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Abstract

A new bandwidth selection rule that uses different bandwidths for the local linear

regression estimators on the left and the right of the cut-off point is proposed for

the sharp regression discontinuity estimator of the mean program impact at the cut-

off point. The asymptotic mean squared error of the estimator using the proposed

bandwidth selection rule is shown to be smaller than other bandwidth selection rules

proposed in the literature. An extensive simulation study shows that the proposed

method’s performances for the samples sizes 500, 2000, and 5000 closely match the

theoretical predictions.
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1 Introduction

The regression discontinuity (RD) is a quasi-experimental design to evaluate causal effects

introduced by Thistlewaite and Campbell (1960) and developed by Hahn, Todd, and Van

der Klaauw (2001). A large number of empirical studies are carried out using the RD

design in various areas of economics. See Imbens and Lemieux (2008), Van der Klaauw

(2008), Lee and Lemieux (2010) and DiNardo and Lee (2011) for an overview and lists of

empirical researches.1

We consider the sharp RD design in which whether a value of the assignment variable

exceeds a known cut-off value or not determines the treatment status. A parameter of

interest is the average treatment effect at the cut-off point. The average treatment effect

is given by the difference between the two conditional mean functions at the cut-off point.

This implies that estimating the treatment effect amounts to estimating two functions at

the boundary point. One of the most frequently used estimation methods is the local linear

regression (LLR) because of its superior performance at the boundary. See Fan (1992, 1993)

and Porter (2003).

A particular nonparametric estimator is undefined unless the smoothing parameter

selection rule is specified, and it is well recognized that choosing an appropriate smoothing

parameter is a key implementation issue. In the RD setting, currently the most widely used

method is developed by Imbens and Kalyanaraman (2012) (hereafter IK). Other methods

are the cross-validation (Ludwig and Miller (2005, 2007) (hereafter LM)) and the plug-in

method (DesJardins and McCall (2008)). While the latter two approaches make use of

the bandwidth selection rules that are tailored to estimating the regression functions, IK

pays attention to the essential fact that the parameter of interest is the difference of two

conditional mean functions.2

In the context of RD design, using two bandwidths for estimating two functions

1The RD approach has been extended in various directions. For example, Card, Pei, and Weber (2012)
and Dong and Lewbel (forthcoming) examine how the RD estimate change when the discontinuity point
change in the neighborhood of the RD point and Frandsen, Frörich, and Melly (2012) considered the
quantile treatment effect in the context of the RD design.

2Calonico, Cattaneo, and Titiunik (2014) proposes robust confidence intervals for both sharp and fuzzy
RD designs and Marmer, Feir, and Lemieux (2014) provide inferential procedures for the fuzzy RD design
when identification is weak.
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is a natural approach. The curvatures of the conditional mean functions for treated and

untreated in the vicinity of the cut-off point may differ significantly. Figure 1 illustrates

the situation motivated by Ludwig and Miller (2007) where the cut-off value is depicted by

a dotted vertical line. The solid lines depict two conditional mean functions to estimate.

If we were to use a single bandwidth which is relatively large, it will incur a large bias to

estimate the conditional mean function on the right of the cut-off point. On the other hand,

using a single bandwidth which is relatively small will lead to a smaller bias on the right

while it will generate a large variance on the left of the cut-off point. What is important

is that a case like this is not an unrealistic artifact but arises naturally in many empirical

studies. For example, sharp contrasts in slopes are observed in Figures 1 and 2 in LM,

Figures 12 and 14 in DesJardins and McCall (2008), Figures 3 and 5 in Lee (2008) and

Figures 1 and 2 in Hinnerich and Pettersson-Lidbom (2014), among others.
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Figure 1: Conditional mean functions of outcomes based on Ludwig and Miller (2007).
The line on the left of the cut-off point, zero, depicts the conditional mean function of the
potential outcome for untreated conditional on the assignment variable. Similarly, the line
on the right of the cut-off point draws the corresponding function for treated.

A single bandwidth approach is familiar to empirical researchers in the applications

of matching methods (Abadie and Imbens (2011)) since the supports of covariates for
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treated and untreated individuals overlap and we wish to construct two comparable groups.

This reasoning does not apply to the RD estimator since values of the assignment variable

never overlap due to the structure of the RD design. Indeed, the observations to the left of

the cut-off point is used to approximate the left-limit point and the observations to the right

of the cut-off point is used to approximate the right-limit point so that there is no reason

the two bandwidths should be the same. Although IK recognizes the appropriateness of

choosing the bandwidths separately on both sides of the discontinuity point, they proceed

to choose the same bandwidth to estimate two functions on both sides of the discontinuity

point to avoid the technical difficulty of the cancelation of the first order bias terms in some

cases (Imbens and Kalyanaraman (2012, pp. 936–937)).3

The main contributions of this paper are to provide an approach to resolve the tech-

nical difficulty of choosing the two different bandwidths for the RD estimator, theoretically

show the proposed method dominates the IK method and other methods in terms of the

asymptotic mean squared error (AMSE), and show that the theoretical advange materialize

in empirically relevant sample sizes through an extensive simulation study. To the best of

our knowledge, this paper is the first to consider choosing two bandwidths simultaneously

in the RD context.4

The paper is organized as follows. We first discuss the technical difficulty of the

simultaneous selection of the bandwidths and describe how we define theoretically optimal

bandwidths in the RD context. We next show that the proposed method dominates cur-

rently available methods in the AMSE sense. We then propose a feasible version of the

bandwidth selection rule and show its asymptotic equivalence to the theoretically optimal

bandwidths. Finally we illustrate how the theoretical results realize in empirically relevant

sample sizes via simulation experiments and an empirical example. In the Appendix, we

include the proofs of the main theorems.5

3We will discuss this issue in detail in section 2.
4Mammen and Park (1997) consider the optimal selection of two bandwidths to estimate the ratio of

the first derivative of the density to the density itself. Since the optimal rates for the bandwidths for the
numerator and the denominator differ in their case, their results do not apply in the present context.

5Matlab and Stata codes to implement the proposed method are available as a part of the Supplementary
Materials (or at one of the authors’ webpage, http://www3.grips.ac.jp/~yarai/).

4



2 Bandwidth Selection of The Sharp Regression Dis-

continuity Estimators

For observation i we denote potential outcomes with and without treatment by Yi(1) and

Yi(0), respectively. Let Di be a binary variable (0 and 1) indicating the treatment status.

The observed outcome, Yi, can be written as Yi = DiYi(1)+(1−Di)Yi(0). In the sharp RD

setting we consider, the treatment status is determined solely by the assignment variable,

denoted by Xi: Di = I{Xi ≥ c} where c is a known cut-off point and I{A} takes value 1

if A holds and takes value 0 if A does not hold. Throughout the paper, we assume that

(Y1, X1), . . . , (Yn, Xn) are independent and identically distributed observations and Xi has

the Lebesgue density f .

Define m1(x) = E(Yi(1)|Xi = x) = E(Yi|Xi = x) for x ≥ c and m0(x) =

E(Yi(0)|Xi = x) = E(Yi|Xi = x) for x < c. Suppose that the limits limx→c+m1(x)

and limx→c−m0(x) exist where x → c+ and x → c− mean taking the limits from the

right and left, respectively. Denote limx→c+m1(x) and limx→c−m0(x) by m1(c) and m0(c),

respectively. Then the average treatment effect at the cut-off point is given by τ(c) =

m1(c)−m0(c) and τ(c) is the parameter of interest in the sharp RD design.

Estimation of τ(c) requires to estimate two functions, m1(c) and m0(c). The non-

parametric estimators that we consider are LLR estimators proposed by Stone (1977) and

investigated by Fan (1992). For estimating these limits, the LLR is particularly attractive

because it exhibits the automatic boundary adaptive property (Fan (1992, 1993), Hahn,

Todd, and Van der Klaauw (2001), and Porter (2003)). The LLR estimator for m1(c) is

given by α̂h1(c), where

(
α̂h1(c), β̂h1(c)

)
= arg min

α,β

n∑
i=1

{Yi − α− β(Xi − c)}2K
(
Xi − c
h1

)
I{Xi ≥ c},

where K(·) is a kernel function and h1 is a bandwidth. A standard choice of the kernel

function for the RD estimators is the triangular kernel given by K(u) = (1−|u|)I{|u| < 1}

because of its MSE and minimax optimality (Cheng, Fan, and Marron (1997)). The LLR

estimator for m0(c), α̂h0(c), can be obtained in the same manner. Denote α̂h1(c) and α̂h0(c)

5



by m̂1(c) and m̂0(c), respectively. Then τ(c) is estimated by m̂1(c)− m̂0(c).

2.1 The AMSE for The Regression Discontinuity Estimators

In this paper, we propose a simultaneous selection method for two distinct bandwidths, h1

and h0, based on an AMSE. This is also the standard approach in the literature.6

The conditional MSE of the RD estimators given the assignment variable, X, is

defined by

MSEn(h) = E
[{

[m̂1(c)− m̂0(c)]− [m1(c)−m0(c)]
}2∣∣∣X].

where X = (X1, X2, . . . , Xn)′.7 A standard approach is to obtain the AMSE, ignoring

higher-order terms, and to choose the bandwidths that minimize it. To do so, we proceed

under the following assumptions. (The integral sign
´

refers to an integral over the range

(−∞,∞) unless stated otherwise.)

ASSUMPTION 1 K(·) : R→ R is a symmetric second-order kernel function that is con-

tinuous with compact support; i.e., K satisfies the following:
´
K(u)du = 1,

´
uK(u)du =

0, and
´
u2K(u)du 6= 0.

ASSUMPTION 2 The positive sequence of bandwidths is such that hj → 0 and nhj →∞

as n→∞ for j = 0, 1.

