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Abstract 

 
We investigate implementation of social choice functions, where we make severe 

restrictions on mechanisms such as detail-freeness, boundedness, only tiny transfers 
permitted, and uniqueness of iteratively undominated strategy profile in the ex-post 
term. After the determination of allocation, some partial information about the state 
becomes verifiable. The central planner can make the transfers contingent on this 
information. By demonstrating a sufficient condition for implementation, namely full 
detection, we show that a wide variety of social choice functions are uniquely 
implementable even if the range of players’ lies that the verified information can 
directly detect is quite narrow. With full detection, we can detect all possible lies, not by 
the verified information alone, but by processing a chain of detection triggered by this 
information. The designed mechanism is sequential in that each player makes 
announcements twice at two distinct stages. This paper does not assume expected utility, 
quasi-linearity, and risk neutrality. 
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1. Introduction 

 

 This paper investigates unique implementation of a social choice function (SCF), 

where the central planner attempts to achieve the allocation implied by the SCF that is 

contingent on the state. The central planner, however, cannot observe the state before he 

(or she) determines an allocation. Hence, the central planner designs a mechanism to 

induce informed players to reveal their knowledge about the state. In this case, the 

mechanism must incentivize these players to make the truthful announcements as 

unique equilibrium behavior. The requirement of uniqueness is a quite substantial 

restriction in the implementation problem. The basic problem is therefore to clarify 

whether the central planner can design such a well-behaved mechanism.3 

The main departure from the previous works on implementation is that in our 

model, some partial information about the state becomes public and verifiable after the 

central planner determines an allocation. The central planner can utilize this verified 

information as the clue to detecting players’ lying. By making the monetary transfers 

contingent on this verified information as well as their announcements, the central 

planner attempts to design a mechanism that can effectively penalize any detected liar, 

making players willing to tell the truth. This paper clarifies the extent to which a wider 

variety of SCFs are uniquely implementable with partial verification than without it. 

This paper is the first attempt to consider the role of such ex-post verification in the 

unique or full implementation literature. 

Except for the allowance of verification, this paper makes a number of very severe 

restrictions on mechanism design as follows. Firstly, we select iterative dominance as 

the equilibrium concept, which is defined as the set of all strategy profiles that survive 

through the iterative removal of strategies that are dominated in the ex-post term, i.e., 

weakly dominated at every state and strictly dominated at some states. This set implies 

the set of all strategy profiles that survive through the iterative removal of strategies that 

are strictly dominated irrespective of the specification of full-support prior distribution. 

We then require the uniqueness of iteratively undominated strategy profile. Since this 

                                                        
3 For the surveys on implementation theory, see Moore (1992), Palfrey (1992), Osborne and 
Rubinstein (1994, Chapter 10), Jackson (2001), and Maskin and Sjöström (2002), for instance. 
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iterative dominance notion is a very weak equilibrium concept, our uniqueness 

requirement should be a very severe restriction. 

Secondly, from the viewpoints of robustness in terms of higher-order belief 

perturbations and Knightian uncertainty, we require a mechanism to be ‘detail-free’ in 

terms of prior distribution on the state space. Since our definition of iterative dominance 

is on the ex-post term, the mechanism must inevitably be made irrelevant to the 

specification of prior distribution, i.e., detail-free. 

Thirdly, from the viewpoint of plausibility in mechanism design, we require a 

mechanism to be ‘bounded’ in that it is not incorporated with any construction that has 

no equilibrium, such as the integer game. Because of this boundedness requirement, we 

focus on a class of mechanisms in which the message space is finite for each player. 

Fourthly, we permit only tiny transfers because of players’ limited liability. To be 

precise, we require any transfer close to zero off the equilibrium path and no transfers 

on the equilibrium path. 

The above requirements, i.e., uniqueness of iteratively undominated strategy 

profile, detail-freeness, boundedness, and tiny transfers, will make our implementation 

problem quite substantial to be solved even if we permit partial verification. Hence, the 

main purpose of this paper is to demonstrate a sufficient condition on the state space, 

under which, a SCF is uniquely implementable in iterative dominance with partial 

verification, where we design a mechanism that is bounded and detail-free, and utilizes 

only tiny transfers. 

In order to design a well-behaved bounded mechanism with tiny transfers, we will 

apply the basic concept of mechanism design that originates in Abreu and Matsushima 

(1992a, 1992b, 1994), where the central planner requires each player to make multiple 

announcements at once, randomly selects one announcement profile from their 

announcements, and fines the first deviants from some ‘reference point’. Once we can 

establish the reference point truthfully, the mechanism design a la Abreu-Matsushima 

well motivates all players to make the truthful announcements, successfully 

implementing the SCF. The remaining problem is therefore to clarify the manner in 

which we can establish such a truthful reference point. 

This remaining problem appears difficult to be solved, because the relevance of the 

verified information to the state is limited and the prior distribution is unspecified in our 
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model. In fact, the range of players’ lies that the verified information can directly detect 

is quite narrow, and we cannot even apply any device of proper scoring rule to 

incentivize players to reveal the distributions, i.e., their private information, truthfully. 

We, however, can overcome this difficulty by finding the following ‘chain of 

detection’. The verified information detects a limited but non-empty class of some 

players’ lies, which motivates these players to reveal their respective aspects of the state 

truthfully; this truthful revelation along with the verified information detects another 

class of lies, which motivates the relevant players to reveal other aspects of the state 

truthfully; and so on. 

We demonstrate a condition on the state space, namely full detection, implying that 

there exists a chain of detection, throughout which, we can iteratively detect all possible 

lies. Hence, with full detection, truth-telling is the only announcement for each player 

that survives through the iterative removal of detected lies. 

With full detection, by penalizing detected liars in an appropriate manner, we can 

make all players reveal their private information truthfully. This implies that we can 

establish the truthful reference point as the combination of the verified information and 

their truthfully announced private information. 

Based on these observations, we show as the main theorem of this paper that full 

detection is a sufficient condition, under which, a SCF is uniquely implementable in 

iterative dominance with partial verification, where the designed mechanism is bounded, 

detail-free, and permits only tiny transfers. 

Full detection appears to be an involved condition. In fact, in order to detect a 

player’s lie, we have to find out a state at which the other players never announce any 

message profile that they may possibly announce if his lie is true. However, by 

demonstrating a tractable sufficient condition for full detection, we show that, despite of 

this complexity, full detection covers a wide range of state space formulations. This is in 

contrast to the case without verification, where any non-trivial deterministic SCF is 

never implementable in the exact term. 

In order to detect all possible lies, the central planner must design, not a 

single-stage mechanism, but a sequential mechanism, in which, each player is required 

to make announcements twice at two distinct stages, i.e., at the first stage and at the 

second stage. The central planner regards their first announcements along with the 
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verified information as the reference point. He utilizes only their second announcements 

for the determination of allocation. 

At the first stage, each player is informed of his (or her) private information that 

the central planner asks him to reveal, but is less informed of the other information than 

at the second stage. By requiring players to make announcements when they are less 

informed, the central planner can prevent them from finding a mean of escape from 

detection, making the truthful reference point easier to be established. 

For instance, let us consider the case with 2n   players, where a state is 

described by 0 1( , ,..., )n    . Assume that i  is either 1, 2, or 3 for each 

{0,1,..., }i n , and 0  is ex-post verifiable. The state space   is defined as a subset 

of 1{1,2,3}n . At the first stage, each player {0,1,..., }i n  observes i  as his private 

information and the central planner requires him to announce about it. It must be noted 

that if 1{1,2,3}n  , it is impossible to detect any lie. 

Let us suppose that   is a proper subset of 1{1,2,3}n , and it is ‘moth-eaten’ in 

the sense that each player’s observation is different from his neighbor’s observation at 

every state, i.e., 1{1,2,3}n   belongs to   if and only if 

1i i    for all {1,..., }i n . 

Because of this moth-eaten nature, the verified information 0  can directly detect any 

lie about 1 , because player 1 cannot exclude the possibility that his lie 1 1    is 

equivalent to 0 , i.e., 1 0   . This motivates player 1 to tell the truth about 1 . 

 In the same manner, the truthful announcement about 1  can detect any lie about 

2 . This motivates player 2 to tell the truth about 2 . Recursively, any player 

{1,..., }i n  is well motivated to tell the truth about i , implying full detection. 

 In the process of such iterative removal of detected lies, it is crucial to assume that 

each player i  is not informed of 1i   at the first stage. Otherwise, he can find a way 

to escape from detection by announcing 1{ , }i i i    . 

This paper further investigates the case in which full detection does not hold, i.e., 

the case of partial detection. By replacing uniqueness of strategy by uniqueness of 
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outcome, we define full implementation in iterative dominance. We define a concept of 

measurability of a SCF with respect to partial detection. We then show that with partial 

detection, this measurability is sufficient for the SCF to be fully implementable in 

iterative dominance. 

Throughout this paper, we mostly assume complete information at the second stage. 

Without any substantial modification, however, we can replace this complete 

information by incomplete information at the second stage. By requiring a version of 

ex-post incentive compatibility, we show that the same arguments hold even in the 

incomplete information environment at the second stage. 

