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Abstract

In estimation of the large precision matrix, this paper suggests a new shrinkage estimator,
called the linear ridge estimator. This estimator is motivated from a Bayesian aspect for a
spike and slab prior distribution of the precision matrix, and has a form of convex combination
of the ridge estimator and the identity matrix multiplied by scalar. The optimal parameters
in the linear ridge estimator are derived in terms of minimizing a Frobenius loss function
and estimated in closed forms based on the random matrix theory. Finally, the performance
of the linear ridge estimator is numerically investigated and compared with some existing
estimators.

Key words and phrases: Large-dimensional asymptotics, nonlinear shrinkage, precision
matrix, random matrix theory, ridge type estimator, rotation-equivariant estimators.

1 Introduction

The estimation of a large covariance matrix has been actively studied in the literature in recent
years. Analysis of high-dimensional data is an important and modern topic in genetics in bio-
science, portfolio in financial economics and others. However, the sample covariance matrix is
not invertible when the dimension p of the variables is larger than the sample size N . When p
is large and close to N , the inverse of the sample covariance matrix may be ill-conditioned even
if N > p. To address this problem, many approaches have been considered in the literature.
Under some model structures such as sparsity or ordering, penalized methods have been proposed
and the population covariance matrix can be estimated consistently. However, the true model
structures are generally unknown and the estimates become inconsistent in the case that the
model structure is misspecified. In the absence of such a prior information on the structure of
the covariance matrix, the shrinkage method is a useful approach. Since the eigenvalues of the
sample covariance matrix diverge more widely than the eigenvalues of the population covariance
matrix, it is reasonable to shrink the sample eigenvalues in the direction of their center. Linear
shrinkage estimators of the covariance matrix have been suggested in Ledoit and Wolf (2004),
Srivastava and Kubokawa (2007), Touloumis (2015) and others. A nonlinear shrinkage approach
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based on the random matrix theory is one of recent hot issues in statistics, and Ledoit and Wolf
(2012, 15) developed some fundamental results and more efficient nonlinear shrinkage estimators.
For the related works, see also Wang, Pan, Tong and Zhu (2015), Bodnar, Gupta and Parolya
(2015) and the references therein.

Although the estimation of the covariance matrix has received more attention than that of
the precision matrix, the estimation of the precision is more important in multivariate analy-
sis, since for example, the precision matrix appears in the Fisher linear discriminant analysis,
confidence intervals based on the Mahalanobis distance and generalized least squares estimators
in multivariate linear regression models. As an approach, one can use the inverse matrix of
estimators of the covariance matrix. However, the inverse of the covariance matrix estimator
is not necessarily optimal in the estimation of the precision matrix. Further, two estimation
problems of the covariance and precision matrices are drastically different when p > N . Thus,
in this paper, we address the problem of estimating the precision matrix directly.

To explain the problem more specifically, letΣp be a p×p covariance matrix, and let Sp be the
sample covariance matrix such that E[Sp] = Σp. Using the random matrix theory, Ledoit and
Wolf (2012, 15) derived asymptotic optimal shrinkage coefficients in the general class of rotation-
equivariant estimators, and proposed the nonlinear shrinkage estimator for the precision matrix.
The nonlinear shrinkage estimator performs well for large N , but the performance dwindles
when N or N/p is small, because the consistent estimators of the eigenvalues of Σp are not
stable for small N or N/p. Bodnar, et al . (2015) suggested the linear shrinkage estimator

Ωlinear
p =

{
αS−1

p + β Ip if N > p

αS+
p + β Ip if N < p.

This estimator has an appealing form of shrinking S−1
p or S+

p towards βIp. However, a drawback
is that under their settings the parameters α and β cannot be estimated in the case of p > N ,
without assuming that Σp = σ2Ip for scalar σ2. Wang, et al . (2015) considered the ridge-type
estimator

Ωridge
p = α(Sp + γIp)

−1,

and provided estimators of α and γ using the random matrix theory. Although this estimator is
stable for any p and N , it shrinks all the sample eigenvalues toward the same direction, which
is not necessarily desirable in the estimation of the precision matrix.

In this paper, we suggest a new type of estimator given by

ΩLR
p = α(Sp + γIp)

−1 + βIp,

and we call it the linear ridge estimator. This estimator is stable for any p and N , and re-shrinks
the shrunk sample eigenvalues toward the constant β. By combining the linear and the ridge
estimators, the linear ridge estimator can compensate their weakness. Using the random matrix
theory, we can derive the limits of the optimal α and β for fixed γ. Based on the limits, we can
provide the estimators of the optimal α and β in closed forms. It is also interesting to point out
that the linear ridge estimator can be motivated from a Bayesian aspect for a spike and slab
prior distribution of Σ−1

p . This motivation is useful when we need to restrict the estimators of
α, β and γ.
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The paper is organized as follows: The basic framework of the random matrix theory is
described in Section 2. The loss function based on the Frobenius norm and the class of rotation-
equivariant estimators are given. In Section 3, we provided the Ledoit-Wolf type estimator
and the suggested linear ridge estimator. The optimal estimators of the parameters in these
estimators are derived based on the random matrix theory. The Bayesian motivation of the
linear ridge estimator is also given. In Section 4, we investigate the finite-sample performance
of the proposed estimator through simulation and empirical studies. Concluding remarks are
given in Section 5 and the technical proofs are given in the Appendix.

2 Basic Framework

2.1 Preliminary results in the random matrix theory

We begin by stating the basic assumptions which are common in estimation of the high-
dimensional covariance matrix based on the random matrix theory. Throughout the paper,
R and C denote the spaces of real and complex numbers, respectively. Also, C+ denotes the
half-plane of complex numbers with strictly positive imaginary part. The real and imaginary
parts of z ∈ C are denoted by ℜ(z) and ℑ(z), respectively.

(A1) Let N and p≡ p(N) denote the sample size and the number of variables respectively. In
the large-dimensional asymptotics, p goes to infinity, as N does, but it is assumed that
the ratio p/N converges to a limit y ∈ (0, 1)∪ (1,+∞), as N → + ∞. The case y = 1 is
excluded for technical reason.

(A2) The population covariance matrix Σp is a non-random p-dimensional positive definite ma-
trix, where the subscript p denotes the dimension of the matrix. LetXp = (xp,1, . . . ,xp,N )T

be an N×p random matrix, where xp,1, . . . ,xp,N are mutually independently and identi-
cally distributed as E[xp,j ] = 0 and Cov (xp,j) = Ip. It is assumed that there exist fourth

moments of all elements of xp,j . Let Y p = (yp,1, . . . ,yp,N )T, where yp,j = Σ
1/2
p xp,j for

the squared symmetric root matrix Σ1/2 such that Σ = (Σ1/2)2. It is assumed that Y p is
observable.

(A3) Let tp = (tp,1, · · ·, tp,p)T be a system of eigenvalues of Σp, sorted in decreasing order. The
empirical spectral distribution (ESD) of the population eigenvalues is defined by

Hp(t)≡
1

p

p∑
i=1

�[tp,i,+∞), ∀t∈R,

where �A denotes the indicator function of set A. It is assumed that Hp(t) converges to
some limit H(t) at all points of continuity of H.

(A4) Supp(H), the support of H, is the union of a finite number of closed intervals, bounded
away from zero and infinity. Furthermore, there exists a compact interval in (0,+∞) that
contains Supp(Hp) for all N large enough.

Let Sp = N−1Y T
p Y p. As noted in Section 5, all the results given in this paper still hold

in the case of E[yp,j ] = µ. A system of eigenvalues of Sp, sorted in decreasing order, and the
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corresponding eigenvectors are denoted by ℓp = (ℓp,1, · · ·, ℓp,p)T and (u1, . . . ,up), respectively.
The empirical spectral distribution (ESD) of Sp is defined by

Fp(t)≡
1

p

p∑
i=1

�[ℓp,i,+∞), ∀t∈R.

