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Abstract

Several new statistical procedures for high-frequency financial data analysis have been developed to
estimate risk quantities and test the presence of jumps in the underlying continuous-time financial
processes. Although the role of micro-market noise is important in high-frequency financial data,
there are some basic questions on the effects of presence of noise and jump in the underlying
stochastic processes. When there can be jumps and (micro-market) noise at the same time, it is
not obvious whether the existing statistical methods are reliable for applications in actual data
analysis. We investigate the misspecification effects of jumps and noise on some basic statistics and
the testing procedures for jumps proposed by Ait-Sahalia and Jacod (2009, 2010) as an illustration.
We find that their first test (testing the presence of jumps as a null-hypothesis) is asymptotically
robust in the small-noise asymptotic sense against possible misspecifications while their second test
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1. Introduction

In the past decades there has been considerable interest in the prob-

lem of statistical estimation and testing on some properties of the

underlying stochastic processes for high-frequency financial data anal-

ysis (see Ait-Sahalia and Jacod (2014) for an extensive list of the

related literature; also see Hayashi and Yoshida (2008) for other re-

lated problems). Several new statistical procedures for high-frequency

financial data analysis have been developed to estimate risk quanti-

ties such as volatility and test the presence of jumps in the underlying

continuous-time financial processes by using high-frequency financial

data. The role of micro-market noise is important in high-frequency

financial data; however, there are basic questions on the effects of

noise and jumps in the underlying stochastic processes. When there

can be jumps and micro-market noise at the same time, it is not cer-

tain whether the existing methods are reliable for the applications in

actual data analysis. We will investigate the misspecification effects

of jumps and noise on the realized volatility and some test statistics

for jumps. In particular we examine the test statistics for jumps de-

veloped by Jacod (2009) and Ait-sahalia and Jacod (2009, 2010) as

an illustration.
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The main purpose of this paper is to develop a small-noise asymp-

totic method to assess the effects of the possible existence of jumps

and noises on statistical procedures and to examine their validity in

realistic situations. We first investigate the effects of jumps and noise

by using the realized volatility to estimate the quadratic variation for

risk management. We then investigate some higher-order functionals

and the limiting distributions of some test procedures of the jumps

proposed by Ait-Sahalia and Jacod (2009) which are included as an

illustration within our analysis. As seen in later sections the small-

noise asymptotic analysis sheds some new insights on the role of noise

and jumps in high-frequency econometric analysis.

Several recent studies have been related to the main topic of this

paper such as Ait-Sahalia, Jacod and Li (2012), Li and Mykland (2015)

and many others on the pre-averaging method and the rounding-error

problem, respectively. We shall mention these studies briefly in the

course of our related discussions.

In Section 2 we introduce the statistical setting of the underlying Itô

semimartingale and noise and then investigate the asymptotic prop-

erty of the realized quadratic variation (QV) when we have noise and

jumps in the small-noise asymptotic sense. In Section 3 we investigate

the asymptotic property of the higher order realized variation in the
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small-noise asymptotic sense, and in Section 4 we apply our method

to investigate the asymptotic distributions of test statistics for detect-

ing jumps. In Section 5, we report our simulation results including

some results on the modified tests based on the pre-averaging method

by Ait-Sahalia, Jacod and Li (2012). We give concluding remarks in

Section 6. The proofs and the derivations of our results are included

in Appendix A, and some figures are presented in Appendix B.

2. Effects of Noise on QV in a Simple Case

We consider the continuous-time financial market in a fixed termi-

nal interval [0, T ] and set T = 1 as the end of a market day without

loss of generality. The underlying security price is a continuous time

semimartingale and we first consider the case when it is a diffusion

stochastic process without the drift term. It is possible to investigate

the essential aspects of the effects of micro-market noise on the un-

derlying (continuous time) stochastic processes in the simple setting.

We observe the financial price process in the high frequency, but we

have micro-market noise and assume the additive model as the simple

case.