We should refer to another departure from the previous works; we do not assume 

expected utility, quasi-linearity, and risk-neutrality. This paper makes only basic 

assumptions on preferences such that each player’s utility function is continuous in 

lottery over allocations and is continuous and increasing in monetary transfer. 

 The organization of this paper is as follows. Section 2 explains related literatures. 

Section 3 shows the basic model. Section 4 investigates the case of full verification. 

Section 5 investigates the case of partial verification. Section 6 introduces the concepts 

of detection and full detection, and demonstrates the main theorem of this paper. Section 

7 investigates the case of partial detection. Section 8 investigates incomplete 

information at the second stage. Section 9 discusses about the generalization of 

detection and about the impact of boundedness on implementation with partial 

verification. Section 10 concludes. 

 

2. Literatures 

 

 The basic framework for the implementation problem was explored by Hurwicz 

(1972) and Maskin (1999). Makin showed that monotonicity is a necessary condition 

for a social choice correspondence to be fully implementable in Nash equilibrium. This 

result should be regarded as being negative, because monotonicity is a quite demanding 

condition for a deterministic SCF. In fact, with some additional restrictions, any 

deterministic SCF that is fully implementable in Nash equilibrium must be dictatorial. 
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The purpose of this paper is therefore to show permissive results for full, or unique, 

implementation. 

 Matsushima (1988) and Abreu and Sen (1991) showed a permissive result that any 

full-support stochastic SCF is monotonic, and therefore, fully implementable in Nash 

equilibrium. Hence, if we permit the tiny probability to select unwanted allocations 

even on the equilibrium path, even any deterministic SCF becomes fully implementable 

in Nash equilibrium, not in the exact sense, but in the virtual sense. In contrast, this 

paper sticks to exact implementation. 

 Moore and Repullo (1988) and Palfrey and Srivastava (1991) replaced Nash 

equilibrium with their respective refinements such as subgame perfect equilibrium and 

undominated Nash equilibrium. Abreu and Matsushima (1994) replaced Nash 

equilibrium with weak iterative dominance, or according to the terminology of Moulin 

(1979), dominance solvability, and then showed a permissive result for unique 

implementation by permitting just tiny monetary transfers off the equilibrium path. 

Chen, Kunimoto, and Chung (2015) extended this result to the Bayesian environment. 

Because of the use of refinement, these works commonly permitted the existence of 

Nash equilibria that fail to achieve the value of the SCF. In contrast, this paper will 

replace Nash equilibrium even with a weaker equilibrium concept namely iterative 

dominance in the ex-post term, eliminating all unwanted Bayesian Nash equilibria 

irrespective of the specification of full-support prior distribution. 

 Many previous works in the implementation literature have constructed 

mechanisms that have ‘implausible’ features such that the mechanisms are incorporated 

with constructions that have no equilibrium, such as the integer games. In order to 

exclude such constructions that are implausible, or according to the terminology of 

Jackson (1992), are unbounded, Abreu and Matsushima (1992a) innovated a new 

method, namely AM mechanism design, that makes the mechanism bounded by 

permitting only a finite strategy space for each player. Abreu and Matsushima then 

showed a very permissive result for unique virtual implementation in iterative 

dominance. Abreu and Matsushima (1992b) extend this result to the Bayesian 

environment. Abreu and Matsushima (1994) and Kunimoto (2015) also utilized the AM 

mechanism design for exact implementation, by replacing iterative dominance with 

weak iterative dominance. The present paper will apply the AM bounded mechanism 
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design for exact implementation without replacing iterative dominance with any 

stronger equilibrium concept such as weak iterative dominance. 

 In the Bayesian framework, the designed mechanisms generally depend on the fine 

details of a fixed prior distribution. From the viewpoint of robustness in higher-order 

belief perturbations, Bergemann and Morris (2009) emphasized the importance of 

detail-free mechanism design and the usage of ex-post equilibrium concepts. 

Alternatively, from the viewpoint of Knightian uncertainty, where each player possesses 

multiple prior distributions, Lopomo, Rigotti, and Shannon (2009) investigated 

detail-free mechanism design. This paper will define the iterative dominance notion on 

the ex-post term and design mechanisms that are detail-free in terms of prior 

distribution. 

 Based on these backgrounds, we should regard this paper as the first work to show 

the permissive result for exact implementation of SCFs by using only detail-free 

bounded mechanisms with tiny transfers. 

 The construction in this paper is divided into two parts, i.e., the application of the 

AM mechanism design, and the establishment of the truthful reference point. The 

technical contribution of this paper is mainly devoted to the latter part. 

 In order to establish the reference point truthfully, the pioneering works such as 

Abreu and Matsushima (1992a, 1992b, 1994) have utilized the incentive devices of 

‘virtualness’. Alternatively, Matsushima (2008a, 2008b) assumed the presence of tiny 

psychological cost of dishonesty for a player, and then incentivized him to make the 

truthful announcements for the reference point. In contrast, this paper will not utilize 

either the incentive device of virtualness or the psychological cost of dishonesty. 

 In order to establish the truthful reference point, this paper demonstrates an 

alternative approach by assuming that some partial information about the state is 

ex-post verifiable. There exist many previous works, such as Hansen (1985), Mezzetti 

(2004), DeMarzo, Kremer, and Skrzypaz (2005), Mylovanov and Zapechelnyuk (2014), 

Deb and Mishra (2014), and Carroll (2015), that incorporated such ex-post verification 

into the problems of mechanism design. These works commonly showed that the 

presence of ex-post verification makes incentive compatibility easier to be satisfied. 

 In contrast, this paper’s concern is about the impact of ex-post verification, not on 

incentive compatibility, but on uniqueness of equilibrium. In this respect, this paper 
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should be regarded as the first attempt to incorporate ex-post verification into the unique 

or full implementation theory. 

 The literature of persuasion games is also related to this paper, where players 

voluntarily reveal verifiable information, i.e., hard evidences, which can partially prove 

their announcements to be correct, encouraging the correct public decision making. See 

Grossman (1981) and Kamenica and Gentzkov (2011), for instance. Kartik and Tercieux 

(2012) and Ben-Porath and Lipmann (2012) investigated full implementation with such 

hard evidences, stating that the great degree to which hard evidences directly prove 

players’ announcements to be correct is crucial in implementing a wide variety of SCFs. 

In contract, this paper emphasizes that a wide variety of SCFs are implementable even if 

the verifiable information is quite limited. 

 In order to show such permissive results even with tiny verification, this paper 

assumes that the state space is common knowledge and the central planner can make the 

mechanism dependent on the state space. We then demonstrate a condition concerning 

the shape of state space, namely full detection, which guarantees any SCF to be 

implementable. 

 Full detection assumes that there exists a rare event, the occurrence of which, each 

player assigns probability zero. As pointed out by the authors in behavioral economics, 

such as Camerer and Kunreuther (1989), real people tend to assign a rare event with 

probability zero because of their psychological biases such as the optimistic bias. This 

justifies the relevancy of full detection. 

 In the literature on models of knowledge, it has been discussed as ‘the puzzle of 

the hats’, for instance, that a tiny information release gives a big influence on players’ 

reasoning. In contrast, this paper focuses on the influence of tiny information release, 

i.e., verified information, on player’s incentives. This information should be hidden 

from players when they make announcements for the purpose of establishing the 

reference point. 

 The method of AM mechanism design has long been criticized without any formal 

analysis, because of the conjecture that this method crucially depends on the expected 

utility assumption. This paper will prove that this criticism is groundless. The 

functioning of AM mechanism relies just on the local linearity of preferences, implying 

the irrelevance of global linearity such as expected utility and quasi-linearity. Hence, 
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this paper will be expected to promote more popularity of this essentially powerful 

method. 

 

3. The Model 
 

We consider a situation in which the central planner determines an allocation and 

makes monetary transfers. Let {1,..., }N n  denote the finite set of all players, where 

we assume 3n   except for Section 8. Let A  denote the finite set of all allocations. 

Let   denote the set of all lotteries over allocations4. Let   denote the finite set of all 

states, i.e., the finite state space. A social choice function, shortly a SCF, is defined as 

:f  . 

We define the state-contingent utility function for each player i N  as 

:iu R R  . 

where ( , , )i iu t   implies the utility for player i  when he (or she) expects the state 

  to occur, the central planner to determine an allocation according to the lottery 

 , and make a monetary transfer it R  to player i . Let ( )i i Nu u  . 

 We assume that ( , , )i iu t   is continuous with respect to   and it R , and 

that ( , , )i iu t   is increasing in it . Importantly, this paper does not assume expected 

utility, quasi-linearity, and risk-neutrality. Let iU  denote the set of all utility functions 

for player i . 

  

4. Full Verification 

 

 As a benchmark for this paper’s analysis, this section will assume full verification 

as follows. After the central planner determines an allocation, but before he makes 

monetary transfers, the state becomes public and verifiable to the court. The central 

planer can make the monetary transfers contingent on the state as well as the players’ 

announcements, while he cannot make the allocation choice contingent on the state. 

                                                        
4 We denote   . We write a   if ( ) 1a  .  
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We define a mechanism as G ( , , )M g x , where ii N
M M


  , iM  denotes the 

set of all messages of player i , :g M   denotes the allocation rule, ( )i i Nx x   

denotes the transfer rule, and :ix M R  denotes the transfer rule for player i . 