Marčenko and Pastur (1967) greatly contributed the research on large-dimensional asymptotic
theories of eigenvalues of Sp. This asymptotic theory is called the random matrix theory, and
has been generalized by Silverstein (1995), Silverstein and Bai (1995), Silverstein and Choi
(1995) among others. These literatures imply that under assumptions (A1)-(A4), there exists a
distribution function F such that

Fp(x)→F (x), ∀x∈R\{0},

which is called the limiting spectral distribution (LSD). Silverstein and Choi (1995) showed that
F is everywhere continuous except at zero, and that the mass of F at zero is given by

F (0) = max{1− y−1,H(0)}. (2.1)

For a nondecreasing function G on the real line, the stieltjes transform mG of G is defined
by

mG(z)≡
∫

1

x− z
dG(x), ∀z ∈C+.

The stieltjes transform has the well-known inversion formula

G{[a, b]} =
1

π
lim

η→0+

∫ b

a
ℑ
(
mG(ξ + iη)

)
dξ, (2.2)

if G is continuous at a and b. Silverstein (1995) developed the most general version of the
equation which relates F to H and y, namely, m≡mF (z) is the unique solution in the set
{m∈C : −(1− y)/z + ym∈C+} to the equation

mF (z) =

∫
1

t(1− y − yzmF (z))− z
dH(t), ∀z ∈C+. (2.3)

Silverstein and Choi (1995) showed thatmF is extended to R, that is, limz ∈C+ →λmF (z)≡ m̆F (λ)
for λ ∈ R. It is noted from the inversion formula that F ′(λ) = π−1ℑ[m̆F (λ)] on R.

We next consider the limiting spectral distribution (LSD) of the eigenvalues of N−1Y pY
T
p =

N−1XpΣpX
T
p . Denote the LSD by F . The eigenvalues of N−1Y T

p Y p and N−1Y pY
T
p only

differs by |N − p| zero eigenvalues. It then holds:

F (x) =(1− y)�[0,+∞)(x) + yF (x), ∀x∈R,

F (x) =
y − 1

y
�[0,+∞)(x) +

1

y
F , ∀x∈R,

mF (z) =
y − 1

z
+ ymF (z), ∀z ∈C+,

mF (z) =
1− y

yz
+

1

y
mF (z), ∀z ∈C+.
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2.2 Setup of the problem

Consider the problem of estimating Σ−1
p by estimator Ωp, where the estimator is evaluated by

the risk function relative to the loss function

Lp(Σ
−1
p ,Ωp)≡

1

p
tr (ΩpΣp − Ip)(ΩpΣp − Ip)

T. (2.4)

This loss function is based on the Frobenius norm ∥A∥F =
√

tr (AAT), namely, Lp(Σ
−1
p ,Ωp) =

p−1∥ΩpΣp − Ip∥2F . We thus call it the Frobenius loss function. The loss function satisfies that
Lp(Σ

−1
p ,Ωp)≥ 0 and Lp(Σ

−1
p ,Σ−1

p ) = 0. For remarks of other loss functions, see Section 5.

Ledoit and Wolf (2012, 15) considered a class of rotation-equivariant estimators in estimation
of Σ and Σ−1. An estimator Σ̂p = Σ̂p(Y p) of Σp is called rotation-equivariant when for any

p-dimensional orthogonal matrix W , Σ̂p(Y pW ) = WTΣ̂p(Y p)W . For the sample covariance
matrix, it is well known that eigenvalues of Sp diverge more widely than those of Σp. Rotation-
equivariant estimators have the same eigenvectors as Sp and replace eigenvalues of Sp with other
values shrunk towards a center of the eigenvalues. In the estimation of the inverse Σ−1

p , rotation-

equivariant estimators Ωp = Ωp(Y p) satisfy Ωp(Y pW ) = WTΩp(Y p)W for any orthogonal
matrix W . Thus, every rotation-equivariant estimator of Σ−1

p is of the form

Ωp(Ap) = UpApU
T
p , Ap = diag(a1, · · ·, ap), (2.5)

where Up = (u1, . . . ,up), and ai may depend on the eigenvalues ℓp of Sp.

The class of rotation-equivariant estimators include various estimators. The ridge estimator
given by Wang, et al . (2014) corresponds to the case that ai = α/(ℓi + γ), and the linear
estimator treated by Bodnar, et al . (2014) corresponds to ai = α/ℓi + β for N > p and ai = β
for N < p. Ledoit and Wolf (2015) treated the general rotation-equivariant estimator directly.
The problem is how to estimate the parameters ai’s, α, γ or β. A reasonable way is the estimation
of the optimal ai’s which minimize the risk function Rp(Σ

−1
p ,Ωp)≡E[Lp(Σ

−1
p ,Ωp)]. Instead of

minimizing risk functions, Ledoit and Wolf (2012) obtained the optimal ai’s which minimize
the loss function and estimated the asymptotic optimal ai’s using the random matrix theory.
This argument is used in the next section to estimate the parameters in the estimation of the
precision matrix Σ−1

p under the Frobenius loss (2.4).

3 Non-linear Shrinkage Estimation of the Precision Matrix

In this paper, we treat two non-linear shrinkage estimators: the Ledoit-Wolf type estimator and
the linear ridge estimator. The estimators of the optimal parameters are provided based on the
random matrix theory.

3.1 Ledoit-Wolf type estimator

The Ledoit-Wolf type estimator can be derived based on the optimal ai’s which minimize the
Frobenius loss (2.4) of the rotation-equivariant estimator Ωp(Ap) in (2.5). In fact, the loss
function is written as Lp(Σ

−1
p ,Ωp(Ap)) = p−1

∑p
i=1 {a2iuT

i Σ
2
pui − 2aiu

T
i Σpui} + 1, which is

minimized at
aoraclei = uT

i Σpui/u
T
i Σ

2
pui, (3.1)
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for i = 1, . . . , p. Since aoraclei ’s depend on Σp, we need to estimate them. Using the random
matrix theory, Ledoit and Péché (2011) showed that under (A1)-(A4), uT

i Σpui can be approxi-
mated as δ(ℓi), where

δ(x) =



x

|1− y − yxm̆F (x)|2
if x > 0,

1

(y − 1)m̆F (0)
if x = 0, y > 1,

0 otherwise.

(3.2)

Concerning the term uT
i Σ

2
pui, we can use a similar argument as in Ledoit and Péché (2011). In

fact, the following theorem guarantees that it can be approximated by ϕ(ℓi), where

ϕ(x) =



x2{1− y2 − 2y2xℜ[m̆F (x)]− y2x2|m̆F (x)|2}
|(1− y − yxm̆F (x))2|2

+

∫∞
−∞ tdH(t)yx

|1− y − yxm̆F (x)|2
if x > 0,

y

y − 1

1

m̆F (0)

(∫ ∞

−∞
tdH(t)− 1

ym̆F (0)

)
if x = 0, y > 1,

0 otherwise.
(3.3)

Theorem 1 Under (A1)-(A4), the rotation-equivariant estimator Ωp(Ap) with ai = ai(ℓi) has
the almost sure limit given by

Lp(Σ
−1
p ,Ωp(Ap))→

∫ {
a2(x)ϕ(x)− 2a(x)δ(x)

}
dF (x) + 1. (3.4)

The proof is given in the Appendix. Hence, one gets the Ledoit-Wolf type estimator

ΩLW∗
p =UpA

∗
pU

T
p ,

A∗
p =diag(a∗1, · · ·, a∗p), a∗i = δ(ℓi)/ϕ(ℓi).

(3.5)

Theorem 1 implies that the estimator ΩLW∗
p attains the minimum of the limiting loss function,

given by −
∫
[{δ(x)}2/ϕ(x)]dF (x) + 1. Since y, F and H are unknown, however, ΩLW∗

p is not

feasible. The way for obtaining a bona fide estimator in the oracle estimator ΩLW∗
p is provided

by Ledoit and Wolf (2015). Here, the estimators of m̆F (x) and m̆F (0) are denoted bŷ̆mF (x) and ̂̆mF (0), (3.6)

respectively, where the detail for the derivation is given in the Appendix. Also
∫∞
−∞ tdH(t) in

equation (3.3) is unknown, but this is the limit of p−1tr [Σp] and can be estimated by p−1tr [Sp].
Replacing m̆F (x), m̆F (0) and

∫∞
−∞ tdH(t) in equations (3.2) and (3.3) with their estimators, and

replacing the limiting concentration ratio y with p/N , we have the consistent estimators

δ̂(x) and ϕ̂(x), (3.7)

for δ(x) and ϕ(x). Then, we get the bona fide estimator

ΩLW
p =UpÂ

∗
pU

T
p ,

Â
∗
p =diag(â∗1, · · ·, â∗p), â∗i = δ̂(ℓi)/ϕ̂(ℓi).