Assumptions 1 and 2 are standard in the literature of regression function estimation.

Let D be an open set in R, k be a nonnegative integer, Ck be the family of k times

continuously differentiable functions on D and g(k)(·) be the kth derivative of g(·) ∈ Ck.

Let Gk(D) be the collection of functions g such that g ∈ Ck and

∣∣g(k)(x)− g(k)(y)
∣∣ ≤Mk |x− y|α , x, y, z ∈ D,

for some positive Mk and some α such that 0 < α ≤ 1.

6As IK emphasize, the bandwidth selection problem in the context of the RD setting is how to choose
local bandwidths rather than global bandwidths. Thus, bandwidth selection based on either the asymptotic
mean “integrated” squared errors or the cross-validation criterion can never be optimal.

7Throughout the paper, we use “h” without a subscript to denote a combination of h1 and h0; e.g.,
MSEn(h1, h0) is written as MSEn(h). We assume that X is such that this conditional MSE is well defined.
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Let σ2
1(x) and σ2

0(x) denote the conditional variance of Y1 and Y0 given Xi = x, re-

spectively and let σ2
1(c) = limx→c+ σ

2
1(x), σ2

0(c) = limx→c− σ
2
0(x), m

(2)
1 (c) = limx→c+m

(2)
1 (x),

m
(2)
0 (c) = limx→c−m

(2)
0 (x), m

(3)
1 (c) = limx→c+m

(3)
1 (x), m

(3)
0 (c) = limx→c−m

(3)
0 (x), µj,0 =´∞

0
ujK(u)du and νj,0 =

´∞
0
ujK2(u)du for nonnegative integer j.

ASSUMPTION 3 The Lebesgue density of Xi, denoted f , is an element of G1(D) where

D is an open neighborhood of c and is bounded above and strictly positive on D

ASSUMPTION 4 Let δ be some positive constant. The conditional mean function m1

and the conditional variance function σ2
1 are elements of G3(D1) and G0(D1), respectively,

where D1 is a one-sided open neighborhood of c, (c, c+ δ), and m1(c), m
(2)
1 (c), m

(3)
1 (c) and

σ2
1(c) exist and are bounded above and strictly positive. Analogous conditions hold for m0

and σ2
0 on D0, where D0 is a one-sided open neighborhood of c, (c− δ, c).

Under Assumptions 1, 2, 3 and 4, we can easily generalize the result obtained by

Fan and Gijbels (1992):8

MSEn(h) =

{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}
+ o

(
h41 + h21h

2
0 + h40 +

1

nh1
+

1

nh0

)
, (1)

where

b1 =
µ2
2,0 − µ1,0µ3,0

µ0,0µ2,0 − µ2
1,0

, and v =
µ2
2,0ν0,0 − 2µ1,0µ2,0ν1,0 + µ2

1,0ν2,0

(µ0,0µ2,0 − µ2
1,0)

2
.

This suggests that we choose the bandwidths to minimize the following AMSE:

AMSEn(h) =

{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}
. (2)

However, this procedure can fail. To see why, let h1, h0 ∈ H, where H = (0,∞), and

consider the case in which m
(2)
1 (c)m

(2)
0 (c) > 0. Now choose h0 = [m

(2)
1 (c)/m

(2)
0 (c)]1/2h1.

8The conditions on the first derivative of f and the third derivatives of m1 and m0, described in
Assumptions 3 and 4, are not necessary to obtain the result (1). They are stated for later use.
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Then, we have

AMSEn(h) =
v

nh1f(c)

σ2
1(c) + σ2

0(c)

[
m

(2)
0 (c)

m
(2)
1 (c)

]1/2 .

This implies that the bias component can be removed completely from the AMSE by

choosing a specific ratio of bandwidths and the AMSE can be made arbitrarily small by

choosing a sufficiently large h1.

One reason for this nonstandard behavior is that the AMSE given in (2) does not

account for higher-order terms. If we account for the higher-order terms for the bias

component, they should punish the act of choosing large values for bandwidths. In what

follows, we show that simply incorporating the second-order bias term into the AMSE does

not resolve the problem. After demonstrating this, we propose an alternative objective

function that defines the target bandwidths.

The next lemma presents the MSE with a second-order bias term by generalizing

the higher-order approximation of Fan, Gijbels, Hu, and Huang (1996).9

LEMMA 1 Suppose Assumptions 1–4 hold. Then, it follows that

MSEn(h) =

{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]
+
[
b2,1(c)h

3
1 − b2,0(c)h30

]
+ o

(
h31 + h30

)}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}
+ o

(
1

nh1
+

1

nh0

)
,

where, for j = 0, 1,

b2,j(c) = (−1)j+1

{
ξ1

[
m

(2)
j (c)

2

f (1)(c)

f(c)
+
m

(3)
j (c)

6

]
− ξ2

m
(2)
j (c)

2

f (1)(c)

f(c)

}

ξ1 =
µ2,0µ3,0 − µ1,0µ4,0

µ0,0µ2,0 − µ2
1,0

, and ξ2 =
(µ2

2,0 − µ1,0µ3,0) (µ0,0µ3,0 − µ1,0µ2,0)

(µ0,0µ2,0 − µ2
1,0)

2
.

Given the expression of Lemma 1, one might be tempted to proceed with an AMSE

9Fan, Gijbels, Hu, and Huang (1996) show the higher-order approximation of the MSE for interior
points of the support of X. Lemma 1 presents the analogous result for a boundary point. A proof of
Lemma 1 is provided in the Supplementary Material.
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including the second-order bias term:

AMSE2n ≡
{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]
+
[
b2,1(c)h

3
1 − b2,0(c)h30

]}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}
(3)

We show that the minimization problem is not well-defined when m
(2)
1 (c)m

(2)
0 (c) > 0. In

particular, we show that one can make the order of the bias term O(hk+3
1 ), for an arbitrary

nonnegative interger k, by choosing h20 = C(h1, k)h21 and C(h1, k) = C0 + C1h1 + C2h
2
1 +

C3h
3
1 + . . . + Ckh

k
1 for some constants C0, C1, . . ., Ck when the sign of the product of the

second derivatives is positive. Given that bandwidths are necessarily positive, we must

have C0 > 0, although we allow C1, C2, . . ., Ck to be negative. For sufficiently large n and

for any k, we always have C(h1, k) > 0 given C0 > 0 and we assume this without loss of

generality.

To gain insight, consider choosing C(h1, 1) = C0+C1h1, where C0 = m
(2)
1 (c)/m

(2)
0 (c).

In this case, the sum of the first- and second-order bias terms is

b1
2

[
m

(2)
1 (c)− C(h1, 1)m

(2)
0 (c)

]
h21 +

[
b2,1(c)− C(h1, 1)3/2b2,0(c)

]
h31

=

{
−b1

2
C1m

(2)
0 (c) + b2,1(c)− C3/2

0 b2,0(c)

}
h31 +O(h41).

By choosing C1 = 2
[
b2,1(c)− C3/2

0 b2,0(c)
]/[

b1m
(2)
0 (c)

]
, one can make the order of bias

O(h41). Next, consider C(h1, 2) = C0 + C1h1 + C2h
2
1, where C0 and C1 are as determined

above. In this case,

b1
2

[
m

(2)
1 (c)− C(h1, 2)m

(2)
0 (c)

]
h21 +

[
b2,1(c)− C(h1, 2)3/2b2,0(c)

]
h31

= −
{
b1C2m

(2)
0 (c) + 3C

1/2
0 C1b2,0(c)

}
h41/2 +O(h51).

Hence, by choosing C2 = −3C
1/2
0 C1b2,0(c)/[b1m

(2)
0 (c)], one can make the order of bias

term O(h51). Similar arguments can be formulated for arbitrary k: the discussion above is

summarized in the following lemma.

9



LEMMA 2 Suppose Assumptions 1–4 hold. Also suppose m
(2)
1 (c)m

(2)
0 (c) > 0. Then there

exist a combination of h1 and h0 such that the AMSE including the second-order bias term

defined in (3) becomes

v

nh1f(c)

σ2
1(c) + σ2

0(c)

[
m

(2)
1 (c)

m
(2)
0 (c)

]1/2+O
(
hk+3
1

)
.

for an arbitrary nonnegative integer k.

This implies non-existence of the optimal solution because one can choose h1 ar-

bitrarily close to 1 and choose k to diverge as n becomes large. It is straightforward to

generalize this discussion to the case of the AMSE with higher-order bias terms.10

2.2 AFO Bandwidths

In order to overcome the difficulty just discussed, we propose a new optimality criterion

termed “asymptotic first-order optimality” (AFO).

When m
(2)
1 (c)m

(2)
0 (c) < 0, there is no problem with the standard AMSE given by

equation (2). Hence we use this criterion. When m
(2)
1 (c)m

(2)
0 (c) > 0, we choose h20 = C0h

2
1

with C0 = m
(2)
1 (c)/m

(2)
0 (c), so that the first order bias component vanishes and use the

trade-off between the second-order bias term and the asymptotic variance term to choose

the bandwidths. This amounts to using the AMSE with the second-order bias and the

asymptotic variance terms under the restriction that the first-order bias term vanishes as

the criterion. The above discussion is formalized in the following definition. The resulting

bandwidths are termed “AFO bandwidths.”11

10In the present approach, we consider choosing the bandwidths for the LLR estimator. In the literature
of regression function estimation, it is common to employ local polynomial regression (LPR) of second-
order when the conditional mean function is three times continuously differentiable because it is known to
reduce bias (see, e.g., Fan, 1992). However, we have two reasons for confining our attention to the LLR.
First, as shown later, we can achieve the same bias reduction with the LLR when the sign of the product of
the second derivatives is positive. When the sign is negative, the existence of the third derivatives becomes
unnecessary. Second, even when we use a higher order LPR, we end up with an analogous problem. For
example, the first-order bias term is removed by using the second order LPR, but when the signs of b2,1(c)
and b2,0(c) are the same, the second-order bias term can be eliminated by using an appropriate choice of
bandwidths.