We confine our attention to mechanisms such that iM  is finite for all i N , i.e., we 

focus on a class of mechanisms that are so-called bounded.5 

This section assumes complete information in that each player each player 

observes the state  , while the central planer cannot observe it, before his 

allocation choice. Each player i N  announces a message i im M  that is contingent 

on the state  . The central planner then determines an allocation according to the 

lottery ( )g m  , where ( )i i Nm m M   denotes the message profile. After the state 

  becomes verifiable, the central planner receives the monetary transfer ( , )ix m R   

from each player i . 

A strategy for each player i  in a mechanism G  is defined as :i is M . 

Player i  announces the message ( )i is M   when he observes  . Let iS  denote the 

set of all strategies for player i . Let ii N
S S


   and ( )i i Ns s S  . 

 

4.1. Iterative Dominance 

 

We introduce the equilibrium concept, namely iterative dominance, which is 

defined as the survival of iterative removals of messages that are dominated with strict 

inequality in the ex-post term, in the following manner. For every i N  and  , 

let 

   (0, )i iM M  . 

Recursively, for each 1h , we define a subset of player 'i s  messages 

( , )i iM h M   in the manner that ( , )i im M h   if and only if there exists no 

( 1, )i im M h    such that for every ( 1, )i im M h    , 

   ( ( ), ( , ), ) ( ( , ), ( , , ), )i i i i i i i iu g m x m u g m m x m m        , 

                                                        
5 For a further discussion about boundedness, see Subsection 9.2. 
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where 
\{ }

( 1, ) ( 1, )i jj N i
M h M h  

    . Here, we require each player i  to prefer im  

to im  irrespective of ( 1, )i im M h    . We require strict inequalities for the iterative 

steps of eliminating dominated messages. 

 

Definition 1: A strategy i is S  for player i  is said to be iteratively undominated in 

G  with full verification if 

   
0

( ) ( , )i i
h

s M h 



   for all  . 

 

 Because of the requirement of strict inequalities, the order of elimination does not 

matter in the definition of iterative dominance. By requiring the uniqueness of 

iteratively undominated strategy profile, we define unique implementation in iterative 

dominance with full verification as follows. 

 

Definition 2: A mechanism G is said to uniquely implement a SCF f  in iterative 

dominance with full verification if there exists the unique iteratively undominated 

strategy profile s S  in G, i.e., 

   
0

( , ) { ( )}i i
h

M h s 



  for all   and i N , 

and it induces the value of the SCF, i.e., 

   ( ( )) ( )g s f   for all  . 

 

 The definition of iterative dominance is irrelevant to the specification of prior 

distribution on  . That is, the mechanism that uniquely implements a SCF in iterative 

dominance with full verification is “detail-free” with respect to prior distribution on  . 

 

4.2. Construction of Mechanisms 
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Fix arbitrary real numbers 1 0   and 2 0  . Fix an arbitrary integer 0K  . We 

construct a mechanism * *
1 2( , , , ) ( , , )G G f K M g x    in the following manner. For 

every i N , let 

   
1

K
k

i i
k

M M


  , 

and 

k
iM    for all {1,..., }k K . 

Player i N  announces K  sub-messages k k
i im M  at once. 

 For each {1,..., }k K , we define :k kg M   in the manner that for each 

 , 

   ( ) ( )k kg m f     if k
im   for at least 1n  players, 

and 

   *( )k kg m a     if there exists no such  , 

where *a A  is an arbitrary allocation, which is regarded as the status quo allocation. 

Let 

   1

( )
( )

K
k k

k

g m
g m

K



. 

 The central planner randomly selects an integer k  from {1,..., }K , and 

determines an allocation according to the lottery ( )k kg m  . The central planner 

selects an allocation according to the value of the SCF, i.e., ( )f  , if at least 1n   

players i  announce k
im  . Otherwise, he selects the status quo allocation *a . 

 Let 

   1 2( , ) i
i

r
x m

K
      if there exists {1,..., }k K  such that 

        k
im  , and 

        k
jm    for all k k   and i N , 

and 
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   2( , ) i
i

r
x m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  denotes the number of integers {1,..., }k K  such that k
im  . 

 If a player is one of the first deviants from  , i.e., one of the players who tell lies 

as the youngest sub-message among all liars, he is fined the monetary amount 1 . Any 

player i N  is fined the monetary amount 2
ir

K
 . 

 Since 

   1 20 ( , )ix m      , 

by selecting 1 2   close to zero, we can make the monetary transfer ( , )ix m   as 

close to zero as possible. 

 We denote a strategy 1( )k K
i i ks s  , where :k k

i is M  . We define the honest 

strategy for player i , * *
1( )k K

i i ks s  , as 

   * ( )k
is    for all {1,..., }k K  and  . 

The honest strategy profile * *( )i i Ns s   induces the value of the SCF f  in *G , i.e., 

   *( ( )) ( )g s f   for all  , 

and no monetary transfers, i.e., 

   *( ( ), ) 0ix s     for all i N  and  . 

 The construction of the mechanism *G  is based on the bounded mechanism 

design that originates in Abreu and Matsushima (1992a, 1992b, 1994). Abreu and 

Matsushima demonstrated the basic concepts relevant to *G , such that each player 

announces multiple sub-messages at once, the central planner randomly selects one 

sub-message profile, and he fines the first deviants. 

 There is a substantial difference between this paper and Abreu and Matsushima in 

that we do not utilize any incentive device of ‘virtualness’ that originates in Matsushima 

(1988) and Abreu and Sen (1991). Virtualness permits the selections of undesirable 

allocation even on the equilibrium path. In contrast, this paper does not permit such 

selections at all, i.e., requires a mechanism to achieve, not virtually, but exactly, the 

value of the SCF. 
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4.3. Possibility Theorem 

 

 Since ( , , )i iu t   is continuous in ( , )it  and increasing in it , we can select a 

sufficient K  such that whenever 

1
max ( ) ( )

a A
a a

K
 


  , 

then 

(1)   1( , , ) ( , , )i i i iu t u t         for all 2[0, ]it   and  . 

The inequalities (1) imply that a first-deviant’s loss from the monetary fine 1  is 

always greater than his gain from the change of allocation caused by his lying. 

 The following theorem shows that *G  uniquely implements f  in iterative 

dominance with full verification. Since *G  is well-defined, we can conclude that with 

full verification, any SCF is uniquely implementable in iterative dominance, where we 

need almost no monetary transfers off the equilibrium path, and need no monetary 

transfers on the equilibrium path. 

 

Theorem 1: The honest strategy profile *s  is the unique iteratively undominated 

strategy profile in *G  with full verification. 

 

Proof: We can show that each player i N  prefers 1
im  . Suppose that there exists 

a player \{ }j N i  who announces 1
jm  . Then, by announcing 1

im   instead of 

 , player i  is fined 1  or even more. From (1), the impact of the fine 1  on his 

welfare is greater than the impact of the resultant change of allocation. 

 Next, suppose that there exists no player \{ }j N i  who announces 1
jm  . 

Then, by announcing 1
im   instead of  , player i  is fined 2  or even more. 

(Even if he announces 1
im  , he may still be one of the first deviants, and therefore, 

he may not save the fine 1  in this case.) From the specification of g , there is no 
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resultant change of allocation. These observations imply that he prefers 1
im   

regardless of the other players’ announcements. 

 Fix an arbitrary integer {2,..., }h K . Suppose that each player i N  announces 

h
im    for all {1,..., 1}h h  . According to the same manner as above, we can show 

that he prefers h
im  . Suppose that there exists a player \{ }j N i  who announces 

h
jm  . Then, by announcing h

im   instead of  , player i  is fined 1  or even 

more. From (1), the impact of the fine 1  on his welfare is greater than the impact of 

the resultant change of allocation. Next, suppose that there exists no player \{ }j N i  

who announces h
jm  . Then, by announcing h

im   instead of  , player i  is 

fined 2  or even more. The specification of g  implies that there is no resultant 

change of allocation in this case. Hence, he prefers h
im  . 

Q.E.D. 

 

5. Partial Verification 

 

From this section, let us describe a state as 

0 1( , ,..., )n    . 

For each {0}i N  , i  denotes the set of possible i . Let 
{0}\{i}i jj N 

   


, 

{0}\{ }( )i j j N i i     , 
{0}\{i, }i j ll N j  

   


, and {0}\{ , }( )i j l l N i j i j       . 

 We assume that   is a proper subset of 
{0} ii N

 


. Each player i N  regards the 

set difference 
{0}

\ii N



   


 as the rare event the occurrence of which is ignorable. 

Let ( )i i i    denote the set of possible i  such that ( , )i i   . We assume 

that for every i i  , ( )i i  is nonempty. 

We assume partial verification as follows. After the central planner determines an 

allocation, but before he determines monetary transfers, only 0  becomes public and 

verifiable to the court. 
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5.1. Sequential Mechanisms 

 

We assume that each player i N  observes i  at the first stage, i.e., observes 

i  earlier than {0}\{ }( )i j j N i    . The central planner requires each player i  to 

announce about i  as his first announcement at the first stage, i.e., announce before he 

observes i . 