(3.8)
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3.2 Linear ridge estimator

In the estimation of the inverse Σ−1
p , we here consider a new type of the estimator

Ωp(α, β, γ) = α(Sp + γIp)
−1 + βIp, (3.9)

where α, β and γ are unknown parameters. This estimator not only belongs to the class of
rotation-equivariant estimators (2.5) with ai = α/(ℓi+ γ)+β, but also corresponds to the ridge
estimator for β = 0 and the linear estimator for γ = 0. We call Ωp(α, β, γ) the linear ridge
estimator. This estimator is well-conditioned and available when p > N . The use of the form
β0Ip for constant β0 has been suggested as an estimator of Σ−1

p in the literature in the ultra-high
dimensional case. The ridge-type estimator α0(Sp+ γIp)

−1 for constant α0 is reasonable unless
p is ultra-high dimensional. Thus, the linear ridge estimator (3.9) is interpreted as a convex
combination of α0(Sp+γIp)

−1 and β0Ip, namely, for 0 < w < 1, (1−w)α0(Sp+γIp)
−1+wβ0Ip =

α(Sp+γIp)
−1+βIp for α = (1−w)α0 and β = wβ0. A related explanation is given in the next

subsection from a Bayesian aspect.

The Frobenius loss function ofΩp(α, β, γ) is written as Lp(Σ
−1
p ,Ωp(α, β, γ)) = p−1tr

[
{α(Sp+

γIp)
−1Σp + βΣp − Ip}{α(Sp + γIp)

−1Σp + βΣp − Ip}T
]
. Given γ, the optimal α and β are

given by

α∗(γ) =
tr [(Sp + γIp)

−1Σp]tr [Σ
2
p]− tr [(Sp + γIp)

−1Σ2
p]tr [Σp]

tr [(Sp + γIp)−2Σ2
p]tr [Σ

2
p]− {tr [(Sp + γIp)−1Σ2

p]}
2 ,

β∗(γ) =
tr [(Sp + γIp)

−2Σ2
p]tr [Σp]− tr [(Sp + γIp)

−1Σp]tr [(Sp + γIp)
−1Σ2

p]

tr [(Sp + γIp)−2Σ2
p]tr [Σ

2
p]− {tr [(Sp + γIp)−1Σ2

p]}
2 .

Substituting these optimal quantities into the loss function, we can get

L∗
p(γ) =Lp(Σ

−1
p ,ΩLR

p (α∗(γ), β∗(γ), γ))

=
1

p

[
tr [(Sp + γIp)

−2Σ2
p]tr [Σ

2
p]− {tr [(Sp + γIp)

−1Σ2
p]}

2
]−1

×
[
− {tr [(Sp + γIp)

−1Σp]}2tr [Σ2
p]− tr [(Sp + γIp)

−2Σ2
p](tr [Σp])

2

+ 2 tr [(Sp + γIp)
−1Σp]tr [(Sp + γIp)

−1Σ2
p]tr [Σp]

]
+ 1.

The asymptotic behaviors of α∗(γ), β∗(γ) and L∗
p(γ) can easily be checked by applying the

results of the literature. The results are given in the following theorem, which will be proved in
the Appendix.

Theorem 2 Let t1 =
∫
tdH(t), t2 =

∫
t2dH(t),

B(γ) =
1− γm̆F (−γ)

1− y(1− γm̆F (−γ))
and B′(γ) =

d

dγ
B(γ).
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Under (A1)-(A4), α∗(γ), β∗(γ) and L∗
p(γ) converge to α(γ), β(γ) and L(γ), respectively, where

α(γ) =
1

c(γ)

{
t1yγB

2(γ) + (t2 + t1γ − t21y)B(γ)− t21

}
,

β(γ) =
1

c(γ)

{
yγB3(γ) + γB2(γ) + 2t1yγB(γ)B′(γ) + t1(γ − t1)B

′(γ)
}
,

L(γ) =1 +
1

c(γ)

{
− 2t1yγB

3(γ) + (−t2 + t21y − 2t1γ)B
2(γ) + t21B(γ)

− 2t21yγB(γ)B′(γ) + t21(t1 − γ)B′(γ)
}
,

(3.10)

where

c(γ) =− y2γ2B4(γ) + {t2yγ + 2yγ(t1y − γ)}B3(γ)

+ (t2γ − t21y
2 + 4t1yγ − γ2)B2(γ)− 2t1(yt1 − γ)B(γ)

+ 2t1t2γB(γ)B′(γ) + t1t2(γ − t1)B
′(γ)− t21.

To estimate α, β and γ, we need to estimate α(γ), β(γ) and L(γ). As mentioned in Wang,
et al . (2015), for γ > 0, m̆F (−γ) can easily be estimated by tr [(Sp + γIp)

−1]/p, since m̆F (−γ)
is the limit of m̆Fp(−γ) = tr [(Sp + γIp)

−1]/p. Thus, consistent estimators of B(γ) and B′(γ)
given γ are

B̂(γ) =
1− γtr [(Sp + γIp)

−1]/p

1− (p/N) + γtr [(Sp + γIp)−1]/N
,

B̂′(γ) =
p−1tr [(Sp + γIp)

−1]{(p/N)B̂(γ)− 1}
1− (p/N) + γtr [(Sp + γIp)−1]/N

.

(3.11)

Since t1 =
∫
tdH(t) is the limit of a1 = tr [Σp]/p, it is estimated by â1 = tr [Sp]/p. Also, note

that t2 =
∫
t2dH(t) is the limit of a2 = tr [Σ2

p]/p. Then we can use the consistent estimator

â2 =
N − 1

N(N − 2)(N − 3)p

{
(N − 1)(N − 2)tr [S̃

2

p] + {tr [S̃p]}2 −NQ
}
,

where S̃p = (N − 1)−1
∑N

i=1(yp,i −yp)(yp,i−yp)
T and Q = (N − 1)−1

∑N
i=1{(yp,i −yp)

T(yp,i−
yp)}2 for yp = N−1

∑N
i=1 yp,i. For the details of the estimator â2, see Himeno and Yamada

(2014). Thus, consistent estimators of t1 and t2 are given by â1 and â2.

Replacing B(γ), B′(γ), t1, t2 and y with B̂(γ), B̂′(γ), â1, â2 and p/N in (3.10), we have
α̃∗(γ), β̃∗(γ) and L̃∗(γ). Let γ̃ be the solution of minimizing L̃∗(γ), namely γ̃ = argminγ>0L̃

∗(γ).

Then, α and β are estimated by α̃ = α̃∗(γ̃) and β̃ = β̃∗(γ̃).

Although α̃, β̃ and γ̃ are the consistent estimators of α, β and γ as (N, p) → ∞ with
p/N → y, it is not guaranteed that α̃, β̃ and γ̃ are inside reasonable ranges for finite p and N .
For practical use, we need to adjust the values of α̃, β̃ and γ̃ to be inside appropriate ranges. An
approach to this end is the Bayesian argument given in the next subsection. We shall suggest
the linear ridge estimator ΩLR

p in (3.16) through (3.13), (3.14) and (3.15).
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3.3 Bayesian motivation and the suggested linear ridge estimator

We give a Bayesian motivation of the linear ridge estimator (3.9). This tells us about how the
parameters α, β and γ should be restricted.