11We note that the asymptotically higher-order optimal bandwidths can be proposed in the same manner
under an additional smoothness condition. We do not pursue this direction further in this paper because
of implementation difficulty. More detailed discussions are provided in Arai and Ichimura (2013a).
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DEFINITION 1 The AFO bandwidths for the RD estimator minimize the AMSE defined

by

AMSE1n(h) =

{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}
.

when m
(2)
1 (c)m

(2)
0 (c) < 0. Their explicit expressions are given by h∗1 = θ∗n−1/5 and h∗0 =

λ∗h∗1, where

θ∗ =

 vσ2
1(c)

b21f(c)m
(2)
1 (c)

[
m

(2)
1 (c)− λ∗2m(2)

0 (c)
]


1/5

and λ∗ =

{
−σ

2
0(c)m

(2)
1 (c)

σ2
1(c)m

(2)
0 (c)

}1/3

. (4)

When m
(2)
1 (c)m

(2)
0 (c) > 0, the AFO bandwidths for the RD estimator minimize the AMSE

defined by

AMSE2n(h) =
{
b2,1(c)h

3
1 − b2,0(c)h30

}2

+
v

nf(c)

{
σ2
1(c)

h1
+
σ2
0(c)

h0

}

subject to the restriction m
(2)
1 (c)h21 − m

(2)
0 (c)h20 = 0 under the assumption of b2,1(c) −

{m(2)
1 (c)/m

(2)
0 (c)}3/2b2,0(c) 6= 0. Their explicit expressions are given by h∗∗1 = θ∗∗n−1/7 and

h∗∗0 = λ∗∗h∗∗1 , where

θ∗∗ =

{
v [σ2

1(c) + σ2
0(c)/λ∗∗]

6f(c)
[
b2,1(c)− λ∗∗3b2,0(c)

]2
}1/7

and λ∗∗ =

{
m

(2)
1 (c)

m
(2)
0 (c)

}1/2

. (5)

Definition 1 is stated assuming that the first- and the second-order bias terms do not vanish

simultaneously, i.e., b2,1(c)− {m(2)
1 (c)/m

(2)
0 (c)}3/2b2,0(c) 6= 0 when m

(2)
1 (c)m

(2)
0 (c) > 0.12

The proposed approach based on the AFO bandwidths asymptotically dominates

the existing approaches in the AMSE, irrespective of the values of the second derivatives.

To see this, first note that when the product of the second derivatives is positive, the

12Uniqueness of the AFO bandwidths in each case is verified in Arai and Ichimura (2013b). Definition
1 can be generalized to cover the excluded case in a straightforward manner if we are willing to assume
the existence of the fourth derivatives. This case corresponds to the situation in which the first- and the
second-order bias terms can be removed simultaneously by choosing appropriate bandwidths and the third-
order bias term works as a penalty for large bandwidths. Another excluded case in Definition 1 is when

m
(2)
1 (c)m

(2)
0 (c) = 0. It is also possible to extend the idea of the AFO bandwidths when both m

(2)
1 (c) = 0

and m
(2)
0 (c) = 0 hold. This generalization can be carried out by replacing the role of the first- and the

second-order bias terms by the second- and the third order bias terms.

11



AMSE based on the AFO bandwidths is of order n−6/7 whereas the AMSE based on the

optimal bandwidths chosen for each of the regression function separately (we refer to this

bandwidths, Independent Bandwidths (IND)) is of order n−4/5.13 The same is true for

the IK bandwidth unless the two second derivatives are exactly the same. Thus when the

product of the second derivatives is positive, AFO bandwidths are more efficient than either

the IK bandwidth or the IND bandwidths in the sense that the AMSE have a faster rate

of convergence.

The only exception to this rule is when the second derivatives are the same. In this

case, the IK bandwidth is

hIK = θIKn
−1/7

where

θIK = CIK

(
σ2
1(c) + σ2

0(c)

[σ2
1(c)]2/7{p1[m(3)

1 (c)]2}5/7 + [σ2
0(c)]2/7{p0[m(3)

0 (c)]2}5/7

)1/5

,

CIK = [v/(2160 · 3.565 · b21[f(c)]5/7)]1/5, p1 =
´∞
c
f(x)dx and p0 =

´ c
−∞ f(x)dx.14 Although

this bandwidth is of the same order with the AFO bandwidths, it is not determined by

minimizing the AMSE. In fact the ratio of the AMSE up to the second-order bias term

based on the AFO bandwidths to that of the IK bandwidth converges to

1
1

7
γ6 +

6

7

1

γ

,

where γ = θIK/θAFO and θAFO equals θ∗∗ in equation (5) when λ∗∗ = 1.15 It is easy to

show that the ratio is strictly less than one and equals one if and only if γ = 1. Since the

13The independent selection chooses the bandwidths on the left and the right of the cut-off optimally for
each function without paying attention to the relationship between the two functions. The IND bandwidths
based on the AMSE criterion are given by

ȟ1 =

 vσ2
1(c)

b21f(c)
[
m

(2)
1 (c)

]2


1/5

n−1/5 and ȟ0 =

 vσ2
0(c)

b21f(c)
[
m

(2)
0 (c)

]2


1/5

n−1/5.

14The derivation of θIK is provided in the Supplementary Material.
15To see why the ratios of the AMSEs converges to the specified limit, note that the ratio of the AMSEs
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θAFO depends on the second derivatives but θIK does not, the ratio can be much larger or

smaller than one and hence ratio can be arbitrarily close to 0.

When the sign of the product of the second derivatives is negative, the rates of con-

vergence of the AMSEs corresponding to different bandwidth selection rules are the same.

By construction, AFO bandwidths have the lowest AMSE. The AMSEs corresponding to

the AFO bandwidths, IK bandwidth, and IND bandwidths are, respectively

AMSE(h∗) =
5

4
n−4/5CK [m

(2)
0 (c)]2/5[σ2

0(c)]4/5][(γ1γ
2
2)1/3 + 1]6/5,

AMSE(hIK) =
5

4
n−4/5CK [m

(2)
0 (c)]2/5[σ2

0(c)]4/5](γ1 + 1)2/5(γ2 + 1)4/5, and

AMSE(hIND) =
5

4
n−4/5CK [m

(2)
0 (c)]2/5[σ2

0(c)]4/5]((γ1γ
2
2)1/5 + 1)2((γ1γ

2
2)2/5 + 1),

where γ1 = −m(2)
1 (c)/m

(2)
0 (c), γ2 = σ2

1(c)/σ2
0(c), and CK = [b1v2/f(c)2]2/5.

Clearly the AMSE of the AFO relative to that of the IK depends only on γ1 and

γ2. Efficiency as a function of γ1 given γ2 and that as a function of γ2 given γ1 are plotted

in Figure 2-(a) and Figure 2-(b), and the contour of the ratio is depicted in Figure 2-(c).

It is straitforward to show that the maximum of the ratio is 1 and attained if and only if

γ1 = γ2. We note that while the region on which the ratio is close to 1 is large, the ratio is

less than 0.8 whenever γ1 and γ2 are rather different.

is

[b2,1(c)− b2,0(c)]2θ6AFO +
v[σ2

1(c) + σ2
0(c)]

θAFOf(c)

[b2,1(c)− b2,0(c)]2θ6IK +
v[σ2

1(c) + σ2
0(c)]

θIKf(c)

.

Since the first order condition implies v[σ2
1(c)+σ2

0(c)]/[θAFOf(c))] = 6[b2,1(c)−b2,0(c)]2θ6AFO, substituting
this expression and after some simple calculations yield the result.
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The AFO bandwidths have the advantage over the IND bandwidths. Again, clearly

the AMSE of the AFO relative to that of the IND only depends on γ1 and γ2. The ratio

attains its minimum when γ1γ
2
2 = 1 and the minimum value is 26/5/(12/5)

.
= 0.957. It is

an interesting finding that when the sign of the second derivatives differ, there is less than

5% gain in efficiency by AFO over IND.

The AFO bandwidths improve the rate of convergence of AMSE when the sign of

the product of the second derivatives is positive. When the sign is negative, it is more

efficient than either the IK bandwidth or the IND bandwidths although the gain over IND

is less than 5%.

2.3 Feasible Automatic Bandwidth Choice

The AFO bandwidths are clearly not feasible because they depend on unknown quantities

related to f(·), m1, and m0. An obvious plug-in version of the AFO bandwidths can be

implemented by estimating these objects. Depending on the estimated sign of the product

of the second derivatives, we can construct the plug-in version of the AFO bandwidths

provided in Definition 1. We refer to these as “the direct plug-in AFO bandwidths.”16 We

can show that the direct plug-in AFO bandwidths are asymptotically as good as the AFO

bandwidths in large samples. That is, we can prove that a version of Theorem 1 below

also holds for the direct plug-in AFO bandwidths. However, our unreported simulation

experiments show a poor performance of the direct plug-in AFO bandwidths under the

designs described in Section 3 possibly because they misjudge the rate of the bandwidths

whenever the sign is misjudged. Hence we do not pursue the direct plug-in approach further.