This section assumes that each player i N  observes i  at the second stage, 

i.e., just before the central planner selects an allocation. The central planner requires 

each player i  to announce about the state   as his second announcement at the 

second stage, i.e., just after he observes i . In other world, this section assumes 

incomplete information at the first stage, while complete information at the second stage. 

In Section 8, we will replace this complete information assumption with the more 

general incomplete information at the second stage. 

Based on the above-mentioned twice requirements of announcement, we define a 

sequential mechanism as 0( , , , )M M g x  , where 0 0
ii N

M M


  , 0
iM  denotes the set 

of possible first announcements by player i , ii N
M M


  , iM  denotes the set of 

possible second announcements by player i , 0:g M M   denotes the allocation 

rule, ( )i i Nx x   denotes the transfer rule, and 0
0:ix M M R    denotes the 

transfer rule for player i . We assume that both 0
iM  and iM  are finite sets for each 

i N , i.e., we focus on a set of bounded sequential mechanisms. 

After observing i , but before observing i , i.e., at the first stage, each player i  

makes his first announcement 0 0
i im M . After observing i , i.e., at the second stage, 

each player i  makes his second announcement i im M . The central planner then 

selects an allocation according to 0( , )g m m  . After 0  becomes verifiable, the 

central planner receives 0
0( )ix m ,m, R   from each player i . 

We will assume imperfect information in that each player cannot observe the other 

players’ first and second announcements. 
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A strategy for player i  in a sequential mechanism   is defined as 0( , )i i is s  , 

where 0 0:i i is M   and :i is M . He announces 0 0( )i i is M   as his first 

announcement. He announces ( )i is M   as his second announcement. Because of the 

imperfect information assumption, his second announcement does not depend on the 

other players’ announcements. Let 0
iS  denote the set of possible 0

is . Let 0
i i iS S    

denote the set of all strategies for player i  in  . Denote 0 0
ii N

S S


  , i
i N

    , and 

( )i i N    . 

 

5.2. Iterative Dominance 

 

With partial verification, we define iterative dominance as follows. For every 

i N , let 

0 0ˆ (0, )i i iM M   for all i i  , 

and 

   ˆ (0, )i iM M   for all  . 

Let 0 0
0

ˆ ˆ(0, ) (0, )i i
i N

M M  
  , and 0 0

0 \{ }

ˆ ˆ(0, ) (0, )i i j jj N i
M M    

  . Recursively, for 

each 1h , we define a subset of player 'i s  first messages 0 0ˆ ˆ( , )i i iM h M   in the 

manner that 0 0ˆ ( , )i i im M h   if and only if there exists no 0 0ˆ ( 1, )i i im M h    such 

that for every ( )i i i   , ˆ ( 1, )m M h   , and 0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists ( )i i i    such that for every ˆ ( 1, )m M h    and 

0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 
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We define a subset of player 'i s  second messages ( ,ˆ )i iMM h    in the manner that 

( , )ˆ
i im hM   if and only if there exists no ( 1, )ˆ

i im hM    such that for every 

( 1, )ˆ
i im M h     and 0 0

0
ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

 

Definition 3: A strategy 0( , )i i i is s    for player i  is said to be iteratively 

undominated in   with partial verification if 

   0 0

0

ˆ( ) ( , )i i i i
h

s M h 



   for all i i  , 

and 

0

ˆ( ) ( , )i i
h

s M h 



   for all    . 

 

 Suppose that 0i   for all i N , and 

   0i   for all i N  if and only if  . 

This supposition corresponds to the full verification case studied in Section 4, in which, 

( )i i  is a singleton for all i N  and i i  . Clearly, the definition of iterative 

dominance in this section is equivalent to that of iterative dominance with full 

verification. 

 The order of elimination does not matter in the definition of iterative dominance 

with partial verification. Even if we change the order of eliminating strategies, the set of 

eventually survived strategies is unchanged. The reason for this irrelevance is that for 

every i i  , there exists ( )i i i    for which the strict inequalities hold for 

players’ incentive irrespective of the other players’ announcements. 

  

Definition 4: A sequential mechanism   is said to uniquely implement a SCF f  in 

iterative dominance with partial verification if there exists the unique iteratively 
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undominated strategy profile    in   with partial verification, and this profile 

induces the value of the SCF, i.e., 

   ( ( )) ( )g f    for all  . 

 

 The definition of iterative dominance is irrelevant to the specification of prior 

distribution on  . That is, the sequential mechanism that uniquely implements a SCF 

in iterative dominance with partial verification is “detail-free” with respect to prior 

distribution on  . 

 It is implicit to assume in this paper that at the first stage, each player i N  

prefers a ( )i -contingent choice ( , )i i
if t   to another ( )i -contingent choice 

( , )i i
if t    if ( , )i i

if t   makes a more preferable choice of allocation and transfer for 

player i  than ( , )i i
if t    irrespective of i , i.e., if for every ( )i i i   , 

   ( ( ), ( ), ) ( ( ), ( ), )i i i i
i i i i i i i i i iu f t u f t             , 

where : ( )i
i i if      and : ( )i

i i it R   . With this implicit assumption, we 

can safely say that any message that is eliminated through the iterative procedure is 

regarded as a message that is dominated with strict inequality irrespective of the 

specification of full-support prior distribution on  . 

 In the definition of iterative dominance with partial verification, we required strict 

inequalities for, not all, but some, states. This implies that any eliminated message is 

weakly dominated for all non-full-support distributions, while it is strictly dominated 

for all full-support distributions. 

 

6. Full Detection 

 

 This section demonstrates a sufficient condition under which any SCF is uniquely 

implementable in iterative dominance with partial verification. This section is the main 

part of this paper. 

 

6.1. Definitions 
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 For each i N , let us denote : 2 i
i i 

   , where 

   ( )i i i     , 

and 

0 0   for all ( )i i i     . 

We regard the function i  as describing the pattern of the announcements made by all 

players other than player i . That is, they announce a profile that belongs to 

( )i i i      when i  occurs. Here, we regard player 0 as the dummy player who 

always announce about 0  truthfully. 

 We introduce a notion on i , namely detection, as follows. 

 

Definition 5: A function i  is said to detect player i  for i  against i  if there 

exists ( )i i i    such that 

(2)   ( ) ( )i i i i           for all ( )i i i    . 

 

 Suppose that i  is correct, but player i  announces i i    incorrectly. 

Suppose that for every i , the other players announce according to ( )i i i     , 

i.e., they announce a profile 0i   that satisfies 

   0 0( , ) ( )i i i        . 

Note that if player 'i s  announcement i  is correct, the other players announce 

according to ( )i i    for some ( )i i i    . 

 Suppose that player i  expects 0 0( , ) ( )i i i i         to occur. Then, player 

i  expects the other players to announce according to ( )i i   . However, this along 

with (2) implies that the other players never announce according to ( )i i   , which 

contradicts the expectation of player i  that i  occurs. Hence, in this case, we can 

recognize that player 'i s  announcement i  is incorrect, i.e., i  detects player i  

for i  against i . 
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 Based on the detection notion, we define full detection as follows. For every 

{0,1,...}h  and {0}i N  , we specify ( ) : 2 i
i ih    and ( ) : 2 i

i ih 
    in 

the following manner. Let 

   0 0 0( )( ) { }h    for all 0 0   and {0,1,...}h , 

and 

   (0)( )i i i     and 0(0)( ) { }i i i       for all i N  and  . 

Recursively, for each {1,2,...}h , we define ( )( ) ( 1)( )i i i ih h      and 

( )( ) ( 1)( )i i i ih h         in the manner that for every ( 1)( )i i ih    , 

   ( )( )i i ih     if and only if ( 1)i h   fails to detect player i  

       for i  against i , i.e., 

 
( )

{ ( )} ( )
i i i

i i i i
 

    
  

   





   for all 

 ( )i i i   , 

and for every ( 1)( )i i ih      , 

   ( )( )i i ih       if and only if ( )( )j j jh     for all 

       {0} \ { }j N i  . 

Here, ( )i h  implies the set of all announcements that can survive through the h

-round iterative removal of detected lies. 

 

Full Detection: For every i N  and i i  , 

   ( )( ) { }i i i
h

h  


 . 

 

 The sequence 0(( ( ), ( 1)) )i i i N hh h  
    describes the iterative removal of 

detected lies. Full detection implies that the iterative removal of detected lies eventually 

eliminates all lies. Truth-telling is therefore the only announcement that survives 

through such removal procedure. Since   is finite, there exists a positive integer *h  

such that 

   ( )( ) { }i i ih    for all *h h . 
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 We demonstrate the following tractable sufficient condition for full detection. Let 

us describe a state as 

   0( ,..., )L   , 

where L  is a positive integer. We assume that there exists a function 

{0}:{0,..., } 2NL    such that for every {0}i N   

   ( )i L i  , 

where we denote 

   ( ) { {0,..., } | ( )}L i l L i l   , 

and 

   ( )C l l C    for each {0,..., }C L . 

We assume that 

   (0) {0}L  , i.e., 0 0  . 

Here, ( )l N   implies the set of all players who observe l  at the first stage, and 

( ) {1,..., }L i L  implies the set of all components of the state that player i  observes at 

the first stage. Let l  denote the set of possible l , i.e., 
{0,..., } ll L

    . 

