1 158.8% 0.5 31.6% -1.000 -0.036 0.199 0.153
(vi) 5.50 100.0% 0.206 107.1% -0.706 -0.026 0.199 -

JAN 16 (i) 1 210.3% 0.5 43.6% -0.215 - - -
(ii) 1 114.4% 0.5 139.5% 0.072 -0.171 - -
(iii) 1 151.5% 0.5 46.4% -0.801 -0.024 0.192 -
(iv) 1 115.9% 0.5 163.8% -0.377 -0.151 - -0.685
(v) 1 150.9% 0.5 33.4% -1.000 -0.036 0.199 0.153
(vi) 5.25 100.0% 0.206 117.7% -0.706 -0.026 0.199 -

Table 3: Parameters obtained by calibration to WTI futures options(DEC15, JAN16)

Each (i),· · · ,(vi) shows a model number.

The results of the calibration to the WTI futures options are shown in Table 4. It is observed
that the models with jumps (ii)-(v) mostly provide the better fitting than the one without jumps
(i), especially much better in OTM. Moreover, among the models with jumps, Model (ii) is the
worst in terms of calibration.
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Transformed Price Difference
Strike CME Price (i) (ii) (iii) (iv) (v) (vi) (i) (ii) (iii) (iv) (v) (vi)

DEC 15 45 23.92 23.99 23.95 23.93 23.94 23.93 23.93 0.06 0.02 0.00 0.02 0.00 0.00
50 19.58 19.59 19.58 19.57 19.58 19.57 19.57 0.00 -0.00 -0.01 -0.00 -0.01 -0.01
55 15.54 15.51 15.53 15.54 15.53 15.54 15.54 -0.03 -0.01 -0.00 -0.01 -0.00 -0.00
60 11.90 11.86 11.90 11.91 11.90 11.91 11.91 -0.04 -0.00 0.01 0.00 0.01 0.01
65 8.77 8.74 8.76 8.77 8.76 8.77 8.77 -0.03 -0.01 0.00 -0.00 0.00 0.00
70 6.20 6.20 6.18 6.19 6.18 6.19 6.19 0.00 -0.02 -0.01 -0.02 -0.01 -0.01
75 4.18 4.24 4.19 4.19 4.19 4.19 4.19 0.06 0.01 0.01 0.01 0.01 0.01
80 2.76 2.80 2.76 2.75 2.76 2.76 2.76 0.04 -0.00 -0.00 -0.00 -0.00 -0.00
85 1.80 1.80 1.81 1.80 1.81 1.80 1.80 -0.00 0.01 -0.00 0.01 -0.00 -0.00
90 1.20 1.13 1.20 1.19 1.20 1.20 1.20 -0.07 0.00 -0.01 -0.00 -0.00 -0.00

JAN 16 45 24.10 24.17 24.12 24.11 24.12 24.11 24.11 0.07 0.01 0.01 0.01 0.00 0.01
50 19.77 19.78 19.76 19.77 19.76 19.77 19.77 0.01 -0.01 -0.01 -0.01 -0.01 -0.01
55 15.74 15.71 15.73 15.74 15.73 15.74 15.74 -0.03 -0.01 -0.00 -0.01 -0.00 -0.00
60 12.11 12.07 12.11 12.11 12.11 12.11 12.11 -0.04 0.01 0.01 0.01 0.01 0.01
65 8.97 8.94 8.98 8.97 8.98 8.97 8.97 -0.02 0.01 0.00 0.01 0.00 0.00
70 6.39 6.38 6.38 6.37 6.38 6.37 6.37 -0.00 -0.00 -0.02 -0.00 -0.02 -0.02
75 4.34 4.40 4.36 4.35 4.35 4.35 4.35 0.05 0.02 0.00 0.01 0.00 0.00
80 2.88 2.93 2.88 2.89 2.88 2.89 2.89 0.05 0.00 0.00 0.00 0.00 0.00
85 1.91 1.90 1.90 1.91 1.90 1.90 1.91 -0.00 -0.01 0.00 -0.00 -0.00 -0.00
90 1.28 1.21 1.26 1.29 1.27 1.28 1.28 -0.07 -0.02 0.01 -0.01 0.00 0.00

Table 4: Calibration Errors on WTI futures options(DC15, JAN16)

Each (i),· · · ,(vi) shows a model number. Transformed CME Price is the corresponding European option
price calculated from the settlement price of an American option traded on CME. Difference columns show the
difference between the approximated prices and the transformed CME prices.

5.1 Numerical Results of Average Options

Using the parameters obtained through the calibration, Table 5 shows the comparison of the 1
year average option prices given by our approximation (AE) and CME settlement (CME).

55(Put) 60(Put) 65(Put) 70(Put) 75(Call) 80(Call)

Price CME MAY15 (Average) 2.27 3.6 5.44 7.86 4.11 2.69
AE (i) 2.24 3.56 5.40 7.84 4.14 2.72

(ii) 2.21 3.53 5.35 7.75 4.03 2.62
(iii) 2.27 3.60 5.43 7.83 4.10 2.68
(iv) 2.22 3.53 5.35 7.74 4.01 2.61
(v) 2.27 3.60 5.43 7.83 4.11 2.69
(vi) 2.27 3.60 5.43 7.83 4.11 2.68

Difference AE - CME (i) -0.03 -0.04 -0.04 -0.02 0.03 0.03
(ii) -0.06 -0.07 -0.09 -0.11 -0.08 -0.07
(iii) -0.00 0.00 -0.01 -0.03 -0.01 -0.01
(iv) -0.05 -0.07 -0.09 -0.12 -0.10 -0.08
(v) -0.00 0.00 -0.01 -0.03 -0.00 -0.00
(vi) 0.00 0.00 -0.01 -0.03 -0.00 -0.01

Table 5: Comparison of average option prices of our approximation with CME listed prices (1Y)

AE shows the price with the partial 3rd order approximation formula. Each (i),· · · ,(vi) shows a model number.
Difference rows show the difference between the approximated prices and the settlement prices of average options
in CME.

It is observed that in terms of the deviations of our approximations from the CME settlement
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prices, Model (v) is the best, (iii) and (vi) follow.
Next table and figures show the difference of the computational time and accuracies in each

order of expansion. Table 6 presents the comparison of the 1 year average option prices given
by our approximation (AE) with the partial third order expansion and Monte Carlo simulations
(MC) with a control variate method (the value in parenthesis is the 95% confidence interval (e.g.
(1.5), (1.6) in pp 5-6 of [18])). This control variate method introduced by [36] can be applied to
the models whose characteristic functions are unknown as in these models, and its calculation
speed ranges from several tens to hundreds of times faster than that of the crude Monte Carlo
method to reduce the variance. Figures from 3 to 8 show the difference between each order
approximation values and MC values.

The program is implemented in C++, and the computational time is calculated with one core
of Intel Core(TM) i7-3960X CPU @ 3.30GHz 32GB RAM. To get the accurate computational
time, it is evaluated by the average of 6 times calculations for Monte Carlo simulation and the
average of 6,000 times calculation for the approximation method.

In Monte Carlo simulations, the number of time partitions is set to 10 per month (in the
case of the average reference month, the time steps are the same as the numbers of business
days in the month). The numbers of simulations are set to 100, 000 for the average options and
10, 000 for spread options.