Instead, we propose an alternative procedure for choosing bandwidths that switch

between two bandwidths more smoothly. To propose feasible bandwidths, we present a

16The direct plug-in AFO bandwidths are defined by

ĥD1 = θ̂∗n−1/5I{m̂(2)
1 (c)m̂

(2)
0 (c) < 0}+ θ̂∗∗n−1/7I{m̂(2)

1 (c)m̂
(2)
0 (c) ≥ 0},

ĥD0 = θ̂∗λ̂∗n−1/5I{m̂(2)
1 (c)m̂0(c) < 0}+ θ̂∗∗λ̂∗∗n−1/7I{m̂(2)

1 (c)m̂
(2)
0 (c) ≥ 0},

where θ̂∗, λ̂∗, θ̂∗∗ and λ̂∗∗ are consistent estimators for θ∗, λ∗, θ∗∗ and λ∗∗ defined in (4) and (5), respectively.
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modified version of the AMSE (MMSE) defined by

MMSEn(h) =

{
b1
2

[
m

(2)
1 (c)h21 −m

(2)
0 (c)h20

]}2

+
{
b2,1(c)h

3
1 − b2,0(c)h30

}2

+
v

nf(x)

{
σ2
1(x)

h1
+
σ2
0(x)

h0

}
.

A notable characteristic of the MMSE is that the bias component is represented by the

sum of the squared first- and the second-order bias terms. Therefore, its bias compo-

nent cannot be made arbitrarily small even when the sign is positive, unless b2,1(c) −

{m(2)
1 (c)/m

(2)
0 (c)}3/2b2,0(c) = 0. Thus, either term can penalize large bandwidths regardless

of the sign so that the MMSE preserves the bias-variance trade-off in contrast to the AMSE

with the second-order bias term. When m
(2)
1 (c)m

(2)
0 (c) < 0, the square of the first-order

bias term serves as the leading penalty and that of the second-order bias term becomes the

second-order penalty. When m
(2)
1 (c)m

(2)
0 (c) > 0, the square of the second-order bias term

works as the penalty and that of the first-order bias term becomes the linear restriction

that shows up in the definition of the AFO bandwidths. In fact, the bandwidths that

minimize the MMSE are asymptotically equivalent to the AFO bandwidths. This claim

can be proved rigorously as a special case of the following theorem.

We propose a feasible bandwidth selection method based on the MMSE. The pro-

posed method for bandwidth selection can be considered as a generalization of the tradi-

tional plug-in method (see, e.g., Wand and Jones, 1994, Section 3.6). Consider the following

plug-in version of the MMSE denoted by MMSEp:

MMSEp
n(h) =

{
b1
2

[
m̂

(2)
1 (c)h21 − m̂

(2)
0 (c)h20

]}2

+
{
b̂2,1(c)h

3
1 − b̂2,0(c)h30

}2

+
v

nf̂(c)

{
σ̂2
1(c)

h1
+
σ̂2
0(c)

h0

}
, (6)

where m̂
(2)
j (c), b̂2,j(c), σ̂

2
j (c) and f̂(c) are consistent estimators of m

(2)
j (c), b2,j(c), σ

2
j (c) and

f(x) for j = 0, 1, respectively. Let (ĥ1, ĥ0) be a combination of bandwidths that minimizes

the MMSEp given in (6) and ĥ denote (ĥ1, ĥ0).
17 In the next theorem, we show that

17It is also possible to construct another version of the MMSEp based on the finite sample approxi-
mations discussed by Fan and Gijbels (1996, Section 4.3). We do not pursue this direction because it is
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(ĥ1, ĥ0) is asymptotically as good as the AFO bandwidths in the sense of Hall (1983) (see

equation (2.2) of Hall, 1983).

THEOREM 1 Suppose that the conditions stated in Lemma 1 hold. Assume further that

m̂
(2)
j (c), b̂2,j(c), f̂(c) and σ̂2

j (c) satisfy m̂
(2)
j (c)

p→ m
(2)
j (c), b̂2,j(c)

p→ b2,j(c), f̂(c)
p→ f(c) and

σ̂2
j (c)

p→ σ2
j (c) for j = 0, 1, respectively. Then, the following hold.

(i) When m
(2)
1 (c)m

(2)
0 (c) < 0,

ĥ1
h∗1

p→ 1,
ĥ0
h∗0

p→ 1, and
MMSEp

n(ĥ)

MSEn(h∗)

p→ 1.

(ii) When m
(2)
1 (c)m

(2)
0 (c) > 0 and b2,1(c)− {m(2)

1 (c)/m
(2)
0 (c)}3/2b2,0(c) 6= 0

ĥ1
h∗∗1

p→ 1,
ĥ0
h∗∗0

p→ 1, and
MMSEp

n(ĥ)

MSEn(h∗∗)

p→ 1.

The first part of Theorem 1 (i) and (ii) implies that the bandwidths that minimize

the MMSE are asymptotically equivalent to the AFO bandwidths regardless of the sign

of the product. The second part shows that the minimized value of the plug-in version

of the MMSE is asymptotically the same as the MSE evaluated at the AFO bandwidths.

These two findings show that the bandwidths that minimize the MMSE possess the desired

asymptotic properties. These findings also justify the use of the MMSE as a criterion

function.18

3 Simulation

To investigate the finite sample performance of the proposed method, we conducted simula-

tion experiments. Our simulation experiments demonstrate that the theoretical advantages

of the feasible AFO bandwidths have over the existing bandwidth selection rules, such as

computationally intensive for large sample and an unreported simulation produced the almost same result
as that based on the MMSEp given in (6).

18Theorem 1 requires pilot estimates for m
(2)
j (c), b2,j(c), f(c) and σ2

j (c) for j = 0, 1. A detailed procedure
about how to obtain the pilot estimates is given in the Supplemental Material.
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the IK bandwidth and the IND bandwidths, realize in the sample sizes relevant for em-

pirical studies in general, and especially so for the simulation designs taken directly from

empirical studies.

3.1 Simulation Designs

We consider four designs. Designs 1–3 are the ones used for simulation experiments in

the present context by IK and Calonico, Cattaneo, and Titiunik (2014) (hereafter CCT).

Designs 1 and 2 are motivated by the empirical studies of Lee (2008) and Ludwig and

Miller (2007), respectively. Design 4 mimics the situation considered by Ludwig and Miller

(2007) where they investigate the effect of Head Start assistance on Head Start spending

in 1968. This design corresponds to Panel A of Figure II in Ludwig and Miller (2007, p.

176).19

The designs are depicted in Figure 3. For the first two designs, the sign of the

product of the second derivatives is negative so that the AMSE convergence rates for all

bandwidth selection rules are the same. For the next two designs, the sign is positive. For

these two cases, the AFO bandwidth has the faster convergence rate compared to IND.

Design 3, examined by IK, however, has the same second derivatives on the right and on

the left of the cut of point, so that the convergence rate of the AMSE for IK is the same

with that for the AFO.

For each design, the assignment variable Xi is given by 2Zi − 1 where Zi have a

Beta distribution with parameters α = 2 and β = 4. We consider a normally distributed

additive error term with mean zero and standard deviation 0.1295. The specification for

the assignment variable and the additive error are exactly the same as that considered by

IK. We use data sets of 500, 2,000 and 5,000 observations and the results are drawn from

10,000 replications.

19We followed IK and CCT to obtain the functional form. We fit the fifth-order global polynomial with
different coefficients for the right and the left of the cut-off point after rescaling.
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3.2 Results

The simulation results are presented in Tables 1 and 2. Table 1 reports the results for De-

signs 1 and 2. The first column explains the design and the second column shows the sample

size. The third column reports the method used to obtain the bandwidth(s). MMSE refers

to the feasible AFO bandwidth selection rule based on MMSEp
n(h) in equation (6). IND is

the independent bandwidths. IK is the bandwidth denoted by ĥopt in Table 2 of IK.20 CV is

the cross-validation bandwidth considered by Ludwig and Miller (2005); its implementation

is described in Section 4.5 of IK. Note that the cross-validation bandwidth involves one ad

hoc parameter which defines the neighborhood to compute the cross-validation criterion

although other methods presented here are fully data-driven.21 For the sample size of 2,000

and 5,000, we show results only for MMSE, IND, and IK due to computational burden.

The fourth and fifth columns report the mean (labeled ‘Mean’) and standard de-

viation (labeled ‘SD’) of the bandwidths for MMSE, IND, IK, and CV. For MMSE and

IND, these columns report the bandwidth obtained for the right side of the cut-off point.

The sixth and seventh columns report the corresponding ones on the left sides for MMSE

and IND. The eighth and ninth columns report the bias (Bias) and the root mean squared

error (RMSE) for the sharp RDD estimate. Bias and RMSE are 5% trimmed versions since

unconditional finite sample variance of local linear estimators is infinite (see Seifert and

Gasser, 1996). The tenth column report efficiency relative to the most efficient bandwidth

selection rule based on the RMSE. The eleventh and twelfth columns report RMSE and

efficiency based on the true objective functions for the respective bandwidth selection rules.

These can be considered as the theoretical predictions based on asymptotic analysis.22

The sign of the product of the second derivatives is negative for Designs 1 and 2.

Thus the AMSEs for all the bandwidth selection rules converge in the same rate, n−4/5,

20Algorithms provided by Imbens and Kalyanaraman (2009) and IK differ slightly for computing the
variances and the regularization terms. See Section 4.2 of Imbens and Kalyanaraman (2009) and Section
4.2 of IK for more details. Given that they provide a Stata code for the former and that it is used in
many empirical researches, we show the result for the former. Our unreported simulation finds that two
algorithms perform very similarly except Design 2 where the former performs significantly better than the
latter.

21See Section 4.5 of IK for the ad hoc parameter δ used in the cross-validation method to control the
number of observation used to compute the criterion function. δ is set to 0.5 as in IK.

22A detailed procedure to obtain RMSE* is provided in the Supplemental Material.
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where n is the sample size. The top panel of Table 1 reports the results for Design 1.