 For every {0}i N   and ( )l L i , let 

   ( , ) { {0,..., 1} | ( )}L l i l l i l     , 

which implies the set of all components of the state that are younger than l  and player 

i  cannot observe at the first stage. For every {0}i N  , ( )l L i , and i i  , let 

   ( , ) ( , ) ( )L l i L l i i   if and only if there exists   such that 

       i i   and ( , ) ( , )L l i L l i  . 

Here, ( , ) ( )L l i i  implies the set of all ( , )L l i  that are consistent with player 'i s  

observation at the first stage. 

 

Proposition 2: Suppose that for every {1,..., }l L , there exist ( )i l  such that for 

every i i   and i i  , 

   ( , ) ( , )( ) ( )L l i i L l i i      if l l    and l l     for all ( ) \{ }l L i l . 
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Then,   satisfies full detection. 

 

Proof: Consider 1l  . In this case, ( , ) ( , )( ) ( )L l i i L l i i      implies that 0  detects 

player (1)i   for i  against i  whenever 1 1   , where we must note that the 

dummy player 0 always tell the truth about 0  because of its verification. 

 Fix an arbitrary {2,..., }h L . Suppose that for every {0,..., 1}h h  , player 

( )l   tells the truth about l  . In this case, ( , ) ( , )( ) ( )L l i i L l i i      implies that ( , )L l i  

detects player ( )i l  for i  against i  whenever l l   . 

Q.E.D. 

 

 A special case of the sufficient condition in Proposition 2 is introduced as follows. 

Suppose that 

   0l    for all {1,..., }l L , 

and each component of the state is always different from its neighbors, i.e., for every 

{0,..., } ll L



   , 

     if and only if 1l l    for all {1,..., }l L . 

Moreover, suppose that for every {1,..., }l L , there exists ( )i l N   such that 

   ( )l L i , 

   { 2, 1} ( )l l L i    if 2l  , 

and 

   0 ( )L i  if 1l  . 

Hence, player ( )i l  cannot receive any information about 1l   at the first stage. 

 In this special case, it is clear that   satisfies the sufficient condition in 

Proposition 2, i.e.,   satisfies full detection. A player’s lie about l  is detected 

through the observation of 1l  . Since 0  is verifiable, we can eliminate all lies about 
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1  through the observation of 0 . Recursively, for every {2,..., }l L , we can 

eliminate all lies about l  through the truthful announcement about 1l 
6. 

 

6.2. The Theorem 

 

Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . In order to uniquely implement a 

SCF f  in iterative dominance with partial verification, we construct a sequential 

mechanism * * 0
1 2 3( , , , , ) ( , , , )f K M M g x      as follows. Let 

  0
i iM   , 

and 

   
1

K
k

i i
k

M M


  and k
iM    for all {1,..., }k K . 

For each {2,..., }k K , we define :k kg M   in the manner that for each  , 

   ( ) ( )k kg m f      if k
im   for at least 1n  players, 

and 

   *( )k kg m a      if there exists no such  . 

Let 

   0 1

( )
( , )

K
k k

k

g m
g m m

K



. 

The allocation choice does not depend on the first announcements 0m . 

 Let 

   
*

0 0 0
0 0 0

1

( , , ) ( , ) ( , , )
h

h
i i i

h

x m m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h     if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

                                                        
6 We will show some generalization of this special case in Subsection 9.1. 
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0
0( , ) 0h

ix m       if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

   0
0 2 3( , , ) i

i

r
z m m

K
     if there exists {1,..., }k K  such that 

         0
0( , )k

im m  , and 

 0
0( , )k

j mm    for all k k   and 

\{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  implies the number of {2,..., }k K  such that 0
0( , )k

im m  . 

 We select 1 2 3( , , )    such that 

(3)   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

Since 

   
*

0
0 1 2 3

1

0 ( , , ) ( )
h

i
h

x m m h   


     for all i N  and 0
0( , , )m m  , 

by choosing 
*

1 2 3
1

( )
h

h

h  


   close to zero, we can make 0
0( , , )ix m m   as close to 

zero as possible. 

 We define the honest strategy for player i  in * , * 0* *( , )i i is s  , as 

  0* ( )i i is    for all i i  , 

and 

   * ( )k
is    for all {1,..., }k K  and  . 

The honest strategy profile * *( )i i N    induces the value of the SCF f , i.e., 

   *( ( )) ( )g f    for all  , 

and no monetary transfers, i.e., 

   *( ( ), ) 0ix      for all i N  and  . 



27 
 

 Because of the continuity assumption, we can select a sufficient K  such that 

whenever 
1

max ( ) ( )
a A

a a
K

 


  , then 

(4)  2( , , ) ( , , )i i i i i iu t u t         for all 
*

1 3
1

[0, ( ) ]
h

i
h

t h 


   and i i  . 

The inequalities (4) imply that 2  is close to zero but is sufficient compared with the 

change of allocation within the 
1

K
 limit. 

 According to h
ix , any player i N  is fined the monetary amount 1( )h  if he 

makes a first announcement that is detected by ( 1)i h   which describes the profiles 

of the other players’ announcements that are survived through the ( 1)h  round 

iterative removals of detected messages. This along with (3) and full detection implies 

that each player is willing to announce an undetected message, i.e., the honest message, 

as his first announcement. 

 According to iz , any first deviant from the combination of the profile of first 

announcements and the verified information 0
0( , )m  in the second announcement 

stage is fined the monetary amount 2 . Any player is additionally fined 3

K


 whenever 

he deviates from 0
0( , )m . We apply the bounded mechanism design that originates in 

Abreu and Matsushima (1992a, 1992b, 1994), showing that by setting the first 

announcement and the verified information as the reference, any player is willing to 

make the truthful second announcement. 

 We can see this paper’s main technical contribution in the arguments about the 

players’ incentive at the first stage. It is crucial in incentives that each player i  makes 

the first announcement before he observes i . The informational restriction to i  at 

the first stage serves to prohibit each player from seeking a mean of escape from 

detection. 

 Based on these observations, we can demonstrate the following theorem, which 

states that under full detection, the sequential mechanism *  uniquely implements f  

in iterative dominance with partial verification. Since *  is well-defined, we can 
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conclude that with full detection, any SCF is uniquely implementable in iterative 

dominance with partial verification, where we need almost no monetary transfers off the 

equilibrium path, and no monetary transfers on the equilibrium path. 

  

Theorem 3: Under full detection, the honest strategy profile *  is the unique 

iteratively undominated strategy profile in * . That is, *  uniquely implements f  in 

iterative dominance with partial verification. 

 

Proof: Suppose that player i  observes i  and announces 0 (1)( )i i im    as his first 

announcement. In this case, (0)i  detects him for i  against 0
im ; there exists 

( )i i i    such that 

(0)( ) (0)( )i i i i           for all 0( )i i im  . 

Since 0 0(0)( ) { }i i iM       , the announcement by any other player \{ }j N i  

belongs to (0)( )j j  . This implies that, by announcing 0
im , he is fined 1(1) . In 

contrast, he can save this fine by announcing i  truthfully. Since the announcement of 

0
im  is irrelevant to the allocation choice and 1(1)  is large enough to satisfy (3), it 

follows that player i  never announces any element that does not belong to (1)( )i i  . 

 Consider an arbitrary *{2,..., }h h . Suppose that any player i N  announces the 

message for the first announcement that belongs to ( 1)( )i ih  . Suppose that player 

i  observes i  and announces 0 ( )( )i i im h  . In this case, ( 1)i h   detects him 

for i  against 0
im . That is, there exists ( )i i i    such that 

( 1)( ) ( 1)( )i i i ih h            for all 0( )i i im  . 

Since the announcement by any other player \{ }j N i  belongs to ( 1)( )j jh  , he 

is fined 1( )h . In contrast, he can save this fine by announcing i  truthfully. Since the 

announcement of 0
im  is irrelevant to the allocation choice and 1( )h  is large enough 

to satisfy (3), it follows that player i  never announces any element that does not 

belong to ( )( )i ih  . 
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From the above arguments, we have proved that if i  is strictly iteratively 

undominated, then, 

0 ( ) ( )( )i i i i
h

s h  


   for all i i  , 

which, along with full detection, implies that 

0 ( )i i is    for all i i  . 

 Since all players tell the truth for their first announcements, i.e., any player i N  

announces 0
i im  , we can prove in the same manner as in Theorem 1 that for each 

i N , if i  is strictly iteratively undominated, then, 

( )k
is    for all   and {1,..., }k K , 

where we utilized the inequality (4) for deriving this statement. 

 From these observations, we have proved that *  is the unique quasi-strict 

iteratively undominated strategy profile in * . 

Q.E.D. 

 

 In the proof, we utilize the basic concept of bounded mechanism design that 

originates in Abreu and Matsushima (1992a, 1992b, 1994) such that the central planner 

requires each player to make multiple announcements at one time, selects one profile 

from their announcements, and fines the first deviants from the reference point. Once 

we can establish the truthful reference point, the mechanism a la Abreu-Matsushima can 

successfully implement the SCF in iterative dominance. 