4



2.1 A Formulation of Small Micro-market Noise

Let the first-filtered probability space be (Ω(0),F (0), (F (0)
t )t≥0, P

(0))

on which the Itô semimartingale Xt (0 ≤ t ≤ 1) is well-defined. Let

also the second-filtered probability space be (Ω(1),F (1), (F (1)
t )t≥0, P

(1))

on which the micro-market noise terms v(tni ) (i = 1, · · · , n) are well-

defined with 0 ≤ tni ≤ 1. Then we construct the filtered probability

space and the probability measure as (Ω,F , (Ft)t≥0, P ), where Ω =

Ω(0)×Ω(1), F = F (0)⊗F (1) with Ft =
∩

s>tF
(0)
s ⊗F (1)

s (0 ≤ t ≤ s ≤ 1)

and P = P (0) × P (1).

We first consider the additive model for the observed (log-)price at

tni ∈ [0, 1] as

(2.1) Y (tni ) = X(tni ) + ϵnv(t
n
i ) (i = 1, · · · , n),

where X(t) is the continuous-time Brownian martingale as the sim-

plest case with

(2.2) X(t) = X(0) +

∫ t

0
σsdBs (0 ≤ s ≤ 1) ,

where Bs is the standard Brownian motion and σs is the (instanta-

neous) volatility function, which are predictable (and progressively

measurable) with respect to (Ω,F , (Ft)t≥0, P ) (see Ikeda and Watan-

abe (1989) for the general reference). We use the notationsXi = X(tni )
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and Yi = Y (tni ) in the following analysis.

In this paper we investigate the situation in which the micro-market

noise terms v(tni ) (= vi) are a sequence of random variables with

E [vi] = 0,E [v2
i ] = 1, and ϵn (≥ 0) is a (non-negative) sequence of

parameters depending on n, which goes to 0 as n −→ ∞. We call this

situation the small-noise case.

The standard models of micro-market noise have been the case when

ϵn = ϵ (> 0, a constant) while n −→ ∞. The classical high frequency

models correspond to the case when ϵn = 0. Thus we can fill the gaps

between the classical high frequency models and the micro-market

noise models because the two situations represent as the extreme cases.

In the constant noise case as n −→ ∞, the market noise dominates

the hidden intrinsic price movements as the limit eventually, which

may not be reasonable in the real financial markets.

In regard to the micro-market noise, the additive model we are con-

sidering in (2.1) can be regarded as an approximation to the possible

non-linear models, such as

(2.3) Y (tni ) = fn(X(tni ),∆X(tni ), v(t
n
i )) (i = 1, · · · , n),

where fn(·) is a sequence of measurable functions depending on n

and ∆X(tni ) = X(tni ) − X(tni−1). One example of (2.3) without the
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second term ∆X(tni ) would be the small rounding error models in-

vestigated by Li, Zhang and Li (2015) as well as other studies. As

a second example of (2.3), we can consider the situations of Y (tni ) =

f(X(tni ), ϵniv(t
n
i )) (i = 1, · · · , n) when the conditional variance is

given by [ϵni]
2 = E [(∆X(tni ))

2|F(tni−1)] = Op(n
−1). Then we have

the linearized small-noise model which is represented by Y (tni ) =

X(tni ) + ϵniv(t
n
i ) with E [v(tni )] = 0.

When there are many observations of traded prices in a fixed inter-

val, meaning that the financial market is quite active, we can expect

that the micro-market noise plays a less important role. Therefore,

the additive model (2.1) may be a reasonable description of some fi-

nancial markets. At this point, we would like to stress that the general

case is beyond the scope of this paper and our investigation is the first

step toward understanding the effects of micro-market noise in more

general situations. We expect that our analyses would be extended to

several important cases without much difficulty.

In the following analysis we consider (2.1) when ϵn is a sequence of

constants depending on n; and v(tni ) (= vi) is a sequence of random

variables independent of X(t) with E [vi] = 0,E [v2
i ] = 1 and the higher

moment conditions as E [v8
i ] <∞. We denote E [v4

i ] = 3 + κ4 <∞ and
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κ4 = 0 for the Gaussian noise random variable.