For Design 1, theoretical efficiency is not so different across different bandwidth selection

rules. Reflecting this, the simulation results show similar performances, for sample size

500, across different bandwidth selection rules. As the sample size increases, however, the

performance of MMSE, which has the theoretical advantage in relative efficiency, dominates

other methods. Note that the relative efficiency of the MMSE is higher than the asymp-

totic prediction for the sample sizes 2000 and 5000. This is attained by the finite sample

performance of MMSE, in terms of RMSE, realizing close to the theoretical prediction in

these sample sizes, whereas other methods do not.

The bottom panel of Table 1 reports the results for Design 2. The magnitude of

the ratio of the second derivatives is larger for this design compared with Design 1, so that

the RMSE is larger for the same sample size. For Design 2, the results are very similar to

the results for Design 1. Relative performance of IK is worse for this design compared to

the performance in Design 1 reflecting the theoretical relative efficiency loss of IK for this

design.

Next, we turn to Designs 3 and 4, in which the sign of the product of the second

derivatives is positive. In general, these cases should show the advantage of MMSE over

IND, as the AMSE for it converges with rate n−6/7 whereas IND’s AMSE converges with

rate n−4/5. For Design 4 the same rate advantage holds for MMSE over IK. For Design 3,

the second derivatives are the same and hence this is an exceptional case as discussed in

section 2.2.

The top panel of Table 2 shows the result for Design 3. In this case, the IND and

IK bandwidths bias terms cancel exactly and the AMSE for IK method indeed converges

with rate n−6/7 as discussed earlier. Under this design, while there are some variations for

sample size 500, the performances of all bandwidth selection rules match the asymptotic

theoretical predictions for sample sizes 2000 and 5000.

The bottom panel of Table 2 is the design in which the theoretical prediction of

the performance of the MMSE clearly dominates other bandwidth selection rules. And the

simulation results demonstrate this. IND, IK, and CV bandwidths tend to lead to larger

biases, especially for sample sizes 2000 and 5000.
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Table 1: Bias and RMSE for Designs 1 and 2

ĥ1 ĥ0 τ̂
Design n Method Mean SD Mean SD Bias RMSE Eff RMSE* Eff*

1 500 MMSE 0.330 0.158 0.375 0.163 0.028 0.050 0.934 0.062 1
IND 0.765 0.572 0.588 0.402 0.039 0.047 1 0.063 0.981
IK 0.478 0.058 0.038 0.049 0.965 0.063 0.986
CV 0.416 0.093 0.037 0.048 0.975

2000 MMSE 0.320 0.181 0.272 0.127 0.023 0.033 1 0.035 1
IND 0.730 0.604 0.359 0.120 0.041 0.042 0.837 0.036 0.979
IK 0.373 0.040 0.036 0.039 0.838 0.036 0.987

5000 MMSE 0.280 0.177 0.181 0.081 0.018 0.025 1 0.025 1
IND 0.658 0.500 0.335 0.096 0.040 0.040 0.724 0.025 0.979
IK 0.339 0.034 0.032 0.034 0.723 0.025 0.987

2 500 MMSE 0.075 0.005 0.188 0.041 0.039 0.074 1 0.081 1
IND 0.144 0.012 0.278 0.019 0.114 0.120 0.616 0.083 0.979
IK 0.249 0.016 0.138 0.142 0.521 0.088 0.913
CV 0.129 0.013 0.079 0.097 0.766

2000 MMSE 0.055 0.002 0.138 0.010 0.021 0.041 1 0.046 1
IND 0.109 0.004 0.200 0.010 0.066 0.069 0.598 0.047 0.979
IK 0.178 0.005 0.069 0.072 0.568 0.051 0.913

5000 MMSE 0.046 0.001 0.114 0.005 0.015 0.028 1 0.032 1
IND 0.086 0.002 0.163 0.007 0.043 0.045 0.628 0.033 0.979
IK 0.135 0.003 0.044 0.046 0.608 0.035 0.913

Notes: n is the sample size. “Eff” stands for the efficiency based on RMSE relative to MMSE. RMSE*
and Eff* are based on the true objective functions for the respective bandwidth selection rules.
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Table 2: Bias and RMSE for Designs 3 and 4

ĥ1 ĥ0 τ̂
Design n Method Mean SD Mean SD Bias RMSE Eff RMSE* Eff*

3 500 MMSE 0.312 0.160 0.207 0.052 -0.023 0.052 0.954 0.046 1
IND 0.353 0.284 0.180 0.062 -0.007 0.050 1 0.047 0.988
IK 0.174 0.016 -0.014 0.050 0.986 0.046 0.998
LM 0.112 0.008 -0.003 0.061 0.812

2000 MMSE 0.303 0.157 0.167 0.032 -0.009 0.026 1 0.026 1
IND 0.287 0.217 0.148 0.067 -0.003 0.028 0.932 0.027 0.950
IK 0.140 0.013 -0.007 0.028 0.935 0.026 0.999

5000 MMSE 0.281 0.148 0.146 0.022 -0.004 0.017 1 0.017 1
IND 0.250 0.225 0.127 0.059 -0.001 0.019 0.889 0.019 0.925
IK 0.122 0.011 -0.004 0.019 0.909 0.017 1

4 500 MMSE 0.232 0.093 0.638 0.209 -0.001 0.055 1 0.039 1
IND 0.605 0.530 1.210 0.965 0.058 0.062 0.888 0.072 0.545
IK 0.547 0.147 0.074 0.080 0.695 0.077 0.506
LM 0.306 0.195 0.055 0.070 0.791

2000 MMSE 0.232 0.082 0.552 0.189 0.006 0.033 1 0.022 1
IND 0.525 0.438 0.990 0.835 0.054 0.055 0.609 0.041 0.530
IK 0.460 0.104 0.066 0.068 0.492 0.044 0.494

5000 MMSE 0.224 0.081 0.495 0.183 0.008 0.024 1 0.015 1
IND 0.371 0.235 0.622 0.459 0.049 0.050 0.486 0.029 0.520
IK 0.351 0.078 0.054 0.055 0.435 0.031 0.485

Notes: n is the sample size. “Eff” stands for the efficiency based on RMSE relative to MMSE. RMSE*
and Eff* are based on the true objective functions for the respective bandwidth selection rules.
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We emphasize here that the main advantage of using the feasible AFO bandwidth se-

lection rule is to take advantage of situations like Design 4 without incurring much penalty

in other cases. As we demonstrate by the simulations, in all cases the feasible AFO band-

width selection rule’s efficiency loss is not more than 7%, while the gain in efficiency is

more than 50% for all other bandwidth selection rules.

We also demonstrate below that the comparison based on the RMSE can understate

the difference between different bandwidth selection rules. This happens because large bias

and very small variance can lead to reasonable size of the RMSE but this implies that RD

estimators are concentrated on the biased value. Figures 4 and 5 show the simulated CDF

of |τ̂ − τ | for different bandwidth selection rules for 10000 simulations.

For Design 1, all methods work similarly with sample size 500. When sample size

is increased to 2000 and 5000, the advantage of using the feasible AFO bandwidths over

IND or IK bandwidths becomes evident. For example, the feasible AFO bandwidths dom-

inates the IK bandwidth and the median deviation is 0.03 and 0.022 for the feasible AFO

whereas it is 0.04 and 0.035 for the IK bandwidth when the sample sizes are 2000 and 5000,

respectively.

For Design 2, the advantage of the feasible AFO bandwidths is evident from the

sample size 500. For Design 3, there are very little differences across three methods as

theory predicts. For Design 4, the advantage of the feasible AFO bandwidths is again

evident across all the sample sizes.

Finally, we show that the proposed method also estimates the conditional mean

functions at the cut-off point reasonably well. The discussion provided in the previous

section might have made an impression that the proposed method produce larger bias in

estimating the conditional mean functions when the sign of the products of the second

derivatives is positive while keeping the bias of the “difference” of the conditional mean

functions small because removing the first-order bias term could incur larger bandwidths.

This could be true if the second-order bias term doesn’t work well as a penalty. Table 3

reports the bias and the RMSE for the conditional mean functions, m1(c) and m0(c), at the

cut-off point. There is no evidence that the proposed method estimates the RD parameter

with larger bias of the estimates for the conditional mean functions.
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Table 3: Bias and RMSE for the Conditional Mean Functions, n=500

m̂1(c) m̂0(c)
Design Method Bias RMSE Bias RMSE

Design 1 MMSE 0.007 0.037 -0.021 0.037
IK 0.011 0.032 -0.027 0.037

Design 2 MMSE 0.028 0.071 -0.010 0.040
IK 0.128 0.137 -0.010 0.039

Design 3 MMSE 0.005 0.038 0.029 0.056
IK 0.007 0.039 0.021 0.045

Design 4 MMSE 0.094 0.110 0.095 0.098
IK 0.139 0.145 0.066 0.074

In summary, the simulation results show that the feasible AFO bandwidth selec-

tion rule (MMSE) reproduces the theoretical predictions well so that when the AMSE is

predicted to converge faster by theory compared to others, namely, when the sign of the

product of the second derivatives is positive and the second derivatives are not the same,

the feasible AFO bandwidth yield a better estimator of the treatment effect at the threshold

as shown in Tables 1 and 2, and Figures 4 and 5. Moreover, when the sign of the product

of the second derivatives is negative, even in cases where the asymptotic gain is expected

to be modest, the performance of the feasible AFO can be much better than others (see

Design 2), because the feasible AFO bandwidth performs according to asymptotic theory,

whereas other methods do not. Overall, MMSE appears very promising. The proposed

method performs significantly better than existing methods for cases that are not artificial

but motivated by the empirical researches.

4 Empirical Illustration

We illustrate how the proposed method in this paper can contribute to empirical researches.