 Hence, the remaining problem is to show how the central planner can establish 

such truthful reference point. This problem becomes quite substantial once we require 

the mechanism to be detail-free in terms of prior distribution. In fact, this is an easy 

problem to solve if we permit a particular prior distribution : [0,1]p   to be 

common knowledge. For instance, let us denote by 0( | ) : [0,1]i ip     the ( )i 

conditional distribution on 0  induced by p . Assume that for each i N , 

( | ) ( | )i i i ip p     whenever i i  . 
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In this case, by introducing a device of proper scoring rule, the central planner can 

incentivize each player i  to reveal i  truthfully, establishing the truthful reference 

point. 

 Since this paper assumes no such common knowledge, we need to utilize the 

‘moth-eaten’ nature of the state space, which is expressed by full detection, in the more 

complicated manner than the differences in conditional distribution. 

 

7. Partial Detection 

 

This section considers the case in which   does not satisfy full detection. We 

weaken implementation by replacing the uniqueness of iteratively undominated strategy 

profile with the uniqueness of outcome induced by iteratively undominated strategy 

profiles. By doing this manner, we define full implementation in iterative dominance 

with partial verification as follows. 

 

Definition 6: A sequential mechanism   is said to fully implement a SCF f  in 

iterative dominance with partial verification if every iteratively undominated strategy 

profile    in   induces the value of the SCF, i.e., 

   ( ( )) ( )g f    for all  . 

 

 Full implementation permits the multiplicity of iteratively undominated strategies. 

However, it require any profile of iteratively undominated strategies to correctly achieve 

the value of the SCF. 

 A partition on i  is defined as : 2 \ { }i
i i    , where for every i i   

and i i , 

   either ( ) ( )i i i i     or ( ) ( )i i i i     . 

We can regard a partition i  as the set of subsets i i   such that 

i i   if and only if ( )i i i   for some i i  . 

Let {0}( )i i N    . Denote {0}( ) ( ( ))i i i N      . 
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 We specify *
i  as the finest partition on i  satisfying that 

   *( )( ) ( )i i i i
h

h  


  for all i i  , 

where ( )i h  was introduced in the definition of full detection. Note that full detection 

holds if and only if for every {0}i N  , *
i  is the full partition, i.e., *( ) { }i i i    

for all i i  . 

 

Definition 7: A SCF f  is said to be measurable if for every   and  , 

( ) ( )f f   whenever * *( ) ( )i i i i     for all {0}i N  . 

 

 Measurability implies that the value of f  is the same between i  and i  

whenever both belong to the same cell of * . The following theorem shows that the 

measurability is a sufficient condition for a SCF to be fully implementable in iterative 

dominance with partial verification. 

 

Theorem 4: Suppose that a SCF f  is measurable. Then, it is fully implementable in 

iterative dominance with partial verification. 

 

Proof: See Appendix A. 

 

8. Incomplete Information at the Second Stage 

 

 Throughout the previous sections, we made the complete information assumption 

at the second stage. This section eliminates this assumption, and instead assumes 

incomplete information at the second stage as follows. 

 For each i N , let us fix an arbitrary set ( ) {0}C i N  , where we assume 

( )i C i . Each player i  observes ( ) ( )( )C i j j C i    at the second stage. He cannot 

observe {0}\ ( )N C i  . Hence, he makes his second announcement contingent only on 

( )C i . 
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 We define {0}\( )C N C i
i C




     in the manner that 

   {0}\( )C C N C    if and only if {0}\( , )C N C   . 

We redefine a strategy 0( , )i i is s   for each player i  by replacing :i is M  with 

( ):i C i is M  . 

 We redefine iterative dominance as follows. For every i N , let 

0 0ˆ (0, )i i iM M   for all i i  , 

and 

   ( )
ˆ (0, )i C i iM M   for all  . 

Let ( )
ˆ ˆ(0, ) (0, )j C jj N

M M 


   and ( )\{ }

ˆ ˆ(0, ) (0, )i j C jj N i
M M  

  . Recursively, for 

each 1h , we define 0 0ˆ ˆ( , )i i iM h M   in the manner that 0 0ˆ ( , )i i im M h   if and 

only if there exists no 0 0ˆ ( 1, )i i im M h    such that for every ( )i i i   , 

ˆ ( 1, )m M h   , and 0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists ( )i i i    such that for every ˆ ( 1, )m M h    and 

0 0
0

ˆ ( 1, )i i im M h      , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0 0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

We define ( )
ˆ ( , )i C i ih MM    in the manner that ( , )ˆ

i im hM   if and only if there 

exists no ( )( , )ˆ 1i i C im hM    such that for every {0}\ ( ) {0}\ ( ) ( )( )N C i N C i C i   , 

( 1, )ˆ
i im M h    , and 0 0

0
ˆ ( 1, )m M h   , 

   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      , 

and there exists {0}\ ( ) {0}\ ( ) ( )( )N C i N C i C i    such that for every ( 1, )ˆ
i im M h     

and 0 0
0

ˆ ( 1, )m M h   , 
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   0 0
0( ( , ), ( , , ), )i iu g m m x m m    

0 0
0( ( , , ), ( , , , ), )i i i i i iu g m m m x m m m      . 

A strategy 0( , )i i i is s    for player i  is said to be iteratively undominated in   

with partial verification under incomplete information at the second stage if 

   0 0

0

ˆ( ) ( , )i i i i
h

s M h 



   for all i i  , 

and 

0

ˆ( ) ( , )i i
h

s M h 



   for all    . 

 

Definition 8: A SCF f  is said to be strictly incentive compatible if there exist a 

positive real number 0   and a function ( ): C ii N
f


    such that for every 

 , 

   ( )(( ) ) ( )C i i Nf f     whenever ( ) ( )C i C i    for all i N , and 

( ) {0}
i N

C i N


   

and for every i N , ( ) ( )C j C i  , and [0, ]it  , 

   ( ) ( ) \{ } ( )( ( ), , ) ( (( ) ( ) , ), , )C j j N C j j N ii i i iCi iiu f t u f t         . 

 

 Strict incentive compatibility implies that irrespective of the constant transfer it  

within the   limit, truth-telling is a weakly dominated strategy for each player i  in 

the direct mechanism given by f . Clearly, strict incentive compatibility automatically 

holds under complete information. 

 From the continuity assumption, it follows that a SCF f  is strictly incentive 

compatible if there exists f  such that for every  , 

   ( )(( ) ) ( )C i i Nf f     whenever ( ) ( )C i C i    for all i N , and 

( ) {0}
i N

C i N


   

and for every i N  and ( ) ( )C j C i  , 
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   ( ) ( ) \{ } ( )( ( ),0, ) ( (( ) ( ) , ),0, )Ci ij j N C j j N i C iu f u f        if 

( ) ( ) \{ } ( )( ) ( ) ,( ) ( )C j j N C j j N i C if f      . 

The following theorem states that with full detection and strict incentive 

compatibility, we can construct a sequential mechanism that uniquely implements the 

SCF f  in iterative dominance with partial verification under incomplete information 

at the second stage. Here, we need almost no monetary transfers off the equilibrium path, 

and no monetary transfers on the equilibrium path. 

 

Theorem 5: Assume incomplete information at the second stage, full detection, and 

strict incentive compatibility. Then, the SCF f  is uniquely implementable in iterative 

dominance with partial verification under incomplete information at the second stage. 

That is, there exists a sequential mechanism   that has the unique iteratively 

undominated strategy profile  , and 

   ( ( )) ( )g f    for all  . 

We need almost no monetary transfers off the equilibrium path, and no monetary 

transfers on the equilibrium path. 

 

Proof: See Appendix B. 

 

We further introduce a condition on a SCF as a combination of measurability and 

ex-post incentive compatibility as follows. 

 

Definition 9: A SCF f  is said to be strict measurable incentive compatible if there 

exist a positive real number 0   and a function : ii N
f


    such that for every 

 , 

   0 0( ) ( )f f   , 

and for every i N , i i  , and [0, ]it  , 

   0 0( ( ), , ) ( ( , ), , )i i i i i i i iu f t u f t           , 



35 
 

where f̂  is measurable in that for every i
i N




    and i
i N




   , 

( ) ( )f f   whenever * *( ) ( )i i i i     for all {0}i N  . 

 

 From the continuity assumption, it follows that a SCF f  is strict measurable 

incentive compatible if there exists : ii N
f


    such that for every  , 

   0 0( ) ( )f f   , 

and for every i N  and i i  , 

  0 0( ( ),0, ) ( ( , ),0, )i i i i i iu f u f          whenever 0 0( ) ( , )i if f       , 

where f̂  is measurable. 

 The following theorem shows that the strict measurable incentive compatibility is a 

sufficient condition for a SCF to be fully implementable in iterative dominance with 

partial verification under incomplete information at the second stage. 

 

Theorem 6: Assume incomplete information at the second stage and strict measurable 

incentive compatibility. Then, the SCF f  is fully implementable in iterative dominance 

with partial verification under incomplete information at the second stage. 

 

Proof: See Appendix C. 

 

9. Discussion 

 

9.1. Multi-Round Announcements 

 

 Throughout this paper, we assumed that the central planner requires each player 

i N  to make the first announcement about i  at the first stage. This subsection 

assumes that the central planner can require each player i  to make announcements 

even before the first stage, i.e., even when he observes only partial information about 
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i . We show a weaker sufficient condition than full detection for guaranteeing unique 

implementation in iterative dominance. 