55(Put) 60(Put) 65(Put) 70(Put) 75(Call) 80(Call) Time(sec)

AE (i) 2.24 3.56 5.40 7.84 4.14 2.72 0.005
3rd (ii) 2.21 3.53 5.35 7.75 4.03 2.62 0.005

(Partial) (iii) 2.27 3.60 5.43 7.83 4.10 2.68 0.005
(iv) 2.22 3.53 5.35 7.74 4.01 2.61 0.005
(v) 2.27 3.60 5.43 7.83 4.11 2.69 0.005
(vi) 2.27 3.60 5.43 7.83 4.11 2.68 0.005

MC (i) 2.17 (0.027) 3.52 (0.026) 5.39 (0.025) 7.84 (0.024) 4.15 (0.023) 2.72 (0.022) 13.8
(ii) 2.13 (0.06) 3.41 (0.058) 5.22 (0.056) 7.65 (0.054) 3.97 (0.052) 2.58 (0.05) 13.8
(iii) 2.25 (0.012) 3.59 (0.011) 5.43 (0.011) 7.84 (0.01) 4.13 (0.009) 2.73 (0.009) 13.8
(iv) 2.2 (0.063) 3.42 (0.061) 5.18 (0.06) 7.57 (0.058) 3.88 (0.056) 2.49 (0.054) 13.8
(v) 2.26 (0.005) 3.6 (0.005) 5.44 (0.004) 7.85 (0.004) 4.13 (0.004) 2.74 (0.004) 13.8
(vi) 2.26 (0.014) 3.6 (0.014) 5.43 (0.013) 7.85 (0.012) 4.13 (0.011) 2.74 (0.01) 15.7

Difference (i) 0.07 0.04 0.02 -0.01 -0.00 -0.01
(ii) 0.09 0.12 0.13 0.09 0.06 0.04
(iii) 0.02 0.01 0.01 -0.01 -0.02 -0.05
(iv) 0.01 0.11 0.17 0.16 0.13 0.12
(v) 0.01 0.00 -0.00 -0.02 -0.03 -0.05
(vi) 0.01 0.00 0.00 -0.02 -0.03 -0.06

Table 6: Comparison of accuracies and computational times of our approximation with those of
MC (1Y average options)

AE shows the price with our approximation formula, and 3rd shows the order of ϵ in our formula (the 3rd
order approximation is applied only to the diffusion terms, and the jump terms are approximated with the 2nd
order formula). MC shows the price with Monte Carlo simulation with a control variate method. Each (i),· · · ,(vi)
shows a model number. Difference rows show the difference between the approximated prices and the prices
calculated with Monte Carlo simulations. The value in parenthesis is the 95% confidence interval. Time is the
calculation time.
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Figure 3: Model (i)
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Figure 4: Model (ii)
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Figure 5: Model (iii)
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Figure 6: Model (iv)
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Figure 7: Model (v)
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Figure 8: Model (vi)
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X axis is strike prices, and Y axis is the difference between the approximated values and Monte Carlo values.

“1st” is the first order values, “2nd” is the first order values, and “3rd” is the partial third order values.

As for discussions below on the validity of our expansion method in practice, since models
with jumps work better than the one without jumps (model (i)) in calibration as seen in Table
4, let us concentrate on models with jumps (ii)-(vi).

The 1st and 2nd order values in the models (ii), (iv) are worse than the models (iii), (v), (vi).
In fact, the constant jump parameters in the models (ii), (iv) may be too large in approximations
with our method, which seems the reason for the worse results in those models. This is consistent
with an observation (explained in Remark C.5) based on a theoretical analysis in Theorem 3.2
and Appendix C. We also note that the confidence interval of a Monte Carlo simulation becomes
wider when the accuracy of our approximation becomes worse.

Then, examining overall results, we see that the 2nd order approximations improve the 1st
order ones in the models (iii), (v), (vi). Thus, we can conclude at least from the numerical ex-
periments that the increasing order of expansion for the jump parts improves the precision of the
approximation under such reasonable jump parameters in the models (iii), (v), (vi). Moreover,
it is observed that the partial 3rd order expansions generally improve the approximations than
the lower order expansions.

As for the calculation time, our approximation is about 2800 ∼ 3100 times as fast as the
Monte Carlo simulation with control variate method even if the approximation is the partial
3rd order. The computational time for the lower orders is around 0.0007 seconds for the 1st
order, around 0.003 seconds for the 2nd order. The computational times for the lower orders are
around 0.0007 seconds for the 1st order and around 0.003 seconds for the 2nd order. Although
those for the 1st order cases are about 4 ∼ 8 times faster than the ones for the 2nd or the
partial 3rd order, it is hard to use the 1st order approximation in practice because of its large
approximation errors.

We finally remark that the partial 3rd order expansion is able to calculate the prices very
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fast with good accuracy, which is useful when pricing quickly is necessary while very precise
values are not required (e.g. when we need to indicate prices for many customers in a short
time).

Next, we implement stress tests with respect to the parameters to see the robustness of our
method. We set v or σ0, ν, mS , vS , T twice as much as those in Table 3 for the case (iii) and
(vi), which are the extended SABR and the extended Bates models, respectively.

Figure 9: Extended SABR model
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Figure 10: Extended Bates model
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X axis is strike prices, and Y axis is the difference between the partial third order approximation values and

Monte Carlo values. Each parameter shows the results with the parameter which is set as twice as much as that

in Table 3.

Figures 9 and 10 is consistent with asymptotic error estimates in Theorem 3.2 and in Ap-
pendix C, since the large ϵ and the large T mean the large volatility, the large jump size and
the long maturity. Particularly, the large ν, vS which create large curvatures in the volatility
smile, make the approximation less accurate and make the confidence intervals of Monte Carlo
simulation wider.

5.2 Numerical Results of Calendar Spread Options

This subsection shows numerical analysis for the calendar spread options whose underlying
assets are the same futures as those of the average options in the previous section. Hereafter,
we concentrate on (i), (iii) models (which are called LSV model and LSV with log-normal jump
model, respectively).

Since the calculation date and the underlying futures of the spread options are the same
as those of the average options in the previous section, the calibrated parameters in the both
models are the same as for (i), (iii) in Table 3.

The maturity of calendar spread option of DEC15 is 19 Nov. 2015. The correlation between
DEC 15 and JAN 16 is 0.99992, which is estimated from the past one month historical data of
the futures prices as in the average option cases.

The results of the approximate prices based on the formula in Theorem 4.3 with Monte Carlo
benchmarks are given in Table 7 for the 1 year calendar spread option.
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55(Put) 60(Put) 65(Put) 70(Put) 75(Call) 80(Call) Time

AE (i) 0.00 0.02 0.08 0.13 0.04 0.01 0.003
(iii) 0.00 0.02 0.12 0.20 0.06 0.01 0.003

MC (i) 0 (0.006) 0.01 (0.006) 0.07 (0.005) 0.13 (0.005) 0.04 (0.004) 0.01 (0.003) 1.38
(iii) 0 (0.002) 0.02 (0.002) 0.12 (0.001) 0.2 (0.001) 0.06 (0.001) 0.02 (0.001) 1.39

AE - MC (i) 0.00 0.01 0.00 0.00 0.00 -0.01
(iii) 0.00 -0.00 -0.00 0.00 -0.00 -0.00

Table 7: Comparison of accuracies and computational times of our approximation with those of
MC (1Y spread options)

AE shows the price with the partial 3rd order approximation formula. MC shows the price with Monte Carlo
simulation with a control variate method. Each (i), (iii) shows a model number. “AE - MC” rows show the
difference between the approximated prices and the prices calculated with Monte Carlo simulations. The value
in parenthesis is the 95% confidence interval. Time is the calculation time.