In doing so, we revisit the problem considered by Ludwig and Miller (2007). They inves-

tigate the effect of Head Start (hereafter HS) on health and schooling. HS is the federal

government’s program aimed to provide preschool, health, and other social services to poor

children age three to five and their families. They note that the federal government as-

sisted HS proposals of the 300 poorest counties based on the county’s 1960 poverty rate
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and find that the county’s 1960 poverty rate can become the assignment variable where the

cut-off value is given by 59.1984.23 They assess the effect of HS assistance on numerous

measures such as HS participation, HS spending, other social spending, health, mortality

and education.

Here we revisit the study on the effect of HS assistance on HS spending and mortality

provided in Tables II and III of Ludwig and Miller (2007). The outcome variables considered

in Tables II and III include HS spending per child in 1968 and 1972, and the mortality

rate for the causes of death that could be affected by the Head Start health services to all

and black children age five to nine. 1972 HS spending per child and the mortality rate for

all children generated the simulation Designs 2 and 4 in the previous section, respectively.

In obtaining the RD estimates, they employ the LLR using a triangular kernel function as

proposed by Porter (2003). For bandwidths, they use 3 different bandwidths, 9, 18 and 36

in somewhat ad-hoc manner rather than relying on some bandwidths selection methods.

This implies that the bandwidths and the number of observations with nonzero weight used

for estimation are independent of outcome variables.

Columns 3 to 5 in Table 4 reproduce the results presented in Tables II and III of

Ludwig and Miller (2007) for comparison. The point estimates for 1968 HS spending per

child range from 114.711 to 137.251. Perhaps we may say that they are not very sensitive

to the choice of bandwidth in this case. However, the point estimates for 1972 HS spending

per child range from 88.959 to 182.396. What is more troubling would be the fact that they

produce mixed results in statistical significance. For 1968 HS spending per child, the point

estimate with the bandwidth of 36 produce the result which is statistically significant at

5% level while the estimates with bandwidths of 9 and 18 are not statistically significant

even at 10% level. The results for 1972 HS spending per child are similar in the sense that

the estimates based on the bandwidths of 9 and 36 are statistically significant at 10% level

while the estimate based on the bandwidth of 18 is not at the same level.

The results on the mortality rate for all children five to nine exhibit statistical

significance though the point estimates range from -1.895 to -1.114 depending on which

23Since the poverty rate is based on the county level information, the sampling framework does not
exactly correspond to the one considered in the paper. However, in this illustration we follow the estimation
framework used by Ludwig and Miller (2007) which fits into our framework.
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bandwidth to employ. The point estimate for the mortality rate for black children five

to nine with bandwidth 18 is -2.719 which is statistically significant at 5% level while

the point estimates with bandwidths 9 and 36 are -2.275 and -1.589, respectively, which

are not statistically insignificant even at 10% level. It would be meaningful to see what

sophisticated bandwidth selection methods can offer under situations where the results

based on ad-hoc approaches cannot be interpreted easily.

Columns 6 and 7 in Table 4 present the result based on the bandwidth selection

methods based on MMSE and IK. For 1968 HS spending per child, the point estimates

based on both methods are similar but statistically insignificant although MMSE produces

a smaller standard error reflecting the larger bandwidth on the left of the cut-off. The

point estimate for 1972 HS spending per child differ substantially although they are not

statistically significant. For the mortality rate for all children five to nine, both methods

produce similar results in terms of the point estimates as well as statistical significance

while they generate very different results in both point estimate and statistical significance

for black children. To summarize, we found large but statistically insignificant point es-

timates for HS spending and statistically significant estimates for mortality rates by the

proposed method in this paper. The results presented in Table 4 alone do not imply any

superiority of the proposed method over the existing methods because we never know true

causal relationships. However, the results based on the proposed method should provide

a meaningful perspective given the simulation experiments demonstrated in the previous

section.
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(a) Design 1. Lee (2008) Data
(Design 1 of IK and CCT)

m1(x) = 0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5

m0(x) = 0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5
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(b) Design 2. Ludwig and Miller I (2007) Data
(Design 2 of CCT)

m1(x) = 0.26 + 18.49x− 54.8x2 + 74.3x3 − 45.02x4 + 9.83x5

m0(x) = 3.70 + 2.99x+ 3.28x2 + 1.45x3 + 0.22x4 + 0.03x5
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(c) Design 3. Constant Additive Treatment
Effect (Design 3 of IK)

m1(x) = 0.52 + 0.84x− 3.0x2 + 7.99x3 − 9.01x4 + 3.56x5

m0(x) = 0.42 + 0.84x− 3.0x2 + 7.99x3 − 9.01x4 + 3.56x5
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(d) Design 4. Ludwig and Miller II (2007,
Figure II. B) Data

m1(x) = 0.09 + 5.76x− 42.56x2 + 120.90x3 − 139.71x4 + 55.59x5

m0(z) = 0.03− 2.26x− 13.14x2 − 30.89x3 − 31.98x4 − 12.1x5

Figure 3: Simulation Design. The dashed line in the panel for Design 1 denotes the density
of the forcing variable. The supports for m1(x) and m0(x) are x ≥ 0 and x < 0, respectively.
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(c) Design 1, n=2,000
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(e) Design 1, n=5,000
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(f) Design 2, n=5,000

Figure 4: Simulated CDF of |τ̂ − τ | for different bandwidth selection rules for 10000 simu-
lations
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(b) Design 4, n=500
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Deviation

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

F
ra

c
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MMSE

IND

IK

(d) Design 4, n=2,000
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(e) Design 3, n=5,000
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Figure 5: Simulated CDF of |τ̂ − τ | for different bandwidth selection rules for 10000 simu-
lations
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5 Conclusion

In this paper, we have proposed a new bandwidth selection method for the RD estimators.

We provided a discussion on the validity of the simultaneous choice of the bandwidths

theoretically and illustrated that the proposed bandwidths produce results comparable to

the theoretical results in the sample sizes relevant for empirical works.

A main feature of the proposed method is that we choose two bandwidths simulta-

neously. When we allow two bandwidths to be distinct, we showed that the minimization

problem of the AMSE exhibits dichotomous characteristics depending on the sign of the

product of the second derivatives of the underlying functions and that the optimal band-

widths that minimize the AMSE are not well-defined when the sign of the product is posi-

tive. We introduced the concept of the AFO bandwidths and proposed a feasible version of

the AFO bandwidths. The feasible bandwidths are proved to be asymptotically as good as

the AFO bandwidths. A simulation study based on designs motivated by existing empirical

literatures exhibits non-negligible gain of the proposed method under the situations where

a single-bandwidth approach can become quite misleading. We also demonstrated how the

proposed method can be implemented via an empirical example.

Calonico, Cattaneo, and Titiunik (2014) proposes robust confidence intervals for

both sharp and fuzzy RD designs. The bandwidth selection rule we discuss in this paper

may be used in a similar way to construct a robust confidence intervals. However, the

extension is non-trivial as it is desirable to find a method that does not require knowing

the sign of the product of the second derivatives of the regression function at both sides of

the cut-off point. This is left as a future research.

A Proofs of Theorem 1

Recall that the objective function is:

MMSEp
n(h) =

{
b1
2

[
m̂

(2)
1 (c)h21 − m̂

(2)
0 (c)h20

]}2

+
[
b̂2,1(c)h

3
1 − b̂2,0(c)h30

]2
+

ν

nf̂(c)

{
σ̂2
1(c)

h1
+
σ̂2
0(c)

h0

}
.
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To begin with, we show that ĥ1 and ĥ0 satisfy Assumption 2. If we choose a se-

quence of h1 and h0 to satisfy Assumption 2, then MMSEp
n(h) converges to 0. Assume

to the contrary that either one or both of ĥ1 and ĥ0 do not satisfy Assumption 2. Since

m
(2)
0 (c)3b2,1(c)

2 6= m
(2)
1 (c)3b2,0(c)

2 by assumption, m̂
(2)
0 (c)3b̂2,1(c)

2 6= m̂
(2)
1 (c)3b̂2,0(c)

2 with

probability approaching 1. Without loss of generality, we assume this as well. Then at

least one of the first-order bias term, the second-order bias term and the variance term of

MMSEp
n(ĥ) does not converge to zero in probability. Then MMSEp

n(ĥ) > MMSEp
n(h)

holds for some n. This contradicts the definition of ĥ. Hence ĥ satisfies Assumption 2.

We first consider the case in which m
(2)
1 (c)m

(2)
0 (c) < 0. In this case, with probability

approaching 1, m̂
(2)
1 (c)m̂

(2)
0 (c) < 0, so that we assume this without loss of generality. When

this holds, note that the leading terms are the first term and the last term of MMSEp
n(ĥ)

since ĥ1 and ĥ0 satisfy Assumption 2. Define the plug-in version of AMSE1n(h) provided

in Definition 1 by

AMSEp
1n(h) =

{
b1
2

[
m̂

(2)
1 (c)h21 − m̂

(2)
0 (c)h20

]}2

+
ν

nf̂(c)

{
σ̂2
1(c)

h1
+
σ̂2
0(c)

h0

}
.

A calculation yields h̃1 = C̃1n
−1/5 and h̃0 = C̃0n

−1/5 where

C̃1 =

 vσ̂2
1(c)

b21f̂(c)m̂
(2)
1 (c)

[
m̂

(2)
1 (c)− λ̂21m̂

(2)
0 (c)

]


1/5

, λ̂1 =

{
− σ̂

2
0(c)m̂

(2)
1 (c)

σ̂2
1(c)m̂

(2)
0 (c)

}1/3

,

and C̃0 = C̃1λ̂1. With this choice, AMSEp
1n(h̃) and hence MMSEp

n(h̃) converges at the

rate of n−4/5. Note that if ĥ1 or ĥ0 converges at the rate slower than n−1/5, then the bias

term converges at the rate slower than n−4/5. If ĥ1 or ĥ0 converges at the rate faster than

n−1/5, then the variance term converges at the rate slower than n−4/5. Thus the minimizer

of MMSEp
n(h), ĥ1 and ĥ0 converges to 0 at rate n−1/5.