2.2 Effects of Small Noise

We consider the situation in which ϵn → 0 (n→ ∞) and we call this

case the small noise asymptotic sequence. We set the observed times

as 0 = tn0 < tn1 < · · · < tnn = 1 with tni − tni−1 = 1/n (= ∆n), and we

consider the asymptotic behavior of the basic statistics in the small

noise situation when n −→ ∞. This situation gives useful information

on the relation of the no-noise case and the noise case in high-frequency

econometric analysis.

In this setting we first investigate the estimation problem of the

quadratic variation (QV) by using the realized volatility

(2.4) Vn(2) =
n∑

i=1

(Yi − Yi−1)
2 ,

which can be decomposed as

Vn(2) =
n∑

i=1

(Xi −Xi−1)
2 + 2ϵn

n∑
i=1

(Xi −Xi−1)(vi − vi−1)

+ϵ2n

n∑
i=1

(vi − vi−1)
2

= (I) + (II) + (III) ,

where we denote v0 (= v(tn0)) = 0 as a convention in this paper and

write each term as (I), (II) and (III), which are the components of the
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above decomposition.

When ϵn is a constant (which is independent of n), the effect of the

third term in the decomposition dominates the other terms in Vn(2) as

n→ ∞. To make our analysis meaningful, we consider the small-noise

case when

(2.5) nϵ2n = c+ o(1) ,

where c is a nonnegative constant and o(1) denotes a smaller order

than constants.

Then we write (III) as

(2.6) 2c+
c√
n
×
√
n

[
1

n

n∑
i=1

(vi − vi−1)
2 − 2

]
.

For the stochastic integration of the Brownian motion, we approximate

that for i = 1, · · · , n

Xi −Xi−1 =

∫ tni

tni−1

σsdBs(2.7)

∼ σ(tni−1)[B(tni ) −B(tni−1)] = σn
i−1(

1√
n

)Zi ,

where σi−1 = σ(tni−1) (we set σ0 as a constant) and Zi (i = 1, · · · , n) is

a sequence of i.i.d. N(0, 1) random variables. Then we can write (I)

as

(I) =
1

n

n∑
i=1

σ2
i−1 +

1√
n

[
1√
n

n∑
i=1

σ2
i−1(Z

2
i − 1)

]
+ op(

1√
n

)
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and (II) as

(II) =
1√
n

[
2
√
c√
n

n∑
i=1

σi−1Zi(vi − vi−1)

]
+ op(

1√
n

) ,

where op(
1√
n
) means a smaller order than 1/

√
n in probability.

(We will also use the standard notation Op(n
−1) as the stochastic order

of n−1 in the following analysis.)

By adding the three terms, we have

Vn(2) =

[
1

n

n∑
i=1

σ2
i−1 + 2c

]
(2.8)

+
1√
n

[
1√
n

n∑
i=1

σ2
i−1(Z

2
i − 1)

]

+
1√
n

[
2
√
c√
n

n∑
i=1

σi−1Zi(vi − vi−1)

]

+
c√
n
×

√
n

[
1

n

n∑
i=1

(vi − vi−1)
2 − 2

]
+Op(

1

n
) .

When n −→ ∞, the first term converges in probability to

(2.9) Vc =

∫ 1

0
σ2

sds+ 2c

and the discretization error in the leading term is

(2.10) Dn(0) =
1

n

n∑
i=1

σ(tni−1)
2 −

∫ 1

0
σ2

sds .

We also need to evaluate the discretization error

(2.11) Dn(1) = (Xi −Xi−1) − σ(tni−1)(
1√
n

)Zi (i = 2, · · · , n).
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To investigate the present problem in detail, we make a simple assump-

tion about the (stochastic) volatility function, which is a solution of

the stochastic differential equation (SDE) given by

(2.12) σt = σ0 +

∫ t

0
µσ

sds+

∫ t

0
ωσ

s dB
σ
s (0 ≤ t ≤ 1) ,

where Bσ
s is the second Brownian motion (which can be correlated

with B(s)), and µσ
s and ωσ

s (which are the drift term and the diffusion

term of the volatility), are predictable and progressively measurable

with respect to (Ω,F , (Ft)t≥0, P ). We assume that they are bounded

and Lipschitz continuous such that the volatility process of (2.12) is

smooth and has higher order moments for the resulting simplicity (see

Chaper 5 of Ikeda and Watanabe (1989)).