Let V = NSp. Consider the case of N > p and assume that V has a Wishart distribution
Wp(N,Σp). The density function of V is denoted by f(V | Σ−1

p ). Let η be a random variable

having a Bernoulli distribution Ber(θ) with P (η = 1) = θ. As a prior distribution of Σ−1
p ,

consider a spike and slab prior distribution: Given η = 0, Σ−1
p ∼ Wp(k,Λ1), and given η = 1,

Σ−1
p has a one-point distribution P (Σ−1

p = Λ0) = 1. The density functions of Σ−1
p given η = 0

and η = 1 are denoted by π(Σ−1
p | Λ1) and δΛ0(Σ

−1
p ), respectively, where δΛ0(Σ

−1
p ) is assumed

to satisfy that
∫
δΛ0(Σ

−1
p )dΣ−1

p = 1 and
∫
Σ−1

p δΛ0(Σ
−1
p )dΣ−1

p = Λ0. Then, the joint and

marginal density functions of (V ,Σ−1
p ) and V are written as, respectively,

f(V ,Σ−1
p ) =f(V | Σ−1

p ){(1− θ)π(Σ−1
p | Λ1) + θδΛ0(Σ

−1
p )},

f(V ) =(1− θ)

∫
f(V | Σ−1

p )π(Σ−1
p | Λ1)dΣ

−1
p + θf(V | Λ0).

Thus, the Bayes estimator, given by ΩBayes
p = E[Σ−1

p | V ], is expressed as

ΩBayes
p =

∫
Σ−1

p f(V ,Σ−1
p )dΣ−1

p /f(V )

=
(1− θ)

∫
Σ−1

p f(V | Σ−1
p )π(Σ−1

p | Λ1)dΣ
−1
p + θΛ0f(V | Λ0)

(1− θ)
∫
f(V | Σ−1

p )π(Σ−1
p | Λ1)dΣ

−1
p + θf(V | Λ0)

=(1− w0)

∫
Σ−1

p f(V | Σ−1
p )π(Σ−1

p | Λ1)dΣ
−1
p∫

f(V | Σ−1
p )π(Σ−1

p | Λ1)dΣ
−1
p

+ w0Λ0,

where

w0 =
θf(V | Λ0)

(1− θ)
∫
f(V | Σ−1

p )π(Σ−1
p | Λ1)dΣ

−1
p + θf(V | Λ0)

.

It can be easily seen that∫
Σ−1

p f(V | Σ−1
p )π(Σ−1

p | Λ1)dΣ
−1
p∫

f(V | Σ−1
p )π(Σ−1

p | Λ1)dΣ
−1
p

= (N + k)(V +Λ1)
−1 = v0(Sp +N−1Λ1)

−1,

for v0 = (N + k)/N . Thus, we get

ΩBayes
p = (1− w0)v0(Sp +N−1Λ1)

−1 + w0Λ0,

where v0 and w0 satisfy that v0 > 1 and 0 < w0 < 1.

Motivated from the Bayes estimator ΩBayes
p , we consider the following linear ridge estimator:

Let Λ1 = NγIp and Λ0 = (1/ℓ)Ip for ℓ =
∑p

i=1 ℓi/p = tr [Sp]/p. Then the linear ridge estimator
we treat is

Ωlinear ridge
p = v(1− w)(Sp + γIp)

−1 + w(1/ℓ)Ip, (3.12)

where v, w and γ are constants which satisfy the restrictions

v > 1, 0 < w < 1, and γ > 0. (3.13)

9



This estimator corresponds to (3.9) with α = v(1 − w) and β = w/ℓ. On the other hand,
from the results below (3.11), we have the consistent estimators α̃, β̃ and γ̃ for α, β and γ.
Thus, one gets the equations α̃ = ṽ(1 − w̃) and β̃ = w̃/ℓ, which yields that w̃ = ℓβ̃ and
ṽ = α̃/(1 − w̃) = α̃/(1 − ℓβ̃). Since ṽ, w̃ and γ̃ need to satisfy the restriction (3.13), the
parameters v, w and γ are estimated by

ŵ = 0 ∨ w̃ ∧ 1 = 0 ∨ (ℓβ̃) ∧ 1, v̂ = ṽ ∨ 1 = α̃/(1− w̃) ∨ 1, γ̂ = γ̃ ∨ 0, (3.14)

where a ∨ b = max(a, b) and a ∧ b = min(a, b). This gives

α̂ = v̂(1− ŵ) and β̂ = ŵ/ℓ, (3.15)

and we suggest the use of the linear ridge estimator

ΩLR
p =v̂(1− ŵ)(Sp + γ̂Ip)

−1 + ŵ(1/ℓ)Ip

=α̂(Sp + γ̂Ip)
−1 + β̂Ip.

(3.16)

Note that when ŵ = 0 or β̂ = 0, the linear ridge estimator becomes the ridge-type estimator
α̂(Sp + γ̂Ip)

−1 = v̂(Sp + γ̂Ip)
−1. On the other hand, when ŵ = 1 or α̂ = 0, the linear ridge

estimator becomes β̂Ip = (1/ℓ)Ip, which is proposed frequently as an estimator of an ultra-high
dimensional precision matrix. Generally, in the case that 0 < ŵ < 1, the linear ridge estimator
is a convex combination of the ridge estimator and (1/ℓ)Ip.

3.4 Ridge and linear shrinkage estimators for comparison

In the previous subsections, we have derived the Ledoit-Wolf type estimator (3.8) and the linear
ridge estimator (3.16) relative to the Frobenius loss function (2.4). To compare them with the
existing other estimators, we here look at two estimators: the ridge and the linear shrinkage
estimators. Both estimators are special cases of the linear ridge estimator (3.9), and we can
investigate how the linear ridge estimator is effective in comparison with them. Thus, we derive
the optimal values of the parameters in the ridge and the linear shrinkage estimators with respect
to the Frobenius loss.

[1] Ridge estimator. The ridge estimator is of the form

Ωridge
p = α(Sp + γIp)

−1, (3.17)

which has been used and studies in the literature. For example, see Srivastava and Kubokawa
(2007). Although most results were obtained under Gaussian distributions, Wang, et al . (2014)
derived the estimators of the optimal α and γ using the random matrix theory without any
assumption of underlying distributions, where they treated another quadratic loss function.
Given γ, the optimal α relative to the Frobenius loss is

αR∗(γ) =
tr [(Sp + γIp)

−1Σp]

tr [(Sp + γIp)−1Σ2
p(Sp + γIp)−1]

,

which leads to the reduced loss function

Lp(Σ
−1
p ,Ωridge

p (αR∗(γ), γ)) = 1− 1

p

{tr [(Sp + γIp)
−1Σp]}2

tr [(Sp + γIp)−1Σ2
p(Sp + γIp)−1]

.
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Then, it follows from the above results that αR∗(γ) and Lp(Σ
−1
p ,Ωridge

p (αR∗(γ), γ)) converge to

αR(γ) =
B(γ)

yB2(γ) +B(γ) + 2yγB(γ)B′(γ) + (γ − t1)B′(γ)
,

LR(γ) =1− B2(γ)

yB2(γ) +B(γ) + 2yγB(γ)B′(γ) + (γ − t1)B′(γ)
,

for B(γ) and B′(γ) in Theorem 2. Replacing B(γ), B′(γ), t1 and y with B̂(γ), B̂′(γ), â1 and
p/N , we have α̂R∗ and L̂R∗(γ), where B̂(γ) and B̂′(γ) are given in (3.11). Let γ̂R be the solution
of minimizing L̂R∗(γ). Then, we get α̂R = α̂R∗(γ̂R), which yields the ridge estimator.

[2] Linear shrinkage estimator. The linear shrinkage estimator suggested by Bodnar,
et al . (2014) is of the form

Ωlinear
p =

{
αS−1

p + β Ip if N > p

αS+
p + β Ip if N < p.