 We consider a modification of the special case introduced in Subsection 6.1 as 

follows. Before the first stage, there exist T  rounds, i.e., round 1, round 2, …, and 

round T , where round T  corresponds to the first stage, and each player i  can 

observe all components of ( )( )i l l L i    by round T . 

 For each i N  and each ( )l L i , player i  observes l  at round 

( , ) {1,..., }t t i l T  . Let us denote ( , )t i l   for each ( )l L i . 

 We assume that there exists a mapping :{1,..., }L N   such that 

   ( (1),1) ( (1),0)t t  , 

and for every {2,..., }l L , 

   ( ) ( 1)l l   , 

   ( ( ), ) ( ( ), 1)t l l t l l   , and ( ( ), ) ( ( ), 2)t l l t l l   . 

Based on this assumption, we consider the T -round procedure in which for every 

{1,..., }l L , the central planner requires player ( )i l  to make an announcement 

about l  at round ( , )t i l . Since 1l l   , it is clear that player ( 1) 'l s   

announcement about 1l   detects player ( ) 'l s  lies about l . This can make unique 

implementation in iterative dominance possible to achieve by constructing some 

modification of sequential mechanism. 

 The above-mentioned assumption is substantially weaker than the sufficient 

condition in Subsection 6.1. In fact, we can permit that for every {1,..., }l L  and 

i N , 

   2 ( )l L i   even if ( )l L i  and player i  is the only person who 

       observes 2l   at the first stage. 

 For instance, let us consider the case in which 

   2L n , 

for every i N , 

   ( ) {2 1,2 1}L i i i    if i  is odd, 

and 
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   ( ) {2( 1),2 }L i i i   if i  is even. 

Note that for every {1,..., }l L  and i N , 

   2 ( )l L i   whenever ( )l L i , 

which violates the sufficient condition in Subsection 6.1. 

 Let us further suppose that 2T  , and each player i  observes 

   2 1i   at round 1 and 2 1i   at round 2 if i  is odd, 

and 

   2i  at round 1 and 2( 1)i   at round 2 if i  is even. 

Then, this case satisfies the assumption of this subsection, and therefore, we can make 

unique implementation in iterative dominance possible to achieve. 

 

9.2. Unbounded Mechanisms 
 

Throughout this paper, we confined our attention to bounded mechanisms, in 

which each player has a finite set of messages. This confinement is crucial in making 

the unique implementation problem non-trivial to solve. 

Let us reconsider a sequential mechanism, in which, each player i  makes an 

announcement 0
im  about i  at the first stage. In order to incentivize each player to 

make the honest announcement at the first stage, the previous sections assumed that   

satisfies full detection. 

We however show below that once we permit a variant of sequential mechanism to 

be unbounded, i.e., permit an infinite set of messages for each player, we can easily 

eliminate all dishonest announcements at the first stage under a much weaker condition 

than full detection. 

Let us denote :i i i    and 0 0( ) :i i N       . Assume on   that for 

every  , if it is not truth-telling, i.e., 

  0 0( , ( ))      for some  , 

then there exists   such that 

   0 0( , ( ))    . 
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This implies that whenever there exists a player who tells a lie, then there exists a state 

at which the resultant announcement profile, along with the verified 0 , belongs to the 

rare event. It is clear that this assumption is weaker than full detection, and it is not 

sufficient for a bounded sequential mechanism to eliminate all dishonest announcements 

at the first stage. 

 However, by constructing an unbounded mechanism, we can eliminate all 

dishonest announcements at the first stage. Consider the integer game, in which, each 

player simultaneously announces a positive integer, and the player who is the only 

person that announces the biggest integer among all players wins a positive monetary 

amount. Note that the integer game has no iteratively undominated strategy profile. 

 We then construct an unbounded mechanism in the manner that the players play 

the sequential mechanism, and they additionally play the integer game if and only if the 

resultant announcements at the first stage, 0 0( )i i Nm m  , and the verified 0  satisfy 

   0
0( , )m  . 

Note that if a player tell a lie, then there exists a state at which the resultant combination 

0
0( , )m  belong to the rare event, i.e., 0

0( , )m  . In this case, the players fail to 

play any iteratively undominated strategy profile, because of the emptiness of iteratively 

undominated strategy profile in the integer game. Hence, we can eliminate all dishonest 

announcements. 

 

10. Conclusion 

 

We investigated unique implementation of a SCF, where we required a mechanism 

to be detail-free and bounded, utilize only tiny transfers, and satisfy uniqueness of 

iteratively undominated strategy profile. We defined the iterative dominance notion on 

the ex-post terms, and required the strict inequalities for all full-support distributions as 

the incentive constraints. 

The central concern of this paper was to clarify the impact of partial verification on 

implementation. We demonstrated a condition on the state space, namely full detection, 

under which, any SCF was uniquely implementable with partial verification. In contrast 
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to the case with no such verification, a wide variety of SCFs were uniquely 

implementable with partial verification. This permissive result held even if the range of 

players’ lies that the verified information can directly detect was quite narrow. 

It was crucial for the central planner to design, not a static, but a sequential, 

mechanism, in which, each player announced two times at two distinct stages. Each 

player was assumed to be less informed at the first stage than at the second stage. By 

doing this sequential manner, the central planner could establish the reference point 

truthfully. With the establishment of truthful reference point, we could successfully 

apply the bounded mechanism design that originated in Abreu and Matsushima (1992). 

This was the first paper to demonstrate permissive results in exact implementation 

with uniqueness of Nash equilibrium. This was also the first paper to investigate 

bounded mechanism design with unique mixed Nash equilibrium without the expected 

utility hypothesis. 

 

References 

 

Abreu, D. and H. Matsushima (1992a): “Virtual implementation in iteratively 

undominated strategies: Incomplete information,” unpublished manuscript, 

Princeton University. 

Abreu, D. and H. Matsushima (1992b): “Virtual Implementation in Iteratively 

Undominated Strategies: Complete Information,” Econometrica 60, 993–1008. 

Abreu, D. and H. Matsushima (1994): “Exact Implementation,” Journal of Economic 

Theory 64 (1), 1-19. 

Abreu, D. and A. Sen (1991): “Virtual implementation in Nash equilibrium,” 

Econometrica 59, 997–1021. 

Ben-Porath, E. and B. Lipman (2012) “Implementation with Partial Provability,” 

Journal of Economic Theory 147, 1689-1724. 

Bergemann, D. and S. Morris (2009): “Robust virtual implementation, Theoretical 

Economics 4, 45–88. 



40 
 

Camerer, C. and H. Kunreuther (1989): “Decision Processes for Low Probability 

Events: Policy Implications,” Journal of Policy Analysis and Management 8, 

565-592. 

Carroll, G. (2015): “Robustness and Linear Contracts,” American Economic Review 105, 

536-563. 

Chen, Y.-C., T. Kunimoto, and T. Sun (2015): “Implementation with Transfers,” 

mimeo. 

Deb, R. and D. Mishra (2014): “Implementation with Contingent Contracts, 

Econometrica 82, 2371-2393. 

DeMarzo, P., I Kremer, and A. Skrzypacz (2005): “Bidding with Securities: Auctions 

and Security Design,” American Economic Review 95, 936-959. 

Grossman, S. (1981): “The Informational Role of Warranties and Private Disclosure 

about Product Quality,” Journal of Law and Economics 24, 461-483. 

Hansen, R. (1985): “Auctions with Contingent Payments,” American Economic Review 

75, 862-865. 

Hurwicz, L. (1972): “On Informationally Decentralized Systems,” in Radner, R., and C. 

McGuire, eds., Decision and Organization, Amsterdam: North Holland. 

Jackson, M. (1992): “Implementation in Undominated Strategies: A Look at Bounded 

Mechanisms,” Review of Economic Studies 59, 757–775. 

Jackson, M. (2001): “A Crash Course in Implementation Theory,” Social Choice and 

Welfare 18, 655-708. 

Kartik, N. and O. Tercieux (2012): “Implementation with Evidence,” Theoretical 

Economics 7, 323-356. 

Lopomo, G., L. Rigotti, and C. Shannon (2009): “Uncertainty in Mechanism Design,” 

mimeo. 

Maskin, E. (1999): “Nash equilibrium and Welfare Optimality,” Review of Economic 

Studies 66, 23–38. 

Maskin, E. and T. Sjöström (2002): “Implementation Theory,” Handbook of Social 

Choice and Welfare 1, Vol. 1, ed. by K. Arrow, A. Sen, and K. Suzumura, Elsevier. 

Matsushima, H. (1988): “A New Approach to the Implementation Problem,” Journal of 

Economic Theory 45, 128–144. 



41 
 

Matsushima, H. (2008a): “Role of Honesty in Full Implementation,” Journal of 

Economic Theory 127, 353–359. 

Matsushima, H. (2008b): “Behavioral Aspects of Implementation Theory,” Economics 

Letters 100, 161–164. 

Mezzetti, C. (2004): “Mechanism Design with Interdependent Valuations: Efficiency,” 

Econometrica 72, 1617-1626. 