Then we have the following result. For the sake of completeness, we

give the proof in Appendix A. It can be also regarded as a simple

consequence of Theorem 6.12 of Jacod and Protter (2012).

Lemma 1 : Assume (2.2) and (2.12). For i = 1, · · · , n and tni−1 <

t ≤ tni ,

(2.13) σ2
t − σ2

i−1 =

∫ t

tni−1

[2σsµ
σ
s + (ωσ

s )2]ds+

∫ t

tni−1

2σsω
σ
s dB

σ
s

and

(2.14)

∫ 1

0
σ2

sds−
1

n

n∑
i=1

σ2
i−1 = Op(

1

n
) .

11



We also need to evaluate the discretization errors. As an example we

have the following relation (the proof is given in Appendix A).

Lemma 2 : Assume (2.2) and (2.12). For i = 1, · · · , n we have

(2.15) (Xi −Xi−1) − σ(tni−1)
1√
n
Zi = Op(

1

n
)

and

n∑
i=1

(Xi −Xi−1)
2 −

[∫ 1

0
σ2

sds

]
= 2

n∑
i=1

∫ tni

tni−1

[Xs −Xi−1]dXs(2.16)

= Op(
1√
n

) ,

By investigating the weak convergence of the three terms in the de-

composition of Vn(2), we obtain the next result (the proof is given in

Appendix A).

Theorem 1 : Assume (2.1), (2.2), and (2.12) with E [v3
i ] = 0 and

E [v4
i ] = 3 + κ4 < ∞. Furthermore, assume that v0 is a random vari-

able vi (i = 1, · · · , n) as the initial condition. Define a sequence of
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random variables as

U0n =
1

n

n∑
i=1

σ2
i−1 + 2c ,(2.17)

U1n =
1√
n

[
1√
n

n∑
i=1

σ2
i−1(Z

2
i − 1)

]
,(2.18)

U2n =
1√
n

[
2
√
c√
n

n∑
i=1

σi−1Zi(vi − vi−1)

]
,(2.19)

U3n =
c√
n
×
√
n

[
1

n

n∑
i=1

(vi − vi−1)
2 − 2

]
,(2.20)

where σi−1 = σ(tni−1) and Zi =
√
n[B(tni ) −B(tni−1)] (i = 1, · · · , n).

We set the limiting random variable of U0n as U0 =
∫ 1

0 σ
2
sds+2c (= Vc)

as the leading term of Vn(2). Then as n −→ ∞ with (2.4), we have

the stable convergence as

(2.21)
√
n [Vn(2) − U0]

S−c−→ U = U1 + U2 + U3 ,

where Ui (i = 1, 2, 3) are F− conditional and thus mutually inde-

pendent Gaussian random variables with zero means and the (con-

ditional) asymptotic variances are given by E [U 2
1 |F ] = 2

∫ 1
0 σ

4
sds ,

E [U 2
2 |F ] = 8c

∫ 1
0 σ

2
sds , and E [U 2

3 |F ] = [12 + 4κ4]c
2 .

In the above expression, we freely use the stable convergence argu-

ments and F−conditional Gaussianity, which were developed and ex-

plained in some detail by Jacod (2008) and Jacod and Protter (2012).
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When σ2
s is a deterministic function, U and Ui (i = 1, 2) in Theorem

1 are Gaussian random variables. In the general case, however, we

need to extend the original probability space such that the quantities∫ 1
0 σ

2
sds and

∫ 1
0 σ

4
sds are mathematically meaningful as the limits of the

sequence of random variables. Thus we need to extend the probability

space (Ω,F , (Ft)t≥0, P ) to (Ω̃, F̃ , (F̃t)t≥0, P̃ ) so that these quantities

are well-defined random variables. As an illustration, we take U1n. In

this case U1n
S−c−→ U1 means the CLT (central limit theorem) such that

(2.22)
U1n√

2
∫ 1

0 σ
4
sds

L−→ N(0, 1) ,

which is the convergence in law. We do not discuss the details of this

procedure, but as a general reference on stable convergence, we refer

to Hausler and Luschgy (2015), Jacod and Protter (2012).