It is observed that the errors for the LSV model (i) are larger than those for the LSV jump
model (iii), which seems mainly because the levels of the (calibrated) initial volatilities in the
LSV model are larger than those in the LSV jump model. (See σ(0) in Table 3.)

We also note that since the correlations are estimated from the past one month historical
data of the underlying futures prices, the estimated prices in Table 7 are slightly different from
the CME settlement prices. In fact, we also estimate the correlations between the two underlying
futures prices through the calibration to the calendar spread options, which are reported in Table
8.

DEC15 and JAN16

Historical correlation 0.99992

Calibrated correlation (i) 0.99907
(iii) 0.99876

Diff (i) -0.00084
(iii) -0.00115

Table 8: Calibrated correlations and Historical correlations

Historical correlation shows the correlation calculated by the time series data. Calibrated correlation shows
the calibrated correlation from the spread option. Each (i), (iii) shows a model number. Diff rows show the
difference between the historical correlation and the calibrated correlation.

Moreover, Table 9 shows the approximate spread option prices with historically estimated
or calibrated correlations.
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-1.5(Put) -1.0(Put) -0.5(Put) 0(Call) 0.5(Call) 1(Call)

CME 0.03 0.09 0.22 0.28 0.14 0.05

AE (i) 0.00 0.02 0.08 0.13 0.04 0.01
Historical (iii) 0.00 0.02 0.12 0.20 0.06 0.01

AE (i) 0.03 0.09 0.21 0.29 0.13 0.06
Calibrated (iii) 0.03 0.09 0.22 0.29 0.13 0.05

AE - CME (i) -0.03 -0.07 -0.14 -0.15 -0.10 -0.04
Historical (iii) -0.03 -0.07 -0.10 -0.08 -0.08 -0.04

AE - CME (i) 0.00 -0.00 -0.01 0.01 -0.01 0.01
Calibrated (iii) 0.00 -0.00 0.00 0.01 -0.01 -0.00

Table 9: Comparison of spread option prices using calibrated correlation and historical correla-
tion with CME listed prices (1Y)

CME shows the settlement spread option price in CME. “AE Historical” shows the spread option price
with the partial 3rd order approximation formula using the historical correlation. “AE Calibrated” shows the
spread option price with the partial 3rd order approximation formula using the calibrated correlation. “AE -
CME Historical” shows the difference between the price of “AE Historical” and that of “CME.” “AE - CME
Calibrated” shows the difference between the price of “AE Calibrated” and that of “CME.” Each (i), (iii) shows
a model number in.

We can see the high sensitivity of the prices to the changes in the correlations. Thus, it
seems difficult to obtain the accurate correlation from the historical data in order for calibration
to the long term spread option prices.

On the other hand, the effect of the correlation on the average option prices seems very little,
which is observed in Table 10 below.

55(Put) 60(Put) 65(Put) 70(Put) 75(Call) 80(Call)

Price Historical Correlation (i) 2.24 3.56 5.40 7.83 4.14 2.71
(iii) 2.27 3.60 5.43 7.83 4.10 2.68

Calibrated Correlation (i) 2.24 3.56 5.40 7.83 4.14 2.71
(iii) 2.27 3.60 5.43 7.83 4.10 2.68

Diff Calibrated corr. (i) 0.000 0.000 0.000 0.000 0.000 0.000
- Historical corr. (iii) -0.001 -0.001 -0.001 -0.001 -0.001 -0.001

Table 10: Comparison of average option prices using calibrated correlation and historical corre-
lation with CME listed prices (1Y)

“Historical Correlation” shows the average option price with the partial 3rd order approximation formula
using the historical correlation. “Calibrated Correlation” shows the average option price with the partial 3rd
order approximation formula using the calibrated correlation. Diff shows the difference between the result of
“Historical Correlation” and that of “Calibrated Correlation”. Each (i), (iii) shows a model number.

5.3 Practical Relevance

This subsection briefly explains the practical relevance of the numerical examples in this section.
Firstly, it is important in practice that all derivatives are evaluated with the same model and

parameters to hedge these derivatives consistently. If the model or parameters are different in
each product, an arbitrage among these products may exist, and combining these options may
make manipulated P/Ls. Thus, LSV models are frequently used in practice (see e.g. pp.162-163
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in [11], Section 2 in [22], and p.3 in [28]) because only LV, SV or simple affine models have some
difficulties in fitting to both market plain-vanilla and exotic option prices simultaneously.

Hence, we have provided an approximation formula for pricing the futures, average and
spread options, which are very popular and traded mainly in oil derivatives markets, and con-
firmed its validity by comparing approximate prices with the listed option prices in CME. More-
over, we have shown that LSV models with jumps are more suitable for calibrating market option
prices than LSV models without jumps. We note that the model needs to be chosen carefully
because some models do not fit the multiple markets in the same parameters (e.g. constant
jumps models did not fit in our examples).

Next, we note that if we could obtain all option prices from the listed derivatives market,
it would be easy to evaluate P/Ls of traders’ positions by using the listed prices as the present
values of derivatives. However, because average options are mainly traded on OTC markets, and
the strikes and maturities of average options traded as the listed option are very limited, it is so
hard to obtain individual average option prices without a common option pricing model among
all contracts. The numerical examples above demonstrated that our method is very effective for
this purpose.

Finally, for estimating these OTC option premiums consistently with listed option prices,
the results in the numerical examples indicate an appropriate calibration and pricing procedure
in practice, which is summarized as follows:

1. calibrate model parameters for the underlying asset prices and their volatilities to the
listed futures options prices.

2. calibrate the correlation parameters between two futures prices (and their volatilities) to
the market spread option prices.

3. pricing the average and the spread options in OTC contracts for the counterparties and
customers.

Here, we remark that since the sensitivity of spread options on the correlation between two
futures prices is larger than that in the average option, as observed in the numerical examples,
spread options need to be used for calibration before pricing average options.

Accordingly, one can manage positions of average options with relevant futures and spread
options in a unified and consistent manner based on a common underlying model with our
method.

6 Conclusion

We have shown a new approximation formula for pricing average and spread options in local-
stochastic volatility with jumps models, and have provided a justification of our approximation
method with some asymptotic error estimates for general payoff functions. Especially, our model
admits local volatility functions and jumps in both the underlying asset price and its volatility
processes. Thanks to the closed-form formula, the computational speed of the method is very
fast, which makes sensitivity analyses and calibration procedures much more efficient than the
other numerical schemes.
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Moreover, in numerical experiments, we firstly calibrate the model to the WTI futures options
by applying our approximation formula to pricing the plain-vanilla option prices. Then, valua-
tion of average and spread options on the WTI futures based on the parameters and comparing
those with the CME settlement prices have demonstrated the effectiveness of our approximation
scheme.