(3.18)

In the case of N > p, we can use the results given in the previous subsections and Theorem 3.2 in
Bodnar, et al . (2014) to show that the Frobenius loss function of the linear shrinkage estimator
has the limit

lim
N,p→∞

Lp(Σ
−1
p ,Ωlinear

p )

= lim
N,p→∞

1

p

{
α2tr [S−2

p Σ2
p] + 2αβtr [S−1

p Σ2
p] + β2tr [Σ2

p]− 2αtr [S−1
p Σp]− 2βtr [Σp]

}
+ 1

= 1 +
( 1

(1− y)2
+ t1

1 + m̆F (0)

1− y

)
α2 + 2

t1
1− y

αβ + t2β
2 − 2

1

1− y
α− 2t1β,

where t1 and t2 are given in Theorem 2. Then, the optimal α and β in terms of minimizing the
limit of the loss function are given by

αL =
t2 − t21

t2{1 + t1(1 + m̆F (0))(1− y)}
,

βL =
t1
t2

(
1− αL

1− y

)
.

Note that m̆F (0) can be consistently estimated by tr [S−1
p ]/p when N > p. Replacing t1, t2

and m̆F (0) with their estimators and replacing y with p/N , one gets the estimators α̂L and β̂L,
which yields the linear estimator.

In the case of N < p, Bodnar, et al . (2014) cannot provide estimators for general Σp. This
is because in their settings one needs the limit of p−1tr [S+

p Σp], but this cannot be obtained
without assuming a structure such as Σp = σ2Ip for scalar σ2. Without assuming such a
structure, however, we can obtain estimators of the optimal α and β using equation (3.3). In
our setting, we can expand the loss function as

Lp(Σ
−1
p ,Ωlinear

p )

=
1

p

{
α2tr [(S+

p )
2Σ2

p] + 2αβtr [S+
p Σ

2
p] + β2tr [Σ2

p]− 2αtr [S+
p Σp]− 2βtr [Σp]

}
+ 1,
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so that we need the limit of p−1tr [(S+
p )

2Σ2
p], p

−1tr [S+
p Σ

2
p] and p−1tr [S+

p Σp]. Using equation
(3.3) and Theorem 3.3 in Bodnar, et al . (2014), one gets

lim
N,p→∞

Lp(Σ
−1
p ,Ωlinear

p )

= 1 + α2 lim
N,p→∞

1

p

N∑
i=1

ϕ(ℓi)

(ℓi)2
+ 2αβ lim

N,p→∞

1

p

N∑
i=1

ϕ(ℓi)

ℓi
+ t2β

2 − 2
1

y − 1
α− 2t1β

= 1 + α2

∫
ϕ(x)

x2
dF (x) + 2αβ

∫
ϕ(x)

x
dF (x) + t2β

2 − 2
1

y − 1
α− 2t1β,

where ϕ(·) is given in (3.3) and ℓi, i = 1, · · ·, N are the eigenvalues of Sp. Then, the optimal α
and β in terms of minimizing the limit of the loss function are given by

αL =
t2/(y − 1)− t1

∫
{ϕ(x)/x}dF (x)

t2
∫
{ϕ(x)/x2}dF (x)− [

∫
{ϕ(x)/x}dF (x)]2

,

βL =
t1
∫
{ϕ(x)/x2}dF (x)−

∫
{ϕ(x)/x}dF (x)/(y − 1)

t2
∫
{ϕ(x)/x2}dF (x)− [

∫
{ϕ(x)/x}dF (x)]2

.

Note that
∫
xkϕ(x)dF (x) for integer k can be estimated by p−1

∑N
i=1 ℓ

k
i ϕ̂(ℓi) for ϕ̂(x) given

in (3.7). Replacing t1, t2,
∫
{ϕ(x)/x}dF (x) and

∫
{ϕ(x)/x2}dF (x) with their estimators and

replacing y with p/N , we have the consitent estimators α̂L and β̂L, which produces the linear
estimator for p > N .

4 Simulation and Real Data Analysis

4.1 Simulation study

In this section, we investigate performances of the procedures suggested in the previous sections
through Monte Carlo simulation. In our simulation, eigenvalues of a population covariance
matrix are fixed as follows: Let F(a,b)(x) be a cumulative distribution function of the beta
distribution beta(a, b), namely

F(a,b)(x) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0
ta−1(1− t)b−1dt, x∈ [0, 1].

Since the support of the beta distribution is [0, 1], we transform the interval linearly to [1, 10],
and the population eigenvalues are given by

1 + 9F−1
(a,b)

( i

p
− 1

2p

)
, i = 1, · · ·, p. (4.1)

This setup is the same as in Ledoit and Wolf (2012).

We first treat the case of (a, b) = (1, 1), and investigate the numerical performances of
the risk of Ωoracle

p , ΩLW
p , ΩLR

p , Ωridge
p and Ωlinear

p , which are given in (3.1), (3.8), (3.16),
(3.17) and (3.18), respectively. These estimators are denoted by oracle, LW, LR, ridge and
linear in the tables given below. For computation of ΩLW

p and Ωlinear
p , we need the QuEST

function introduced in Ledoit and Wolf (2015). Using this package, we carried out the simulation
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experiments on the Matlab. Random observations y1, . . . ,yN are generated as yi = Σ
1/2
p xi for

xi = (xi1, . . ., xip)
T where xi1, . . ., xip are mutually independently distributed as

(Case I) xij ∼N (0, 1),
(Case II) xij ∼

√
(m− 2)/mzi,j for zi,j ∼ tm,

where tm is a t-distribution with m degrees of freedom. (Case II) is an example of a heavy-tailed
distribution and we treat the case of m = 10. The simulation experiments are carried out under
the above setup for N = 50, p = 30, 70, 150, 250, 500 and 700, and empirical risks of these
estimators are calculated based on 1, 000 replications.

Table 1 provides values of empirical risks of the estimators in normal and
√

4/5t10 distribu-
tions with m = 10, where eigenvalues of Σ are generated by (4.1) for (a, b) = (1, 1). Definitely,
the linear ridge estimator ΩLR

p performs better than the ridge and linear estimators Ωridge
p and

Ωlinear
p . Comparing ΩLR

p and ΩLW
p , we can see that the linear ridge estimator ΩLR

p is better

than the Ledoit-Wolf type estimator ΩLW
p except for the cases of p = 70 or 150. Especially, in

the case of p = 150, the estimator ΩLW
p gives a smaller risk than ΩLR

p in the normal and t10
distributions, but the improvement is not significant. When p is small or p/N is comparatively
large, ΩLR

p performs better than ΩLW
p . It may be because in such cases, δ̂(ℓi) and ϕ̂(ℓi) in equa-

tion (3.8) give poor approximations for uT
i Σpui and uT

i Σ
2
pui in equation (3.1), respectively.

The resulting estimate δ̂(ℓi)/ϕ̂(ℓi) causes over-shrinkage or under-shrinkage, which leads to the
increased risk of ΩLW

p . For the linear ridge estimator, on the other hand, we only have to calcu-
late p−1tr [(Sp + γIp)

−1], namely, we can use all the sample eigenvalues to estimate parameters.
This leads to a stability of ΩLR

p in the cases that N and p are small or p/N is comparatively

large. Comparing ΩLW
p and ΩLR

p with the oracle estimator, we observe that as p gets larger, the

risks of ΩLW and ΩLR
p become more inflated in comparison with the oracle estimator, namely,

the estimation error of â∗i in (3.8) for estimating ai in the Ledoit-Wolf type estimator increases
for large p. The inflation in the risk of ΩLR

p seems relatively smaller than that of ΩLW
p for large

p.