Moore, J. (1992): “Implementation in Environments with Complete Information,” in 

Advances in Economic Theory: Sixth World Congress, ed. by J.J. Laffont. 

Cambridge University Press. 

Moore, J. and R. Repullo (1988): “Subgame Perfect Implementation”, Econometrica 56, 

1191-1220. 

Moulin, H. (1979): “Dominance Solvable Voting Scheme,” Econometrica 47, 

1337-1351. 

Mylovanov, T. and A. Zapechelnyuk (2014): “Mechanism Design with Ex-Post 

Verifiability and Limited Punishment,” mimeo. 

Osborne, M. and A. Rubinstein (1994): A Course in Game Theory, MIT Press. 

Palfrey, T. (1992): “Implementation in Bayesian Equilibrium: The Multiple Equilibrium 

Problem in Mechanism Design,” in Advances in Economic Theory: Sixth World 

Congress, ed. by J.J. Laffont, Cambridge University Press. 

Palfrey, T. and S. Srivastava (1991): “Nash Implementation Using Undominated 

Strategies,” Econometrica 59, 479-501. 

 

  



42 
 

Appendix A: Proof of Theorem 4 

 

Fix arbitrary real numbers 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a sequential 

mechanism ** ** 0
1 2 3( , , , , ) ( , , , )f K M M g x      as follows. Let 

  0
i iM   , 

and 

   
1

K
k

i i
k

M M


   and *k
iM    for all {1,..., }k K . 

In contrast with the sequential mechanism *  specified in Subsection 6.2, each player 

i  announces an element of the partition *
i  as a sub-message in the second 

announcement stage instead of announcing an element of i . 

 For each {2,..., }k K , we define :k kg M   in the manner that for each 

 , 

   ( ) ( )k kg m f     if * ( )k
im    for at least 1n  players, 

and 

   *( )k kg m a     if there exists no such  . 

Let 

   0 1

( )
( , )

K
k k

k

g m
g m m

K



. 

Let 

   
*

0 0 0
0 0 0

1

( , , ) ( , ) ( , , )
h

h
i i i

h

x m m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h     if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 

0
0( , ) 0h

ix m       if 
0

0 0

( )
( , ) ( 1)( )

i i i

i i i
m

m h


  
 

  


 


 , 
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   0
0 2 3( , , ) i

i

r
z m m

K
     if there exists {1,..., }k K  such that 

         0
0( , ) k

im m  , and 

 0
0( , ) k

jm m   for all k k   and 

\{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where {0,..., }ir K  implies the number of {2,..., }k K  such that 0
0( , ) k

im m  . 

According to iz , any first player i  who reports an element of *
i  as his sub-message 

in the second announcement stage that does not include the combination of the profile 

of first announcements and the verified information 0
0( , )m  is fined the tiny amount 

given by 2 . 

We select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

With this, in the same manner as the proof of Theorem 3, we can prove that for every 

i N , if i  is quasi-strictly iteratively undominated, then 

  0 *( ) ( )i i i is    for all i i  , 

and 

   *( ) ( )k
is     for all {1,..., }k K  and  . 

This along with the measurability implies that if   is a quasi-strictly iteratively 

undominated strategy profile, then 

   ( ( )) ( )g f    for all  , 

and 

   ( ( ), ) 0ix      for all i N  and  . 

 

Appendix B: Proof of Theorem 5 
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Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a sequential 

mechanism, denoted by * * 0
1 2 3

ˆ ˆ ( , , , , ) ( , , , )f K M M g x     , as follows. Let 

   0
i iM   , 

1

K
k

i i
k

M M


  , and ( )
k
i C iM    for all {1,..., }k K . 

Let 

   2

( )
( )

1

K
k

k

f m
g m

K




 
 for all m M , 

which f  is the function introduced in Definition 6. Let 

   
*

0 0
0 0 0

1

( , ) ( , ) ( , , )
h

h
i i i

h

x m x m z m m  


  , 

where 

   0
0 1( , ) ( )h

ix m h    if 
1

0
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

0
0( , ) 0h

ix m      if 
1

0
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

   0
0 2 3( , , ) i

i

r
z m m

K
     if there exists {1,..., }k K  such that 

        0
( )

k
i C im m , and 

0
( )

k
j C jm m   for all k k   and \{ }j N i , 

and 

   0
0 3( , , ) i

i

r
z m m

K
     if there exists no such {1,..., }k K , 

where we denote 0
0 0m  , and {0,..., }ir K  implies the number of {1,..., }k K  

satisfying 0
( )

k
i C im m . We select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

Note that 

   
*

0 1 2 3
1

0 ( , ) ( )
h

i
h

x m h   


     for all i N  and 0( , )m  . 
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Hence, by choosing 
*

1 2 3
1

( )
h

h

h  


   close to zero, we can make the monetary 

transfer 0( , )ix m   close to zero, i.e., lesser than  , where   was the real number in 

Definition 6, which was selected close to zero. 

 We define the honest strategy for player i , denoted by * 0* *
1ˆ ˆ ˆ( , ( ) )k K

i i i ks s  , as 

   *0ˆ ( )i i is    for all i i  , 

and 

   *
( ) ( )ˆ ( )k

i C i C is    for all {1,..., }k K  and i i  . 

The honest strategy profile * *ˆ ˆ( )i i N    always induces the value of the SCF f  and 

no monetary transfers. 

 Because of the continuity assumption, we can select a sufficiently large K  such 

that whenever 
1

max ( ) ( )
a A

a a
K

 


  , then 

(B-1) 2( , , ) ( , , )i i i i i iu t u t         for all 
*

1 3
1

[0, ( ) ]
h

i
h

t h 


   and i i  . 

In the same manner as in Theorem 3, we can prove that if is  is strictly iteratively 

undominated in *Ĝ , then, ( ) ( )( )i i i i
h

s h  


  , that is, 

1( )i i is    for all i i  . 

Suppose 1
j jm   for all j N . We can show that if is  is strictly iteratively 

undominated, then, 

2 ( )i i is    for all i i  . 

Suppose that there exists a player \{ }j N i  who announces 2 1
j jm m , i.e., 2

j jm  . 

Then, by announcing 2
i im   instead of i , player i  is fined the monetary amount 

given by 2  or more. From (B-1), the impact of the monetary fine 2  on his welfare 

is greater than the impact of the resultant change of allocation. Next, suppose that there 

exists no player \{ }j N i  who announces 2
j jm  . Then, by announcing 2

i im   

instead of i , player i  is fined the monetary amount given by 3 . Because of strict 
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incentive compatibility, the resultant change of allocation never improves his welfare. 

Hence, player i  prefers 2
i im  . 

 Fix an arbitrary 3h  . Suppose that h
j jm    for all j N  and h h  . In the 

same manner as above, we can show that each player i  prefers h
i im  . These 

observations imply that if is  is strictly iteratively undominated, then, 

( )k
i i is    for all i i   and all {1,..., }k K , 

that is, *ˆi is s . 

 

Appendix C: Proof of Theorem 6 

 

Fix arbitrary real numbers, 1( ) 0h   for each *{1,..., }h h , 2 0  , and 3 0  . 

Let 
*

1 1 1( ( ))h
hh   . Fix an arbitrary integer 1K  . We construct a mechanism denoted 

by ** **
1 2 3

ˆ ˆ ( , , , , ) ( , , )G G f K M g x     as follows. Let 

   
1

K
k

i i
k

M M


  , 

   k
i iM   , 

and 

   *k
i iM    for all {2,..., }k K . 

In contrast with *Ĝ , each player i  announces about not i  but *
i i   for all 

sub-messages except the first sub-message 1
im . Let 

   2

( )
( )

1

K
k

k

f m
g m

K




 
 for all m M , 

which f  is the function introduced in Definition 9. We will write ( ) ( )f f    if 

i i   for all i N , where we denote ( )i i N   . Let 

   
*

1
0 0

1

( , ) ( , ) ( )
h

h
i i i

h

x m x m z m 


  , 
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where 

   1
0 1( , ) ( )h

ix m h     if 
1

1
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

1
0( , ) 0h

ix m      if 
1

1
0

( )
( , ) ( )( )

i i i

i i i
m

m h


  
 

  





 , 

   2 3( )
1

i
i

r
z m

K
  


 if there exists {2,..., }k K  such that 

        1
0( , ) k

i im m  , and 

1
0( , ) k

j jm m   for all k k   and \{ }j N i , 

and 

   3( )
1

i
i

r
z m

K



   if there exists no such {2,..., }k K , 

where {0,..., 1}ir K   implies the number of {2,..., }k K  satisfying 1k
i im m . We 

select 1 2 3( , , )    such that 

   
1

1 1 2 3
1

( ) ( )
h

h

h h   




  


  for all *{1,..., }h h . 

 In the same manner as the proof of Theorem 5, we can prove that for every i N , 

if i  is quasi-strictly iteratively undominated, then 

  1 *( ) ( )i i i is    for all i i  , 

and 

   *( ) ( )k
is     for all {2,..., }k K  and  . 

This joint with the measurability implies that if   is a quasi-strictly iteratively 

undominated strategy profile, then 

   ( ( )) ( )g f    for all  , 

and 

   ( ( ), ) 0ix      for all i N  and  . 

 