Further, we have obtained the implied correlations embedded in the spread options and
found the importance of the jump component in the futures price processes for duplicating
consistently and precisely listed futures option, calendar spread option and average option prices
with common parameters.
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tives Research, 17(1):79–111, 2014.

[44] Yoshida, N. Conditional expansions and their applications. Stochastic Processes and their
Applications, 107:53–81, 2003.

[45] Zeng, P., and Kwok, Y.K. Pricing bounds and approximation for discrete arithmetic asian
options under time-changed lévy processes. Quantitative Finance, 16(9):1375–1391, 2016.

A Propositions used in Section 3

This appendix shows two propositions with the same notations as in Section 3, that are used for
the proof of Theorem 3.2. Firstly, we introduce a version of Theorem 2 in Yoshida [44], which
is simplified to fit our purpose. The notations are the same as those in Section 3.

Proposition A.1. Suppose that the d-dimensional sequence (Fϵ)ϵ∈(0,1] has a smooth asymptotic
expansion:

Fϵ ∼ f0 + ϵf1 + ϵ2f2 + · · · , (ϵ ↓ 0). (81)

Suppose also that for every p > 1,

lim sup
ϵ↓0

E[∆−p
Fϵ

] < ∞, (82)

where ∆Fϵ := det σFϵ and σFϵ denotes the Malliavin covariance of Fϵ. Then, for every g ∈
S ′
(RD), g(Fϵ) has an asymptotic expansion:

E[g(Fϵ)] ∼ E[Φ0] + ϵE[Φ1] + ϵ2E[Φ2] + · · · , (83)

where Φi are determined by the formal Taylor expansion of g(Fϵ) around f0. In particular,

Φ0 = g(F0), (84)

Φ1 =
D∑

a=1

∂ag(F0)f
(a)
1 . (85)

where f
(a)
i is the a-th element of fi.

We remark that Fϵ has a smooth asymptotic expansion in a sense that for every p > 1 and
n ∈ Z+, Fϵ −

∑n
i=0 ϵ

ifi = O(ϵn+1), that is,

lim sup
ϵ↓0

∥∥Fϵ −
∑n

i=0 ϵ
ifi
∥∥
Lp

ϵ(n+1)
< ∞.

Moreover, in order to evaluate the coefficients in the expansion, E[Φi] (E[fi,T ] in our case),
we apply the next proposition, a specific version of Proposition 3 in [44] to fit our setup.
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Proposition A.2. Suppose that F is smooth in a Malliavin sense, and

E
[
∆−p

F

]
< ∞, ∀p > 1. (86)

Then, F has a smooth density pF . Moreover, for g ∈ F↑(R
D) and a smooth G in a Malliavin

sense, where F↑(R
D) being the set of measurable functions on RD of at most polynomial growth,

E[∂ng(F )G] =

∫
RD

g(z)(−∂)n{E[G|F = z]pF (z)}dz (n ∈ ZD
+). (87)

We note that in our situation, smooth F and G in a Malliavin sense mean that F and G are
Malliavin-differentiable in the Wiener direction up to any orders and the derivatives have finite
Lp-moments for every p > 1.

B Proofs of Theorem 3.2 and Corollary 3.3

This appendix gives proofs of Theorem 3.2 and Corollary 3.3, where notations are the same as
those in Section 3.

Proof of Theorem 3.2. Since Condition (A) is satisfied, U
(ϵ)
T has a smooth asymptotic expansion

by Proposition C.4. By this result with Condition (B) and (C), the conditions in Proposition
A.1 are satisfied. Moreover, in an application of Proposition A.1, the validity of the expansion
is proved through an integration-by-parts(IBP) formula to have an expansion for the product
of the so called Malliavin weight (e.g. Takahashi - Yamada [40], [41]) with smooth asymptotic

expansion and a composite functional of a smooth function with U
(ϵ)
T . (Please see the proof for

Theorem 3 in [44] for the details.) Then, with an application of Proposition C.4 in Appendix C

to the current setup, E[f(U
(ϵ)
T )] has an expansion:

E[f(U
(ϵ)
T )] = E

[
f0,T + ϵf1,T + ϵ2f2,T + · · ·+ ϵMfM,T

]
+O(ϵM+1C(T )). (88)

In addition, Condition (C) ensures that E[fn,T ] has the following expression by Proposition
A.2:

E[fn,T ] = E

[
∂n

∂ϵn
f(U

(ϵ)
T )

∣∣∣
ϵ=0

]

=

(n)∑
n(r)

∫
R
f(x)(−∂)r

(
E
[
U

(n1)
T · · ·U (nr)

T |U (0)
T = x

]
pU

(0)
T (x)

)
dx. (89)

Proof of Corollary 3.2. The probability of {Nl = kl} is expressed as p{kl} =
∏n

l=1
(ΛlT )kle−ΛlT

kl!
,

which is the product of the kl times of the jump probabilities of Nl,T (l = 1, · · · , n), that is∏n
l=1 P ({Nl,T = kl}), thanks to the independence of Nl,T (l = 1, · · · , n). Thus, E[f(Û

(ϵ)
T )] is

expressed as

E[f(Û
(ϵ)
T )] =

∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}E[f(Û
(ϵ)
T )|{Nl,T = kl}]

35



=

∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}

(
n∏

l=1

kl!

T kl

)
⃗∫ T

0
E[f(Û

(ϵ)
T )|{Nl,T = kl}, {τl = t⃗l}]d⃗t.

(90)

Here, we have used that the joint density of (τl,1, · · · , τl,kl) conditioned on Nl,T = kl is given by

g(tl,1, · · · , tl,kl |Nl,T = kl) = kl!
Tkl

(0 < tl,1 < · · · < tl,kl ≤ T ), and hence the joint density ĝ of
(τ1,1, · · · , τn,kn) conditioned on {Nl,T = kl} is provided as:

ĝ(t1,1, · · · , tn,kn |{Nl,T = kl}) =
n∏

l=1

kl!

T kl
. (91)

Moreover, because of Condition (A) and (B), the same argument as in Theorem 3.2 derive next
expressions:

E[f(Û
(ϵ)
T )|{Nl,T = kl}, {τl = t⃗l}]

= E
[
f̃0,T,{kl} + ϵf̃1,T,{kl} + ϵ2f̃2,T,{kl} + · · ·+ ϵM f̃M,T,{kl}}

]
+O(ϵM+1C(T )), (92)

E[f̃0,T{kl}] =

∫
R
f(x)p

Û
(0)

{τl=t⃗l},T (x)dx, (93)

E[f̃n,T{kl}] =

(n)∑
n(r),α(r)

∫
R
f(x)(−∂α(r))n

×
(
E
[
Xα1,(n1)
T · · · Xαr,(nr)

T |Û (0)

{τl=t⃗l},T
= x, {Nl,T = kl}, {τl = t⃗l}

]
p

Û
(0)

{τl=t⃗l},T (x)
)
dx,

(94)

where p
Û

(0)

{τl=t⃗l},T is a density function of Û
(0)

{τl=t⃗l},T
, and Û

(0)

{τl=t⃗l},T
stands for Û

(0)
T conditioned

on jumps at {τl = t⃗l} with {Nl,T = kl}.
Finally, we obtain the lemma by putting E[fn,T ] as

E[fn,T ] =
∞∑
k=0

∑
∑n

l=1 kl=k

p{kl}

(
n∏

l=1

kl!