Thus we can write ĥ1 = Ĉ1n
−1/5 + op(n

−1/5) and ĥ0 = Ĉ0n
−1/5 + op(n

−1/5) for some

OP (1) sequences Ĉ1 and Ĉ0 that are bounded away from 0 and ∞ as n → ∞. Using this
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expression,

MMSEp
n(ĥ) = n−4/5

{
b1
2

[
m̂

(2)
1 (c)Ĉ2

1 − m̂
(2)
0 (c)Ĉ2

0

]}2

+
ν

n4/5f̂(c)

{
σ̂2
1(c)

Ĉ1

+
σ̂2
0(c)

Ĉ0

}
+ op(n

−4/5).

Note that

MMSEp
n(h̃) = n−4/5

{
b1
2

[
m̂

(2)
1 (c)C̃2

1 − m̂
(2)
0 (c)C̃2

0

]}2

+
ν

n4/5f̂(c)

{
σ̂2
1(c)

C̃1

+
σ̂2
0(c)

C̃0

}
+OP (n−8/5).

Since ĥ is the optimizer, MMSEp
n(ĥ)/MMSEp

n(h̃) ≤ 1. Thus

{
b1
2

[
m̂

(2)
1 (c)Ĉ2

1 − m̂
(2)
0 (c)Ĉ2

0

]}2

+ ν

f̂(c)

{
σ̂2
1(c)

Ĉ1
+

σ̂2
0(c)

Ĉ0

}
+ op(1){

b1
2

[
m̂

(2)
1 (c)C̃2

1 − m̂
(2)
0 (c)C̃2

0

]}2

+ ν

f̂(c)

{
σ̂2
1(c)

C̃1
+

σ̂2
0(c)

C̃0

}
+OP (n−4/5)

≤ 1.

Note that the denominator converges to

{
b1
2

[
m

(2)
1 (c)C∗21 −m

(2)
0 (c)C∗20

]}2

+
ν

f(c)

{
σ2
1(c)

C∗1
+
σ2
0(c)

C∗0

}
,

where C∗1 and C∗0 are the unique optimizers of

{
b1
2

[
m

(2)
1 (c)C2

1 −m
(2)
0 (c)C2

0

]}2

+
ν

f(c)

{
σ2
1(c)

C1

+
σ2
0(c)

C0

}
,

with respect to C1 and C0. This implies that Ĉ1 and Ĉ0 also converge to the same respective

limit C∗1 and C∗0 because the inequality will be violated otherwise.

Next we consider the case with m
(2)
1 (c)m

(2)
0 (c) > 0. In this case, with probability

approaching 1, m̂
(2)
1 (c)m̂

(2)
0 (c) > 0, so that we assume this without loss of generality.

When these conditions hold, define h0 = λ̂2h1 where λ̂2 = {m̂(2)
1 (c)/m̂

(2)
0 (c)}1/2.

This sets the first-order bias term of MMSEp
n(h) equal to 0. Define the plug-in version of

AMSE2n(h) by

AMSEp
2n(h) =

{
b̂2,1(c)h

3
1 − b̂2,0(c)h30

}2

+
v

nf̂(c)

{
σ̂2
1(c)

h1
+
σ̂2
0(c)

h0

}
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Choosing h1 to minimize AMSEp
2n(h), we define h̃1 = C̃1n

−1/7 and h̃0 = C̃0n
−1/7 where

θ̂2 =


v
[
σ̂2
1(c) + σ̂2

0(c)/λ̂2

]
6f̂(c)

[
b̂2,1(c)− λ̂32b̂2,0(c)

]2


1/7

and C̃0 = C̃1λ̂2. (7)

Then MMSEp
n(h̃) can be written as

MMSEp
n(h̃) = n−6/7

{
b̂2,1(c)C̃

3
1 − b̂2,0(c)C̃3

0

}2

+ n−6/7
ν

f̂(c)

{
σ̂2
1(c)

C̃1

+
σ̂2
0(c)

C̃0

}
.

In order to match this rate of convergence, both ĥ1 and ĥ0 need to converge at the

rate slower than or equal to n−1/7 because the variance term needs to converge at the rate

n−6/7 or faster. In order for the first-order bias term to match this rate,

m̂
(2)
1 (c)ĥ21 − m̂

(2)
0 (c)ĥ20 ≡ B1n = n−3/7b1n,

where b1n = OP (1) so that under the assumption that m
(2)
0 (c) 6= 0, with probability ap-

proaching 1, m̂
(2)
0 (c) is bounded away from 0 so that assuming this without loss of generality,

we have ĥ20 = λ̂22ĥ
2
1 −B1n/m̂

(2)
0 (c). Substituting this expression to the second term and the

third term, we have

MMSEp
n(ĥ) =

{
b1
2
B1n

}2

+
{
b̂2,1(c)ĥ

3
1 − b̂2,0(c){λ̂22ĥ21 −B1n/m̂

(2)
0 (c)}3/2

}2

+
ν

nf̂(c)

{
σ̂2
1(c)

ĥ1
+

σ̂2
0(c)

{λ̂22ĥ21 −B1n/m̂
(2)
0 (c)}1/2

}
.

Suppose ĥ1 is of order slower than n−1/7. Then because m̂
(2)
0 (c)3b̂2,1(c)

2 6= m̂
(2)
1 (c)3b̂2,0(c)

2

and this holds even in the limit, the second-order bias term is of order slower than n−6/7.

If ĥ1 converges to 0 faster than n−1/7, then the variance term converges at the rate slower

than n−6/7. Therefore we can write ĥ1 = Ĉ1n
−1/7 + op(n

−1/7) for some OP (1) sequence Ĉ1

that is bounded away from 0 and ∞ as n → ∞ and as before ĥ20 = λ̂22ĥ
2
1 − B1n/m̂

(2)
0 (c).
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Using this expression, we can write

MMSEp
n(ĥ) = n−6/7

{
b1
2
b1n

}2

+ n−6/7
{[
b̂2,1(c)Ĉ

3
1 + op(1)− b̂2,0(c){λ̂22Ĉ2

1 + op(1)− n−1/7b1n/m̂(2)
0 (c)}3/2

]}2

+ n−6/7
ν

f̂(c)

{
σ̂2
1(c)

Ĉ1 + op(1)
+

σ̂2
0(c)

{λ̂22Ĉ2
1 + op(1)− n−1/7b1n/m̂(2)

0 (c)}1/2

}
.

Thus b1n converges in probability to 0. Otherwise the first-order bias term remains and

that contradicts the definition of ĥ1.

Since ĥ is the optimizer, MMSEp
n(ĥ)/MMSEp

n(h̃) ≤ 1. Thus

op(1) +
{[
b̂2,1(c)Ĉ

3
1 − b̂2,0(c){λ̂22Ĉ2

1 + op(1)}3/2
]}2

+ ν

f̂(c)

{
σ̂2
1(c)

Ĉ1+op(1)
+

σ̂2
0(c)

{λ̂22Ĉ2
1+op(1)}1/2

}
{
b̂2,1(c)C̃3

1 − b̂2,0(c)C̃3
0

}2

+ ν

f̂(c)

{
σ̂2
1(c)

C̃1
+

σ̂2
0(c)

C̃0

} ≤ 1.

If Ĉ1 − C̃1does not converge to 0 in probability, then the ratio is not less than 1 at some

point. hence Ĉ1 − C̃1 = op(1). Therefore ĥ0/h̃0
p→ 1 as well.

The results shown above also imply that MMSEp
n(ĥ)/MSEn(h∗)

p→ 1 in both cases.

�
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Supplement to “Simultaneous Selection of Optimal
Bandwidths for the Sharp Regression Discontinuity

Estimator”

Yoichi Arai and Hidehiko Ichimura

A Introduction

We present a detailed procedure to obtain RMSE* provided in Tables 1 and 2, a

detailed algorithm to implement the proposed method, and a proof of Lemma 1, in

this supplemental material.

B A Procedure to Obtain RMSE*

We describe how RMSE* is computed for the LLR estimators based on the MMSE

bandwidths, the IND bandwidths, and the IK bandwidth. We also show how θIK in

page 12 of the main text is obtained.

Once the sample size, the form of a kernel function, the functional forms of

m1(c), m0(c), f(c), σ2
1(c), and σ2

0(c) are given, the AMSE can be computed using the

formula of the AMSE in (2) for each of the bandwidths.

The MMSE bandwidths can be obtained by minimizing MMSEn(h) (not

MMSEp
n(h)) provided in page 16 of the main text. The IND bandwidths can be

obtained based on the formulae provided in the footnote of page 12.

IK bandwidth can be obtained analogously except the regularization terms,

r+ + r−. Note that

r+ =
2160σ2

1(c)

N2,+h42,+
and r− =

2160σ2
0(c)

N2,−h42,−

1



where

h2,+ = 3.56

(
σ2
1(c)

f(c)[m
(3)
1 (c)]2

)1/7

N
−1/7
+ , and h2,− = 3.56

(
σ2
0(c)

f(c)[m
(3)
0 (c)]2

)1/7

N
−1/7
− .

Hence the computation of the regularization term requires N+, N−, N2,+, and N2,−.

Since N+ and N− are the number of observations to the left and right of the threshold,

respectively (see p.942 of IK), their population analogues are computed by

N+ = n ·
∫ c

−∞
f(x)dx and N− = n ·

∫ ∞
c

f(x)dx.

Similarly, since N2,+ and N2,− are the numbers of observations with c ≤ Xi ≤ c+h2,+

and c− h2,− ≤ Xi < c, respectively, their population analogues are computed by

N2,+ = n ·
∫ c+h2,+

c

f(x)dx and N2,− = n ·
∫ c

c−h2,−
f(x)dx.