Table 1: Empirical Risks of Ωoracle
p , ΩLW

p , ΩLR
p , Ωridge

p and Ωlinear
p with N = 50, (a, b) = (1, 1)

p oracle LW LR ridge linear

30 0.1538 0.1710 0.1665 0.1681 0.1830
70 0.1703 0.1782 0.1770 0.1813 0.8705

Normal 150 0.1769 0.1854 0.1856 0.1901 0.8081
(a,b)=(1,1) 250 0.1791 0.1933 0.1902 0.1951 0.9056

500 0.1800 0.2342 0.1981 0.2209 0.9757
700 0.1799 0.3789 0.2116 0.2561 0.9877

30 0.1544 0.1704 0.1670 0.1689 0.1878
70 0.1702 0.1786 0.1787 0.1823 0.8612

t10 150 0.1769 0.1849 0.1869 0.1896 0.8110
(a,b)=(1,1) 250 0.1790 0.1911 0.1889 0.1932 0.9062

500 0.1801 0.2189 0.2029 0.2117 0.9757
700 0.1799 0.2632 0.2174 0.2464 0.9876
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We next investigate the performances of the estimators for some variety of shapes of pop-
ulation spectral distribution. As the shape parameters (a, b) in the beta distribution, we deal
with the cases of (a, b) = (1.5, 1.5), (0.5, 0.5), (5, 5) and (2, 5). For graphical illustration of the
beta distribution under these parameters, see Ledoit and Wolf (2012). We carry out similar
simulation experiments as described above for N = 50 and p = 30, 70, 150, 250 and 500. Pop-
ulation eigenvalues are generated by equation (4.1). The results are reported in Table 2. It is
revealed that we have similar risk performances as mentioned in the case of (a, b) = (1, 1). Thus,
the results given in Tables 1 and 2 show that the suggested linear ridge estimator ΩLR

p gives a
relatively good performance among the estimators compared in this simulation.

Table 2: Empirical Risks of Ωoracle
p , ΩLW

p , ΩLR
p , Ωridge

p and Ωlinear
p with N = 50 under Normal

Distribution

(a, b) p oracle LW LR ridge linear

30 0.1216 0.1354 0.1327 0.1343 0.1437
70 0.1335 0.1415 0.1416 0.1472 0.8494

(1.5,1.5) 150 0.1388 0.1468 0.1467 0.1534 0.8043
250 0.1405 0.1551 0.1487 0.1580 0.9087
500 0.1415 0.1887 0.1631 0.1813 0.9766

30 0.2122 0.2288 0.2253 0.2304 0.2542
70 0.2359 0.2441 0.2436 0.2463 0.8932

(0.5,0.5) 150 0.2444 0.2534 0.2565 0.2559 0.8279
250 0.2468 0.2627 0.2547 0.2619 0.9008
500 0.2480 0.2982 0.2629 0.2866 0.9738

30 0.0496 0.0585 0.0570 0.0693 0.0595
70 0.0536 0.0595 0.0604 0.0754 0.8357

(5,5) 150 0.0557 0.0624 0.0612 0.0757 0.7958
250 0.0563 0.0688 0.0653 0.0769 0.9089
500 0.0567 0.1072 0.0843 0.1015 0.9784

30 0.1123 0.1277 0.1257 0.1268 0.1421
70 0.1248 0.1340 0.1338 0.1376 0.8357

(2,5) 150 0.1323 0.1407 0.1416 0.1445 0.8042
250 0.1350 0.1487 0.1443 0.1507 0.9100
500 0.1364 0.1843 0.1589 0.1760 0.9769

4.2 Illustrative example

We now compare the performance of several estimators of the precision matrix through the
quadratic discriminant analysis (QDA). In QDA, when p× 1 observation xi,j , i = 1, 2, j =
1, . . ., Ni are obtained from the population group Πi, i = 1, 2, a new observation x is classified
into Π1 or Π2 via the classification rule

(x− x1)
TΩ1,p(x− x1)− (x− x2)

TΩ2,p(x− x2) < (resp. >) 0=⇒x∈Π1(resp.Π2),
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where xi = N−1
i

∑Ni
j=1 xi,j , i = 1, 2 and Ωi,p, i = 1, 2 is an estimator of the precision matrix of

the population Πi. The classification rules given by substituting the estimators Ω1,p and Ω2,p

corresponding to ΩLW
p , ΩLR

p , Ωridge
p , Ωlinear

p , ΩMP
p and Ωdiag

p are denoted by LW, LR, ridge,

linear, MP and diag, where ΩMP
p is the Moore-Penrose generalized inverse matrix and Ωdiag

p

is the diagonal matrix Ωdiag
p = (diag(Sp))

−1. It is known in the literature that Ωdiag
p has a

good performance in discriminant analysis. To estimate these estimators, the sample covariance
matrix of the population Πi is estimated by

Si,p =
1

Ni − 1

Ni∑
j=1

(xi,j − xi)(xi,j − xi)
T.

We use the microarray data described in a colon cancer study by Alon, et al . (1999) where
expression levels for 2000 genes were measured on 40 normal and on 22 colon tumor tissues.
The dataset is available at http://genomics-pubs.princeton.edu/oncology/affydata. A base 10
logarithmic transformation is applied. The description of the above datasets and preprocessing
are due to Dettling and Buhlmann (2003) except standardization is not followed. This dataset
was used by Srivastava and Kubokawa (2007), Fisher and Sun (2011) and Touloumis (2015).

Using this dataset, we estimate the covariance matrices of the normal and colon cancer groups
of the top p genes, where p = 100, 250, 500 and 900. The correct classification rates based on the
estimators ΩLW

p , ΩLR
p , Ωridge

p , Ωlinear
p , ΩMP

p and Ωdiag
p are estimated by a leave-one-out cross

validation. The estimated correct classification rates are reported in Table 3. A relative gain in
correct classification rate for our ΩLR

p is at least 28.7％ over ΩLW
p and is at most 28.7％ over

Ωridge
p . Moreover, ΩLR

p shows equal or slightly higher correct classification rates than Ωlinear
p

and Ωdiag
p . Lastly we can see that the correct classification rate of Ωlinear

p is higher than that of

ΩLW
p and Ωridge

p , which seems to contradict the results in the previous simulation study. This is
because this data set of the colon cancer has considerable sparsity in the covariance structure.
Thus, we may improve the correct classification rate by assuming the sphericity or diagonality
for the precision matrix.

Table 3: Correct Classification Rates in the Colon Cancer Dataset

p LW LR ridge linear MP diag

100 67.7％ 87.1％ 71.0％ 83.9％ 38.7％ 85.5％
250 65.2％ 87.1％ 83.9％ 87.1％ 38.7％ 83.9％
500 61.3％ 87.1％ 72.6％ 83.9％ 41.9％ 87.1％
900 66.1％ 87.1％ 61.3％ 87.1％ 43.6％ 87.1％

5 Concluding Remarks

In this paper, we have addressed the problem of estimating the high-dimensional precision matrix
Σ−1

p relative ot the Frobenius loss function Lp(Σ
−1
p ,Ωp) = p−1tr (ΩpΣp−Ip)(ΩpΣp−Ip)

T. We
have suggested the linear ridge estimator of the precision matrix motivated from the Bayesian
aspect, and provided the estimators of the optimal parameters using the random matrix theory.
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We also have derived the Ledoit-Wolf type estimators and compared it with the suggested linear
ridge estimator and the other existing estimators. Some simulation results show that the linear
ridge estimator performs better than the other existing estimators when N and p are small, or
when p/N is large.

It is worth mentioning the estimation under other loss functions. A related loss function
is the quadratic loss p−1tr [(ΩpΣp − Ip)

2]. Under this loss fucntion, we can obtain the ridge,
linear and linear ridge estimators. However, we could not derive a Ledoit-Wolf type nonlinear
shrinkage estimator, because we need the asymptotic behavior of uT

i Σpuj for i ̸= j. In our
numerical investigation, these quantities seem almost zero, but not just zero. This is left for
future research. Ledoit and Wolf (2012) treated the loss functions p−1tr [(Ωp − Σ−1)2] and
p−1{tr [ΩpΣ]− log |ΩpΣ|− p and derived the nonlinear shrinkage estimators. We can derive the
ridge, linear and linear ridge estimators relative to these loss functions, and we shall compare
those estimators numerically under the loss function in a future study. To get estimators of
the parameters ai, α, β and γ under those loss functions, we have to solve equation (2.3) by
resorting to the strong package QuEST run on Matlab. An advantage of the Frobenius loss
function treated in this paper is that the estimators of α and β in the linear ridge estimator
and the ridge estimator are explicitly expressed for fixed γ, and the resulting linear ridge and
ridge estimators are written in closed forms. Since the other estimators can be derived by using
the QuEST, we can compare the performance of the suggested linear ridge estimator with the
existing other shrinkage ones.