T kl

)
⃗∫ T

0
E[f̃n,T,{kl}]d⃗t. (95)

C Error Estimates of Asymptotic Expansions

This appendix discusses error estimates of our asymptotic expansions, which are obtained from
moment estimates for some graded stochastic differential equations(SDEs). In fact, an asymp-
totic expansion of an SDE creates a new system of SDEs, whose coefficients are not globally
Lipschitz, but have a ”Lipschitz lower triangular structure” (p.45 in Bichteler et al.[4]).
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First, we consider a I-dimensional stochastic differential equation of the form: for t ∈ [0, T ],

Y ϵ
t = ŷt +

∫ t

0
A(s, Y ϵ

s−)ds+ ϵ
K∑
j=1

∫ t

0
Bj(s, Y

ϵ
s−)dW

j
s +

k∑
l=1

∫ t

0

∫
El

Γl(ϵ, s, z, Y
ϵ
s−)Ñl(ds, dz),

(96)

where ϵ ∈ (0, 1], ŷt is RI -valued càdlàg process, and A : [0, T ] × RI × Ω → RI , Bj : [0, T ] ×
RI ×Ω → RI , Γl : (0, 1]× [0, T ]×El ×RI ×Ω → RI are predictable processes, and W is a K-
dimensional Brownian motion. Each Nl(dt, dz) is a Poisson random measure on [0, T ]×El, where
(El,El) is a measurable space with El ⊂Rel , el ∈ N, and the intensity measure of Nl is dt×νl(z),
where νl(z) is a positive σ-finite measure on (El,El). Then, Ñl(dt, dz) := Nl(dt, dz)− dt× νl(z)
is a compensated Poisson random measure. Also, a norm |||ZT |||p is defined as

|||ZT |||p =

(∫ T

0
E[|Zt|p]dt

) 1
p

.

Then, let us provide the following definition for graded SDEs from Definition 5-5 [4].

Definition C.1. A grading of RI is a decomposition RI = RI1×· · ·×RIq with I = I1+ · · ·+Iq.
The coordinates of a point in RI are always arranged in an increasing order along the subspace
RIi, and set M0 = 0 and Mm = I1 + · · · + Im for 1 ≤ m ≤ q. The coefficients A, B and
Γ are graded according to the grading, that is, RI = RI1 × · · · × RIq if Ai(t, y), Bj,i(t, y),
j = 1, · · · ,K and Γl,i(ϵ, t, z, y), which are i-th element of A, Bj and Γl, depend upon only
through the coordinates (yk)1≤k≤Mm when Mm−1 < i ≤ Mm.

We note that when we define Πm as an orthogonal projection on RI1 × · · · × RIm , graded
coefficients mean that

ΠmA(t, y) = ΠmA(t,Πmy),

ΠmBj(t, y) = ΠmBj(t,Πmy),

ΠmΓl(ϵ, t, z, y) = ΠmΓl(ϵ, t, z,Πmy).

Moreover, we put the next assumptions for the coefficients in the SDE. (Hereafter, in order
to avoid the notational complexity we may omit ϵ from the notation, and may use the notation,
|X|∗T defined by |X|∗T := sup0≤t≤T |Xt|.)

Assumption C.2. the coefficients are graded according to RI = RI1 × · · · × RIq in a sense
of Definition above. Moreover, let F (t, z, y) = A(t, y), or Bj(t, y) (j-th column of the ma-

trix B(t, y), j = 1, · · · ,K), or Γl(ϵ,t,z,y)
ηl(ϵ,z)

with ηl(ϵ, z) ∈ ∩2≤p<∞Lp(El, νl). We assume F is

differentiable in y on RI , and

1. |Fi(t, z, 0)| ≤ Zt for i = 1, · · · , I,

2. | ∂
∂yj

Fi(t, z, y)| ≤ ζ if Mm−1 < i, j ≤ Mm for some m ≤ q,

i.e. | ∂
∂yj

Fi(t, z, y)| ≤ ζ for Fi ∈ QmF and yj ∈ Qmy with Qm := Πm −Πm−1,
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3. | ∂
∂yFi(t, z, y)| ≤ Ẑt(1 + |y|θ) for all i,

where Fi is the i-th element in F , ζ, θ ≥ 0, and Z, Ẑ are R-valued predictable processes such
that |||ZT |||p, |||ẐT |||p are finite for ∀p ∈ [0,∞).

Then, the existence of the unique solution and its Lp integrability for ∀p > 1 to the SDE
(96) are proved in a similar way of Theorem 5-10 in [4]. Thus, we concentrate to show (103)
below with specifying the associated constant terms explicitly.

Firstly, by applying Burkholder-Davis-Gundy inequalities (e.g. for the Brownian integral,
Lemma 11 in p.79 of Lipster - Shiryayev [27] and for the compensated Poisson integral, Lemma
7 in p.77 with Corollary 1 in p.76 of [27]), a slight modification of Lemma 5.1 in [23] and
Hölder’s inequalities, we can show the following useful lemma, which is applied to obtain the
error estimate of our asymptotic expansion method.

Lemma C.3. For p ≥ 2, we assume the above conditions 1, 2 and 3. Then,

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
A(s, Y ϵ

s−)ds

∣∣∣∣p
]
≤ cA(p)

∫ T

0
E
[
|A(s, Y ϵ

s−)|p
]
ds, (97)

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0
Bj(s, Y

ϵ
s−)dW

j
s

∣∣∣∣p
]
≤ cB(p)

∫ T

0
E
[
|Bj(s, Y

ϵ
s−)|p

]
ds, (98)

E

[
sup

0≤t≤T

∣∣∣∣∫ t

0

∫
El

Γl(ϵ, s, z, Y
ϵ
s−)Ñl(ds, dz)

∣∣∣∣p
]
≤ cΓl

(p)

∫ T

0
E

[∣∣∣∣Γl(ϵ, s, z, Y
ϵ
s−)

ηl(ϵ, z)

∣∣∣∣p] ds,
(99)

where

cA(p) = T p−1, (100)

cB(p) =

(
pp+1

2(p− 1)p−1

) p
2

T
p
2
−1, (101)

cΓl
(p) = 22p−1(1 + pp)

(
2

p2

4

(∫
El

|ηl(ϵ, z)|2νl(dz)
) p

2

+ 2
p
2

∫
El

|ηl(ϵ, z)|pνl(dz)

)
. (102)

Then, under Assumption C.2, we apply this lemma and a Gronwall’s inequality with an
induction argument for the grading, m = 1, · · · , q by defining Π0y = 0 to show the next propo-
sition.

Proposition C.4. Under Assumption C.2 with |ŷ|∗T ∈ ∩p<∞Lp, (96) has a unique solution Y ϵ,
and for every p ≥ 1, there exist a constant ιp and an increasing function of T , cp(T ) such that∥∥ |Y ϵ|∗T

∥∥
Lp≤ cp(T )(

∥∥ |ŷ|∗T
∥∥
Lιp +|||ZT |||ιp). (103)

Here, we set cp(T ) as

cp(T ) = δ
1
p
p exp(ζpIpδpT/p),
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where I is the dimension of Y and

δp = 4p−1max

{
1,

(
cA(p) +K

p
2 cB(p) + k

p
2
−1

k∑
l=1

cΓl
(p)

)
2p−1

}
, (104)

with cA(p), cB(p) cΓl
(p) given by 100), (101) and (102), respectively.