The same procedure is used to obtain θIK in page 12 in the main text.

C Implementation

To obtain the proposed bandwidths, we need pilot estimates of the density, its first

derivative, the second and third derivatives of the conditional expectation functions,

and the conditional variances at the cut-off point. We obtain these pilot estimates in

a number of steps.

Step 1: Obtain pilot estimates for the density f(c) and its first

derivative f (1)(c)

We calculate the density of the assignment variable at the cut-off point, f(c), which

is estimated using the kernel density estimator with an Epanechnikov kernel.1 A pilot

bandwidth for kernel density estimation is chosen using the normal scale rule with

1IK estimated the density in a simpler manner (see Section 4.2 of IK). We used the kernel density
estimator to be consistent with the estimation method used for the first derivative. Our unreported
simulation experiments produced similar results for both methods.

2



Epanechnikov kernel, given by 2.34σ̂n−1/5, where σ̂ is the square root of the sample

variance of Xi (see ? and ? for the normal scale rules). The first derivative of the

density is estimated using the method proposed by ?. The kernel first derivative den-

sity estimator is given by
∑n

i=1 L((c − Xi)/h)/(nh2), where L is the kernel function

proposed by ?, L(u) = −15u(1− u2)1{|u|<1}/4. Again, a pilot bandwidth is obtained

using the normal scale rule, given by σ̂ · (112
√
π/n)1/7.

Step 2: Obtain pilot bandwidths for estimating the second and

third derivatives m
(2)
j (c) and m

(3)
j (c) for j = 0, 1

We next estimate the second and third derivatives of the conditional mean functions

using the third-order LPR.

We obtain pilot bandwidths for the LPR based on the estimated fourth deriva-

tives of m
(4)
1 (c) = limx→c+m

(4)
1 (x) and m

(4)
0 (c) = limx→c−m

(4)
0 (x). Following ?, ?,

and ?, we use estimates of m
(4)
1 (c) that are not necessarily consistent by fitting global

polynomial regressions. First, using observations for which Xi ≥ c, we regress Yi on

1, (Xi − c), (Xi − c)2, (Xi − c)3 and (Xi − c)4 to obtain the OLS coefficients γ̂1 and

the variance estimate ŝ21. Using the data with Xi < c, we repeat the same procedure

to obtain γ̂0 and ŝ20. The pilot estimates for fourth derivatives are m̂
(4)
1 (c) = 24 · γ̂1(5)

and m̂
(4)
0 (c) = 24 · γ̂0(5), where γ̂1(5) and γ̂0(5) are the fifth elements of γ̂1 and γ̂0,

respectively. The plug-in bandwidths for the third-order LPR used to estimate the

second and third derivatives are calculated by

hν,j = Cν,3(K)

(
ŝ2j

f̂(c) · m̂(4)
j (c)2 · nj

)1/9

,

where j = 0, 1 (see ?, Section 3.2.3 for information on plug-in bandwidths and the

definition of Cν,3).
2 We use ν = 2 and ν = 3 for estimating the second and third

derivatives, respectively.

2The bandwidth we use for estimating the third derivatives are not rate optimal when the un-
derlying function has higher order derivative. However, we use this bandwidth to avoid estimating
higher order derivatives.
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Step 3: Estimation of the second and third derivatives m
(2)
j (c)

and m
(3)
j (c) as well as the conditional variances σ̂2

j (c) for j = 0, 1

We estimate the second and third derivatives at the cut-off point using the third-

order LPR with the pilot bandwidths obtained in Step 2. Following IK, we use the

uniform kernel, which yields C2,3 = 5.2088 and C3,3 = 4.8227. To estimate m̂
(2)
1 (c),

we construct a vector Ya = (Y1, . . . , Yna)′ and an na × 4 matrix, Xa, whose ith row

is given by (1, (Xi − c), (Xi − c)2, (Xi − c)3) for observations with c ≤ Xi ≤ c + h2,1,

where na is the number of observations with c ≤ Xi ≤ c + h2,1. The estimated sec-

ond derivative is given by m̂
(2)
1 (c) = 2 · β̂2,1(3), where β̂2,1(3) is the third element

of β̂2,1 and β̂2,1 = (Xa
′Xa)

−1XaYa. We estimate m̂
(2)
0 (c) in the same manner. Re-

placing h2,1 with h3,1 leads to an estimated third derivative of m̂
(3)
1 (c) = 6 · β̂3,1(4),

where β̂3,1(4) is the fourth element of β̂3,1, β̂3,1 = (Xb
′Xb)

−1XbYb, Yb = (Y1, . . . , Ynb
)′,

Xb is an nb × 4 matrix whose ith row is given by (1, (Xi − c), (Xi − c)2, (Xi − c)3)

for observations with c ≤ Xi ≤ c + h3,1, and nb is the number of observations with

c ≤ Xi ≤ c + h3,1. The conditional variance at the cut-off point σ2
1(c) is calculated

as σ̂2
1(c) =

∑n1

i=1(Yi − Ŷi)2/(n1 − 4), where Ŷi denotes the fitted values from the re-

gression used to estimate the second derivative.3 β̂2,0, β̂3,0 and σ̂2
0(c) can be obtained

analogously.

Step 4: Numerical Optimization

The final step is to plug the pilot estimates into the MMSEp given by equation (8) in

the main text and to use numerical minimization over the compact region to obtain

ĥ1 and ĥ0. Unlike AMSE1n(h) and AMSE2n(h) subject to the restriction given in

Definition 1, the MMSE is not necessarily strictly convex, particularly when the sign

of the product is positive. In minimizing the objective function, it is important to

try optimization with several initial values, in order to avoid finding only a local

minimum.

3Clearly, the estimator is not a consistent estimator of the conditional variance, but we do not
need to estimate it consistently. One can use a non-parametric method to consistently estimate it,
but it produces almost identical simulation results.
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D Proof of Lemma 1

The LLR estimator can be expressed as
(
α̂h1(c), β̂h1(c)

)′
= (X(c)′W1(c)X(c))−1X(c)′W1(c)Y ,

where X(c) is an n×2 matrix whose ith row is given by (1, Xi− c), Y = (Y1, . . . , Yn)′,

W1(c) = diag(Kh1(Xi − c)) and Kh1(·) = K(·/h1)I{· ≥ 0}/h1. The LLR estimator of

m1(c) can also be written as α̂h1(c) = e′1 (X(c)′W1(c)X(c))−1X(c)′W1(c)Y , where e1

is a 2 × 1 vector having one in the first entry and zero in the other entry. Similarly,

the LLR estimator for m0(c), denoted by α̂h0(c), can be obtained by replacing W1(c)

with W0(c), where W0(c) = diag(Kh0(Xi − c)) and Kh0(·) = K(·/h0)I{· < 0}/h0.

A contribution to the MSE from a variance component is standard. See ? for

the details. Here we consider the contribution made by the bias component. We

present the proof only for α̂h1(c). The proof for α̂h0 is parallel and hence is omitted.

Denote γ̂1 =
(
α̂h1(c), β̂h1(c)

)′
. The conditional bias is given by

Bias(γ̂1|X) = (X(c)′W1(c)X(c))−1X(c)W1(c)(m1 −X(c)γ1),

where m1 = (m1(X1), . . . ,m1(Xn))′ and γ1 = (m1(c),m
(1)
1 (c))′. Define, for j = 0, 1

and an integer k,

Sn,k,j =

 sn,k,j sn,k+1,j

sn,k+1,j sn,k+2,j

 , cn,k,j =

 sn,k,j

sn,k+1,j

 , sn,k,j =
n∑
i=1

Khj(Xi − c)(Xi − c)k,

Sk,1 =

 µk,0 µk+1,0

µk+1,0 µk+2,0

 , and ck,1 =

 µk,0

µk+1,0

 . (D.1)

Note that Sn,0,1 = X(c)′W1(c)X(c). The argument made by ? can be generalized to

yield

sn,k,1 = nhk
{
f(c)µk,0 + hf (1)(c)µk+1,0 + op (h)

}
. (D.2)

Then, it follows that

Sn,0,1 = nH
{
f(c)S0,1 + hf (1)(c)S1,1 + op (h)

}
H,
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where H = diag(1, h). By using the fact that (A+hB)−1 = A−1−hA−1BA−1 +o (h),

we obtain

S−1n,0,1 = n−1H−1
{

1

f(c)
A0,1 −

hf (1)(c)

f(c)2
A1,1 + op (h)

}
H−1, (D.3)

where

A0,1 =

 µ2,0 −µ1,0

−µ1,0 µ−10,0

 ,
A1,1 =

1

µ0,0µ2,0 − µ2
1,0

 −µ1,0(µ
2
2,0 − µ1,0µ3,0) µ2,0(µ

2
2,0 − µ1,0µ3,0)

µ2,0(µ
2
2,0 − µ1,0µ3,0) µ3

1,0 − 2µ0,0µ1,0µ2,0 + µ2
0,0µ3,0

 .
Next, we consider X(c)W1(c){m1 − X(c)γ1}. A Taylor expansion of m1(·)

yields

X(c)W1(c){m1 −X(c)γ1} =
m

(2)
1 (c)

2
cn,2,1 +

m
(3)
1 (c)

3!
cn,3,1 + op

(
nh3
)
. (D.4)

The definition of cn,k,j in (D.1), in conjunction with (D.2), yields

cn,k,1 = nhkH
{
f(c)ck,1 + hf (1)(c)ck+1,1 + op (h)

}
. (D.5)

Combining this with (D.3) and (D.4) and extracting the first element gives

Bias(α̂h1(c)|X) =
b1m

(2)
1 (c)

2
h21 + b2,1(c)h

3
1 + op

(
h31
)
.

This expression gives the required result. �
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