Concerning the mean µ = E[xp,i], we have treated the case of µ = 0 in this paper. In
the case of µ ̸= 0, however, it is noted that all the results in this paper still hold by replacing
yp,i and N with yp,i − yp and n = N − 1 for yp = N−1

∑N
i=1 yi as long as we consider the

asymptotics on N and p. That is, the sample covariance matrix is

Sp =
1

n

N∑
i=1

(yp,i − yp)(yp,i − yp)
T,

which is rewritten as

Sp =
N

n

1

N

N∑
i=1

(yp,i − µ)(yp,i − µ)T − N

n
(yp − µ)(y − µ)T.

Leaving the second term out of consideration does not affect the LSD of Sp since rank((yp −
µ)(yp − µ)T) = 1 and is negligible in our arguments for large N and p.

It would be interesting to use the suggested estimator for testing the hypothesis H0 : µ =
0. Reasonable test statistics are functions of yT

pΩpyp. For example, test statistics of Bai

and Saradanasa (1996) and Srivastava (2007) are based on yT
p yp/(p

−1tr [Sp]) and yT
p S

+yp,

respectively, which are correspond to Ωp = (p/trS)Ip = (1/ℓ)Ip and Ωp = S+. Using the
linear ridge estimator for Ωp, we can suggest a test statistic based on

yT
pΩ

LR
p yp =yT

p

(
(1− w)α0(S + γIp)

−1 + w(1/ℓ)Ip

)
y

=(1− w)α0y
T
p (S + γIp)

−1y + w(1/ℓ)yTy,

which is a convex combination of the Bai-Saranadasa statistic and the Hotelling T -statistic
replacing S−1 or S+ with the ridge estimator. We will study the performance of a test statistic
based yT

pΩ
LR
p yp as a future project.
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A Appendix

A.1 Proof of Theorem 1

The Frobenius loss function of the rotation-equivariant estimator is

Lp(Σ
−1
p ,Ωp(Ap)) =

1

p

p∑
i=1

{a2(ℓi)uT
i Σ

2
pui − 2a(ℓi)u

T
i Σpui}+ 1.

Theorem 4 in Ledoit and Péché (2011) shows that

1

p

p∑
i=1

a(ℓi)u
T
i Σpui→

∫
a(x)δ(x)dF (x),

where δ(x) is given in (3.2). Thus, we shall evaluate the asymptotic quantity of
p−1

∑p
i=1 a(ℓi)u

T
i Σ

2
pui. The same arguments as used in the proof of Theorem 4 in Ledoit and

Péché (2011) are heavily exploited for the evaluation. Let ∆
(2)
p (x) be the nondecreasing function

defined by

∆(2)
p (x) =

1

p

p∑
j=1

uT
j Σ

2
puj×�[ℓj ,+∞)(x), ∀x∈R.

When all the sample eigenvalues are distinct, it is noted that uT
i Σ

2
pui (i = 1, · · ·, p) can be

recovered from ∆
(2)
p as

uT
i Σ

2
pui = lim

ϵ→0+

∆
(2)
p (ℓi + ϵ)−∆

(2)
p (ℓi − ϵ)

Fp(ℓi + ϵ)− Fp(ℓi − ϵ)
.

Thus, it suffices to examine the asymptotic behavior of ∆
(2)
p (x). Note that the stieltjes transform

of ∆
(2)
p (x) is the same with Euation (3) of Ledoit and Péché (2011) for g(τj) = τ2j . Let Θ

(2)
p (z)

be the stieltjes transform of ∆
(2)
p (x). Then, Θ

(2)
p (z) converges a.s. to Θ(2)(z) for all z ∈C+.

Moreover, it follows from Lemmas 2 and 3 in Ledoit and Péché (2011) that

Θ(2)(z) =
z + z2mF (z)

(1− y − yzmF (z))2
+

∫
tdH(t)

1− y − yzmF (z)
, ∀z ∈C+. (A.1)

Using Lemma6 in Ledoit and Péché (2011), we can see that limp→∞∆
(2)
p (x) ≡ ∆(2)(x) exists

and is equal to

∆(2)(x) = lim
η→0+

1

π

∫ x

−∞
ℑ[Θ(2)(λ+ iη)]dλ. (A.2)

for every continuous point x∈R of ∆(2)(x). Plugging (A.1) into (A.2) yields

∆(2)(x) = lim
η→0+

1

π

∫ x

−∞
ℑ
[ (λ+ iη) + (λ+ iη)2mF (λ+ iη)

(1− y − y(λ+ iη)mF (λ+ iη))2
+

∫
tdH(t)

1− y − y(λ+ iη)mF (λ+ iη)

]
dλ

= lim
η→0+

1

π

∫ x

−∞
ℑ
[ (λ+ iη) + (λ+ iη)2mF (λ+ iη)

(1− y − y(λ+ iη)mF (λ+ iη))2

]
dλ

+ lim
η→0+

1

π

∫ x

−∞
ℑ
[ ∫

tdH(t)

1− y − y(λ+ iη)mF (λ+ iη)

]
dλ. (A.3)
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We begin by evaluating ∆(2)(x) in the case of y ∈ (0, 1). The first term in RHS of (A.3) is

lim
η→0+

1

π

∫ x

−∞
ℑ
[ (λ+ iη) + (λ+ iη)2mF (λ+ iη)

(1− y − y(λ+ iη)mF (λ+ iη))2

]
dλ

= lim
η→0+

1

π

∫ x

−∞
ℑ
[
(λ+ iη)

{
1 + (λ+ iη)mF (λ+ iη)

}
×

{
(1− y − yℜ[(λ+ iη)mF (λ+ iη)])2 − y2(ℑ[(λ+ iη)mF (λ+ iη)])2

+ 2iyℑ[(λ+ iη)mF (λ+ iη)](1− y − yℜ[(λ+ iη)mF (λ+ iη)])
}]

×(|(1− y − y(λ+ iη)mF (λ+ iη))2|2)−1dλ,

which is rewritten as

1

π

∫ x

−∞

λℑ[λmF (λ)]
{
(1 + y + yℜ[λmF (λ)])(1− y − yℜ[λmF (λ)])− y2(ℑ[λmF (λ)])

2
}

|(1− y − yλmF (λ))2|2
dλ

=
1

π

∫ x

−∞

ℑ[mF (λ)]λ
2{1− y2 − 2y2λℜ[mF (λ)]− y2λ2|mF (λ)|2}

|(1− y − yλmF (λ))2|2
dλ

=

∫ x

−∞

λ2{1− y2 − 2y2λℜ[mF (λ)]− y2λ2|mF (λ)|2}
|(1− y − yλmF (λ))2|2

dF (λ).

The second term in RHS of (A.3) is

lim
η→0+

1

π

∫ x

−∞
ℑ[

∫
tdH(t)

1− y − y(λ+ iη)mF (λ+ iη)
]dλ

=

∫
tdH(t)× 1

π
lim

η→0+

∫ x

−∞

yℑ[(λ+ iη)mF (λ+ iη)]

|1− y − y(λ+ iη)mF (λ+ iη)|2
dλ,

which is equal to∫
tdH(t)× 1

π

∫ x

−∞

yℑ[λmF (λ)]

|1− y − yλmF (λ)|2
dλ

=

∫
tdH(t)×

∫ x

−∞

yλF ′(λ)

|1− y − yλmF (λ)|2
dλ =

∫ x

−∞

∫
tdH(t)yλ

|1− y − yλmF (λ)|2
dF (λ).

Hence, for x > 0, it is concluded that

∆(2)(x) =

∫ x

−∞
ϕ(λ)dF (λ),

for ϕ(·) given in (3.3). This shows Theorem 1 in the case of y ∈ (0, 1).

We next consider the case of y ∈ (1,∞). Rewriting Θ(2)(z) based on the relation between
mF (z) and mF (z) given by y + yzmF (z) = 1 + zmF (z), we have

Θ(2)(z) =
1

−zmF (z)

(
z

1
y + 1

yzmF (z)

−zmF (z)
+

∫
tdH(t)

)
=

1

zmF (z)

(1 + zmF (z)

ymF (z)
−

∫
tdH(t)

)
= −µ(z)

z
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where

µ(z) =
1

mF (z)

(
−

1 + zmF (z)

ymF (z)
+

∫
tdH(t)

)
.