In particular, for p = 2(L2-norm) since it is not necessary to use Burkholder-Davis-Gundy
inequalities, those are simplified as follows:

c2(T ) =
√

δ2 exp(ζ
2I2δ2T/2),

δ2 = 4max

{
1,

(
cA(2) + cB(2)K +

k∑
l=1

cΓl
(2)

)
2

}
(105)

= 8

(
T +K +

k∑
l=1

∫
El

ηl(ϵ, z)
2νl(dz)

)
, (K ≥ 1, k ≥ 1),

cA(2) = T, cB(2) = 1, cΓl
(2) =

∫
El

ηl(ϵ, z)
2νl(dz).

Next, let us proceed to a general scheme for error estimates for asymptotic expansions.
Firstly, since Πm−1A(t,Πm−1y) = Πm−1A(t,Πmy) and hence (with Qm = Πm −Πm−1),

QmA(t, y) = ΠmA(t,Πmy)−Πm−1A(t,Πm−1y) = QmA(t,Πmy),

similarly for Bj and Γl, the SDE corresponding to the m-th grade is expressed as follows:

QmY ϵ
t = Qmŷt +

∫ t

0
Ām(s,QmY ϵ

s−)ds+ ϵ
K∑
j=1

∫ t

0
B̄m

j (s,QmY ϵ
s−)dW

j
s

+

k∑
l=1

∫ t

0

∫
El

Γ̄m
l (ϵ, s, z,QmY ϵ

s−)Ñl(ds, dz),

where Ām(t, x) := QmA(t, x+Πm−1Yt), B̄
m
j (t, x) := QmBj(t, x+Πm−1Yt) and Γ̄m

l (ϵ, t, z, x) :=
QmΓl(ϵ, t, z, x+Πm−1Yt).

Then, we slightly elaborate Assumption C.2 as the one for the coefficients in each graded
SDE as follows:
Assumption C.2.’

1. |Fm
i (t, z, 0)| ≤ Zm,t,

2.

∣∣∣∣ ∂

∂yj
Fm
i (t, z, y)

∣∣∣∣ ≤ ζm, yj ∈ Qmy,

3.

∣∣∣∣ ∂∂yFm
i (t, z,Πmy)

∣∣∣∣ ≤ Ẑm,t

(
1 + |Πmy|θm

)
,

where ζm, θm ≥ 0, and Zm, Ẑm areR-valued predictable processes such that |||Zm,T |||p, |||Ẑm,T |||p
are finite for ∀p ∈ [0,∞). Here, we use a similar notation as before: Fm(t, z, y) = QmA(t, y),

QmBj(t, y) or
QmΓl(ϵ,t,z,y)

ηl(ϵ,z)
, and Fm

i denotes the i-th element in Fm.
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Next, because Ām(t, 0) = QmA(t,Πm−1Yt), B̄
m
j (t, 0) = QmBj(t,Πm−1Yt) and Γ̄m

l (ϵ, t, z, 0) =
QmΓl(ϵ, t, z,Πm−1Yt), we have∣∣F̄m

i (ϵ, t, z, 0)
∣∣ ≤ |Fm

i (ϵ, t, z, 0)|+
∣∣∣∣ ∂∂yFm

i (ϵ, t, z,Πm−1y)

∣∣∣∣ |Πm−1y|

≤ Zm,t + Ẑm,t

(
1 + |Πm−1y|θm

)
|Πm−1y| .

Hence, by setting Q0Y = Π0Y ≡ 0 and applying above estimates with Hölder’s inequality,
the similar argument as in deriving Proposition C.4 gives the following recursive inequalities:

For m = 1,
∥∥ |Q1Y |∗T

∥∥
Lp=

∥∥ |Π1Y |∗T
∥∥
Lp≤ c1,p(T )

(∥∥ |Π1ŷ|∗T
∥∥
Lp +|||Z1,T |||p

)
,

For m ≥ 2,
∥∥ |ΠmY |∗T

∥∥
Lp≤

∥∥ |Πm−1Y |∗T
∥∥
Lp +

∥∥ |QmY |∗T
∥∥
Lp , (106)

with∥∥ |QmY |∗T
∥∥
Lp

≤ cm,p(T )

{(∥∥ |Qmŷ|∗T
∥∥
Lp +|||Zm,T |||p

)
+ |||Ẑm,T |||2p

(∥∥ |Πm−1Y |∗T
∥∥
L2p +

∥∥ |Πm−1Y |∗T
∥∥
L2p(θm+1)

)}
,

(107)

where for m = 1, · · · , q,

cm,p(T ) = δ
1
p
m,p exp(ζ

p
mIpmδm,pT/p),

with some δm,p, similarly given by (104) or (105).

Moreover, for the case of the graded SDE created by an asymptotic expansion of X
(ϵ)
T in

Section 2 (and g(X
(ϵ)
T ) in Section 3) with respect to ϵ, all the initial values for the SDEs regarding

∂kX
(ϵ)
T

∂ϵk
with k ≥ 1 are zero, and hence, |Qmŷ|∗T = 0 for all m except for the ones corresponding

to the original underlying SDEs for X
(ϵ)
T . Thus, for all m related to the expansion and its error

estimates (i.e. 1
k!

∂kX
(ϵ)
T

∂ϵk
, 1
k!

∂kg(X
(ϵ)
T )

∂ϵk
, k ≥ 1), we replace (107) by the following equation:∥∥ |QmY |∗T

∥∥
Lp (108)

≤ cm,p(T )
{
|||Zm,T |||p + |||Ẑm,T |||2p

(∥∥ |Πm−1Y |∗T
∥∥
L2p +

∥∥ |Πm−1Y |∗T
∥∥
L2p(θ+1)

)}
.

Consequently, the recursive inequalities (108) and (106) provide a general scheme to obtain
error estimates for asymptotic expansions. Further, given particular forms of the coefficients in
the graded SDEs (e.g.(7), (17)) arising from an asymptotic expansion and the assumptions (e.g.
Condition (A), a smooth function g with all derivatives of polynomial growth orders) for the

original SDE for X
(ϵ)
t (and g(X

(ϵ)
t )), we are able to express those inequalities more explicitly.

(Please see an example below for the detail.)
Finally, in order to obtain a more explicit form of an error estimate for an asymptotic ex-

pansion, which depends on the functional properties of the associated graded SDEs’ coefficients,
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such as their values at Y = 0 and the bounds with growth rates of their derivatives, let us
consider the following one-dimensional local volatility model as an example:

S
(ϵ)
t = s0 +

∫ t

0
ϵΦ
(
S(ϵ)
s

)
dWs +

∫
R
Ψ
(
S(ϵ)
s

)
(eϵz − 1) Ñ(ds, dz), (109)

with ϵ ∈ (0, 1). (Here, we start with a perturbed SDE corresponding to (3) in the general case.)
Let us rewrite the equation by introducing a new perturbation parameter ϵ1 > ϵ with α :=

ϵ
ϵ1

∈ (0, 1), and expand the equation around ϵ1 = 0:

S
(ϵ1)
t = s0 +

∫ t

0
ϵ1αΦ

(
S(ϵ1)
s

)
dWs +

∫
R
αΨ

(
S(ϵ1)
s

) eϵ1αz − 1

α
Ñ(ds, dz). (110)

Here, we suppose that Φ(t, x), Ψ(t,x)(eϵ1z−1)
αη(ϵ1,α,z)

∈ C∞
b (x) with η(ϵ1, α, z) = max

{∣∣ eϵ1αz−1
α

∣∣ , |eϵ1αzz| , ∣∣eϵ1αzz2∣∣}.
In this example, we use an abbreviated notation, η(ϵ1, α, z) ≡ η1(ϵ1, α, z).

Let us remark that this transformation includes the one in numerical examples as in Section
5, where we frequently put ϵ1 = 1 for (ϵ1)

k in expansions, that is,

S
(ϵ1)
T ∼ S

(0)
T + ϵ1S

(1)
T +

ϵ21
2!
S
(2)
T + · · · = S

(0)
T + S

(1)
T +

1

2!
S
(2)
T + · · · , (111)

with S
(k)
T =

∂kS
(ϵ1)
T

∂ϵk1

∣∣∣∣
ϵ1=0

.

As an example, in order to evaluate the error of the first order expansion of S
(ϵ)
T , we set

Yt = (Y1,t, Y2,t, Y3,t), where Y satisfy the following graded SDE:

Y1,t = S
(ϵ1)
t

= s0 +

∫ t

0
ϵ1αΦ(Y1,s) dWs +

∫ t

0

∫
R
αΨ(Y1,s)

eϵ1αz − 1

α
Ñ(ds, dz),

Y2,t =
∂

∂ϵ1
S
(ϵ1)
t

=

∫ t

0
αΦ(Y1,s) dWs + ϵ1α

∫ t

0
Φ′ (Y1,s)Y2,sdWs

+

∫ t

0

∫
R
αΨ(Y1,s) e

ϵ1αzzÑ(ds, dz) +

∫ t

0

∫
R
αΨ′ (Y1,s)Y2,s

eϵ1αz − 1

α
Ñ(ds, dz),

Y3,t =
∂2

∂ϵ21
S
(ϵ1)
t

= 2

∫ t

0
αΦ′ (Y1,s)Y2,sdWs + ϵ1α

∫ t

0
Φ′′ (Y1,s) (Y2,s)

2 dWs

+ϵ1α

∫ t

0
Φ′ (Y1,s)Y3,sdWs +

∫ t

0

∫
R
α2Ψ(Y1,s) e

ϵ1αzz2Ñ(ds, dz)

+2

∫ t

0

∫
R
αΨ′ (Y1,s)Y2,se

ϵ1αzzÑ(ds, dz) +

∫ t

0

∫
R
αΨ′′ (Y1,s) (Y2,s)

2 e
ϵ1αz − 1

α
Ñ(ds, dz)

+

∫ t

0

∫
R
αΨ′ (Y1,s)Y3,s

eϵ1αz − 1

α
Ñ(ds, dz).
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We need to evaluate
ϵ21
2

∥∥ |Y3|∗T
∥∥
Lp as an error estimate for the first order asymptotic expansion.

First, let us note that I = 3, Ii = 1, i = 1, 2, 3 and K = k = 1. In addition, ŷ = (s0, 0, 0)
′

and

Q1Y = Π1Yt = Y1,t,

Q2Y = (Π2 −Π1)Yt = Y2,t,

Q3Y = (Π3 −Π2)Yt = Y3,t.

Then as the error estimate, we obtain
ϵ21
2

∥∥ |Y3|∗T
∥∥
Lp by using the lower order estimates,

recursively as follows.
Firstly,

∥∥ |Y1|∗T
∥∥
Lp is given by∥∥ |Y1|∗T

∥∥
Lp≤ c1,p(T ) [|s0|+ |||Z1,T |||p] = c1,p(T )

[
|s0|+ T

1
pZ1

]
, (112)

where

c1,p(T ) = δ
1
p

1,p exp

(
δ1,pζ

p
1T

p

)
, δ1,p = 3p−1max{1, [cB(p) + cΓ(p)]2

p−1},

ζ1 = αmax{ϵ1ζ1,Φ, ζ1,Ψ}, ζ1,Φ = sup
y1

|Φ′(y1)|, ζ1,Ψ = sup
y1

|Ψ′(y1)|,

Z1,t = Z1 = αmax{ϵ1|Φ(0)|, |Ψ(0)|}, |||Z1,T |||p = T
1
pZ1.

Then,
∥∥ |Y2|∗T

∥∥
Lp is shown as∥∥ |Y2|∗T

∥∥
Lp ≤ c2,p(T )2

1− 1
p

[
|||Z2,T |||p + αT

1
p ζ̂1

∥∥ |Y1|∗T
∥∥
Lp

]
= αc2,p(T )2

1− 1
pT

1
p

[
max{|Φ(0)|, |Ψ(0)|}+ ζ̂1

∥∥ |Y1|∗T
∥∥
Lp

]
, (113)

where

c2,p(T ) = δ
1
p

2,p exp

(
δ2,pζ

p
2T

p

)
, δ2,p = 4p−1 {cB(p) + cΓ(p)} , ζ̂1 = max{ζ1,Φ, ζ1,Ψ},

ζ2 = αmax{ϵ1ζ2,Φ, ζ2,Ψ}, ζ2,Φ = sup
y1

|Φ′′(y1)|, ζ2,Ψ = sup
y1

|Ψ′′(y1)|,

Z2,t = Z2 = αmax{|Φ(0)|, |Ψ(0)|}, |||Z2,T |||p = T
1
pZ2.

Finally, we obtain an error estimate for the first order expansion (e.g. with ϵ1 = 1, i.e. α = ϵ)
as:

ϵ21
2

∥∥ |Y3|∗T
∥∥
Lp ≤ ϵ21c3,p(T )

[
αζ̂1T

1
p
∥∥ |Y2|∗T

∥∥
Lp +

α

2
ζ̂2T

1
p
∥∥ |Y2|∗T

∥∥2
Lp

+
1

2

(
8p−1cΓ(p)

δ̂3,p

) 1
p

|||Z3,T |||p +
α2

2

(
8p−1cΓ(p)

δ̂3,p

) 1
p

ζ1,ΨT
1
p
∥∥ |Y1|∗T

∥∥
Lp


= αϵ21c3,p(T )T

1
p

α
2

(
8p−1cΓ(p)

δ̂3,p

) 1
p (

|Ψ(0)|+ ζ1,Ψ
∥∥ |Y1|∗T

∥∥
Lp

)
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+ζ̂1
∥∥ |Y2|∗T

∥∥
Lp +

1

2
ζ̂2
∥∥ |Y2|∗T

∥∥2
Lp

]
, (114)

where

c3,p(T ) = δ
1
p

3,p exp

(
δ3,pζ

p
3T

p

)
, δ3,p = 2p−1δ̂3,p, δ̂3,p =

{
3p−1cB(p) + 4p−1cΓ(p)

}
,

ζ̂2 = max{ζ2,Φ, ζ2,Ψ}, ζ3 = αmax{ϵ1ζ3,Φ, ζ3,Ψ}, ζ3,Φ = sup
y1

|Φ′′(y1)|, ζ3,Ψ = sup
y1

|Ψ′′(y1)|,

Z3,t = Z3 = α2|Ψ(0)|, |||Z3,T |||p = T
1
pZ3.