The inversion formula for the stieltjes transform implies that:

lim
ϵ→0+

(∆(2)(ϵ)−∆(2)(−ϵ)) = lim
ϵ→0+

lim
η→0+

1

π

∫ ϵ

−ϵ
ℑ[Θ(2)(λ+ iη)]dλ

= lim
ϵ→0+

lim
η→0+

1

π

∫ ϵ

−ϵ
ℑ
[
− µ(λ+ iη)

λ+ iη

]
dλ

=µ(0)

=
1

mF (0)

(
− 1

ymF (0)
+

∫
tdH(t)

)
, (A.4)

The third equality follows from Lemma 9 in Ledoit and Péché (2011), since µ is a complex
holomorphic function and µ(0)∈R. Also from Lemma 8 in Ledoit and Péché (2011)], it is noted
that F (λ) = (1 − y−1)�[0,+∞)(λ) for λ in a neighborhood of zero. For x in a neighborhood of
zero, from (A.4), it can be seen that

∆(2)(x) =

∫ x

−∞

1

mF (0)

(
− 1

ymF (0)
+

∫
tdH(t)

)
d�[0,+∞)(λ)λ.

Comparing the two expressions, we can see that for x in a neighborhood of zero,

∆(2)(x) =

∫ x

−∞

y

y − 1

1

mF (0)

(
− 1

ymF (0)
+

∫
tdH(t)

)
dF (λ)

Therefore, for x in a neighborhood of zero,

∆(2)(x) =

∫ x

−∞
ϕ(λ)dF (λ),

which proves Theorem 1. □

A.2 Proof of Theorem 2

We begin by providing the proof for the limit of α∗(γ). Given γ > 0, the optimal α is

α∗(γ) =

1
ptr [(Sp + γIp)

−1Σp]
1
ptr [Σ

2
p]− 1

ptr [(Sp + γIp)
−1Σ2

p]
1
ptr [Σp]

1
ptr [(Sp + γIp)−2Σ2

p]
1
ptr [Σ

2
p]− {1

ptr [(Sp + γIp)−1Σ2
p]}

2

It follows from Theorem 2 in Wang, et al . (2014) that when N →∞ and p/N → y ∈ (0,∞),

1

p
tr [(Sp + γIp)

−1Σp]→
1− γm̆F (−γ)

1− y(1− γm̆F (−γ))
.

Let B(γ) = {1− γm̆F (−γ)}/{1− y(1− γm̆F (−γ))}. Since p−1tr [(Sp + γIp)
−1Σ2

p] is Θ
(2)
p (−γ)

in the proof of Theorem 1, it can be seen from the equation (A.1) that

1

p
tr [(Sp + γIp)

−1Σ2
p]→

−γ + γ2m̆F (−γ)

(1− y(1− yγm̆F (−γ)))2
+

∫
tdH(t)

1− y(1− yγm̆F (−γ))

=
(∫

tdH(t)− γB(γ)
)(

1 + yB(γ)
)
.
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Since p−1tr [(Sp+ γIp)
−2Σ2

p] = − d
dγ p

−1tr [(Sp+ γIp)
−1Σ2

p], the limit of p−1tr [(Sp+ γIp)
−2Σ2

p]
is

− d

dγ

(∫
tdH(t)− γB(γ)

)(
1 + yB(γ)

)
= yB2(γ) +B(γ) + 2yγB(γ)B′(γ) +

(
γ −

∫
tdH(t)

)
B′(γ).

For β∗(γ) and L∗
p(γ), we can prove their limits using the same arguments, and the proof of

Theorem 2 is complete. □

A.3 Consistent estimator of the stieltjes transform m̆F (x)

This section explains briefly the method of Ledoit and Wolf (2015) for estimating m̆F (x). Ledoit
and Wolf (2015) provided the nonrandom multivariate function called the Quantized Eigenvalues
Sampling Transforms or QuEST for short. For any positive integers N and p, the QuEST
function denoted by QN,p is defined as

QN,p : [0,∞)p→ [0,∞)p (A.5)

tp≡ (t1, · · · , tp)T 7→QN,p(t)≡ (q1N,p(t), · · · , q
p
N,p(t))

T. (A.6)

For ∀z ∈C+, m≡mt
N,p(z) is the unique solution in the set {m∈C : −(N−p)/Nz+pm/N ∈C+}

to the equation

m =
1

p

p∑
i=1

1

ti{1− (p/N)− (p/N)zm} − z
, (A.7)

∀x∈R, F t
N,p(x)≡


max

{
1− p

N
,
1

p

p∑
i=1

�(ti=0)

}
if x = 0,

limη→ 0+
1

π

∫ x

−∞
ℑ[mt

N,p(ξ + iη)]dξ otherwise,

(A.8)

∀u∈ [0, 1], (F t
N,p)

−1(u)≡ sup{x∈R : F t
N,p(x)≤u}, (A.9)

and

∀i = 1, · · ·, p, qiN,p(t)≡ p

∫ i/p

(i−1)/p
(F t

N,p)
−1(u)du. (A.10)

It can be seen that equation (A.7) quantizes equation (2.3), and that equation (A.8) quantizes
equations (2.1) and (2.2). F t

N,p is the limiting distribution of sample eigenvalues corresponding

to the population spectral distribution p−1
∑p

i=1 �(ti=0). By equation (A.9), (F t
N,p)

−1 represents

the inverse spectral distribution function, or the quantile function. By equation (A.10), qiN,p(t)
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can be interpreted as a smoothed version of the (i − 0.5)/p quantile of F t
N,p. Ledoit and Wolf

(2015) estimates the eigenvalues of the population covariance matrix by

t̂p = argmint∈ [0,∞)p
1

p

p∑
i=1

[qiN,p(t)− ℓi]
2,

where ℓp = (ℓ1, . . ., ℓp)
T are eigenvalues of the sample covariance matrix, and showed that

1

p

p∑
i=1

[t̂i − ti]
2→ 0.

Lastly, the estimator of m̆F (x) is obtained as the unique solution m̂∈R∪C+ to the equation

m =
1

p

p∑
i=1

1

t̂i{1− (p/N)− (p/N)xm} − x
.

Acknowledgments.
First of all, we are really grateful to Professor Olivier Ledoit for his kindness of giving us his

programs for computation. Research of the second author was supported in part by Grant-in-
Aid for Scientific Research (15H01943 and 26330036) from Japan Society for the Promotion of
Science.

References

[1] Alon, U., Barkai, N., Motterman, D., Gish, K., Mack, S., and Levine, J. (1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays. Proceeding of the National Academy of Science of
the United States of America, 96, 6745-6750.

[2] Bai, Z., and Saranadasa, H. (1996). Effect of high dimension: By an example of a two
sample problem. Statist. Sinica, 6, 311-329.

[3] Bai, J., and Shi, S. (2011). Estimating high dimensional covariance matrices and its appli-
cations. Ann. Economics and finance, 12, 199-215.

[4] Bodnar, T., Gupta, A.K., and Parolya, N. (2015). Direct shrinkage estimation of large
dimensional precision matrix. J. Multivariate Analysis, to appear.

[5] Dettling, M., and Buhlmann, P. (2002). Boosting for tumor classification with gene expres-
sion data. Bioinfomatics, 19, 1061-1069.

[6] Fisher, T.J., and Sun, X. (2011). Improved Stein-type shrinkage estimators for the high-
dimensional multivariate normal covariance matrix. Comp. Statist. Data Analysis, 55, 1909-
1918.

21



[7] Himeno, T. and Yamada, T. (2014). Estimations for some functions of covariance matrix
in high dimension under non-normality and its applications. J. Multivariate Analysis, 130,
27-44.

[8] Ledoit, O., and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covari-
ance matrices. J. Multivariate Analysis, 88, 365-411.
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