Here, let us recall cB(p) and cΓ(p) from (101) and (102) as follows:

cB(p) =

(
pp+1

2(p− 1)p−1

) p
2

T
p
2
−1,

cΓ(p) = 22p−1(1 + pp)

(
2

p2

4

(∫
E
|η(ϵ1, α, z)|2ν(dz)

) p
2

+ 2
p
2

∫
E
|η(ϵ1, α, z)|pν(dz)

)
.

Particularly, since it’s not necessary to use Burkholder-Davis-Gundy inequalities for p = 2(L2-
norm), those are simplified as cB(2) = 1 and cΓ(2) =

∫
E η(ϵ1, α, z)

2ν(dz).

We also note that because supu∈[0,1]
∥∥ ∂2

∂ϵ21
S
(ϵ1u)
T

∥∥=∥∥ ∂2

∂ϵ21
S
(ϵ1)
T

∥∥, in this example, the bound

of
ϵ21
2

∥∥ |Y3|∗T
∥∥
Lp derived above is an error estimate for the first order expansion.

Remark C.5. Error estimates of higher order expansions are obtained in a similar manner
based on a recursive scheme (108) with (106), though explicit expressions are more involved.
Also, the observations made below hold for higher order expansions, and are consistent with the
results for numerical examples in Section 5, shown in Table 6 and Figures from 3 to 10.

In terms of the orders of α ∈ (0, 1), that is O(αk), k = 0, 1, 2 (except η(ϵ1, α, z) in cΓ(p)
which is common in each expansion), we observe that

∥∥ |Y1|∗T
∥∥
Lp= O(1),

∥∥ |Y2|∗T
∥∥
Lp= O(α)

and
ϵ21
2

∥∥ |Y3|∗T
∥∥
Lp= O(α2). Hence, as α is smaller, the error becomes smaller in the first order

expansion.( η(ϵ1, α, z) also becomes smaller as α goes smaller.) This is true of the higher order
expansions, because the error of the k-th order asymptotic expansion is O(αk+1). This means
that as long as the diffusion and jump coefficients in the original SDE (109) is smaller, the
higher order expansions become more effective.

This example also shows a validity of an expansion with ϵ1 = 1 as in (111) after appropriate
transformation (scaling) as in (110). In fact, since α = ϵ ∈ (0, 1) when ϵ1 = 1, the error order
of k-th order expansion is O(ϵk+1) such as 1

2

∥∥ |Y3|∗T
∥∥
Lp= O(ϵ2) for the first order expansion.

Moreover, the error depends on time-to-maturity T , and the functional properties of the
associated graded SDEs’ coefficients, such as |Φ(0)|, |Ψ(0)|, the bounds with growth rates of the
derivatives |Φ′|, |Ψ′|, |Φ′′ |, |Ψ′′ |, and jump size(reflected in η(ϵ1, α, z)) and intensity. In fact,
we observe in this example that as those are smaller, the error becomes smaller and vice versa.

That is, for the error of the k-th order expansion, in addition to the effect of αk+1(= ϵk+1),
the point ϵ1 = 1 is indeed not “far away” from ϵ1 = 0, if the function evolves in a mild way
from ϵ1 = 0 to ϵ1 = 1. (e.g. in our example, if |Φ(0)|, |Ψ(0)|, the bounds with growth rates of
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the derivatives such as |Φ′|, |Ψ′|, |Φ′′ |, |Ψ′′ | (|Φ′′′ |, |Ψ′′′ | etc. in higher order expansions) and
jump intensity and size are small enough.) That is, if the function is good enough, practical
applications do not require the point, at which the function is evaluated, to be restricted to the
neighborhood (of ϵ1 = 0). ∗

Remark C.6. The error estimates for an asymptotic expansion of the underlying asset price
g(S) depend on the functional properties of g such as the growth rates of the function g and
its derivatives. Particularly, in the case of an average option, the error is given by a weighted
average of the error of each asset price consisting of the average price.

When a derivatives payoff function f on g(S) is not smooth, (e.g. in a plain-vanilla case, the
payoff is a continuous function with only one non-smooth point at the strike), it is approximated
by a smooth function as close as possible, by use of an integration-by-parts(IBP) formula if
necessary as in Theorem 3.2. In fact, for pricing a plain-vanilla option, we do not need an
IBP formula. (Please see Section 2 with Theorem 2 in [35] for the detail.) Thus, the similar
discussion as above is true of error estimates for an asymptotic expansion of the derivatives
price.

D Effect of the Third-order Expansion for Jump Components

In this appendix, we compare the accuracy of the full third-order expansion with that of the
partial third-order expansion introduced in Section 4. In particular, we take the target payoff

as a quadratic function of the average payoff,
(
(A

(ϵ)
T −K)+

)2
with A

(ϵ)
T =

∫ T
0 S

(ϵ)
t dt, since it

enables us to calculate the full third-order approximation without dealing with a delta function,

which would arise from the second order differentiation of the average payoff (A
(ϵ)
T − K)+ in

expansion on ϵ as in (67). Hence, we are able to compute its value E

[(
(A

(ϵ)
T −K)+

)2]
based on

a simple Monte Carlo method with expansion of the payoff. While our analytical approximation
is applicable to delta functions and the calculation speed is considered fast enough, the full
third-order expansion needs a number of new conditional expectaition formulas. Also, we adopt
the following Merton jump-diffusion model as the underlying asset price process:

S
(ϵ)
T = s0 +

∫ T

0
ϵσS

(ϵ)
t−dWt +

NT∑
j=0

S
(ϵ)
t− (eϵYj − 1)−

∫ T

0
Λ(E[eϵY1 ]− 1)S

(ϵ)
t−dt, (115)

where Yj ∼ N(m,υ2).
Then, we use two parameters sets with ϵ = 1: In the “standard parameters” case, we set

s0 = 100, σ = 10%, Λ = 1, Yj ∼ N(−0.05, (0.1)2), which are similar to (iii) in Table 3. Here, in
order to adjust the effect of the quadraric payoff function, we put the volatiliy for the diffusion
and the standard deviation for the jump size as about a half values of the calibrated ones in
Section 5. In the “stressed parameters” case, we increase the standard deviation of the jump
size to 20%, that is, s0 = 100, σ = 10%, Λ = 1, Yj ∼ N(−0.05, (0.2)2). The numbers of time

∗We appreciate an anonymous referee for pointing out this observation.
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steps and trials in the Monte Carlo method are 100 and 100 million, respectively. The results
appear in the figure 11.

Figure 11: Errors of the partial 3rd and the full 3rd approximations
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X axis is strike price, and Y axis is the error between the partial third approximation and the true value or
the error between the full third approximation and the true one. (Standard) and (Stressed) stand for the results
of the standard parameters and the stressed parameters, respectively.

The figure shows the results of the standard and stressed parameters, respectively, where the

errors are calculated for the square-root of the values,

√
E

[(
(A

(ϵ)
T −K)+

)2]
, which makes those

comparable to the errors for the average options E
[
(A

(ϵ)
T −K)+

]
in Section 5. It is observed

that while the accuracies of the partial third-order and the full third-order approximations are
similar in the standard parameters case, the full third-order approximation improves the partial
one in the stressed parameters case.
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