2.3 Effects of Jumps and Noise

When there can be jumps in the underlying stochastic process, it

is natural to assume that the underlying stochastic process is an Itô

semimartingale (continuous-time) process

X(t) = X(0) +

∫ t

0
µsds+

∫ t

0
σsdBs +

∫ t

0

∫
|x|<1

δ(s, x)(µ− ν)(ds, dx)

+

∫ t

0

∫
|x|≥1

δ(s, x)µ(ds, dx) ,(2.23)
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where µs (drift parameter) and σs (diffusion parameter) are predictable

and progressively measurable, δ(s, x) is a predictable process, µ(·) is

a jump measure and ν(·) is the compensator of 1A ∗ µ for 1 ∗ ν(ω)t =

ν(ω : [0, t)×A) (we have used the notation of Jacod and Protter (2012,

Section 2), and Jacod (2009)). We also assume that the jump sizes

|∆Xs| are bounded in the following anlysis.

We generally do not need any condition on jump sizes at the end.

However, in order to show the CLT and the stable convergence to

be held, we need to develop the similar mathematical arguments as

Section 5 (or Section 5.3.2 in particular) of Jacod and Protter (2012),

which has given the related derivations in detail already. We do not

pursue the resulting arguments for the proofs of our results in the

general cases although they hold.

The filtered probability space (Ω,F , (Ft)t≥0, P ) can be constructed

as in Section 2.1 except for the fact that the first probability space is

constructed by the general Itô semimartingale process Xt (0 ≤ t ≤ 1),

which is well-defined in the extended probability space.

For the general case of (2.23) we still have the same representation
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of (2.21) in Theorem 1, but Ui (i = 0, 1) should be replaced by

(2.24) U0 =

∫ 1

0
σ2

sds+
∑

0≤s≤1

(∆Xs)
2 + 2c ,

and

(2.25) E [U2
1 |F ] = 2

∫ 1

0
σ4

sds+ 4
∑

0≤s≤1

σ2
s(∆Xs)

2 ,

where ∆Xs = Xs−Xs− is the jump at s, and U1 is an F−conditionally

Gaussian process with zero mean. Since we can apply the martingale

CLT to U2n, U2 should be replaced by an F−conditionally Gaussian

process with zero mean and

(2.26) E [U 2
2 |F ] = 8c

[∫ 1

0
σ2

sds+
∑

0≤s≤1

(∆Xs)
2

]

because the limiting random variable of the sum of (Xi −Xi−1)(vi −

vi−1) is conditionally Gaussian random variable.

The outline of our derivations in (2.24)-(2.26) for the jump case is

given in Appendix A. It is a protptype of our evaluation methods in

Sections 3 and 4. We notice that without the presence of jumps the

above three terms can be reduced to the expressions in Theorem 1.

When c = 0, the result reduces to the standard situation without the

noise term.
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3. Effects of Noise on Vn(4)

By using the small-noise asymptotics, it is possible to investigate

the asymptotic properties of Vn(p) and Vn(4) in particular, where

(3.1) Vn(p) =
n∑

i=1

(Yi − Yi−1)
p .

For Vn(p) (p ≥ 2), we need to evaluate the discretization errors and

then utilize Itô
′
s Lemma in the general semimartingales with jumps

(see Protter (2003)). As an illustration we give a simple consequence

of Itô
′
s Lemma as the next proposition (the proof is given in Appendix

A).

Lemma 3 : Assume (2.23) for Xt (0 ≤ t ≤ 1). For any positive

integer p (≥ 2), we have

n∑
i=1

(Xi −Xi−1)
p −

[ ∑
0≤s≤1

(∆Xs)
p

]
(3.2)

=
n∑

i=1

∫ tni

tni−1

p(Xs− −Xi−1)
p−1dXs

+
n∑

i=1

∫ tni

tni−1

p(p− 1)

2
(Xs− −Xi−1)

p−2d[Xs, Xs]
c

+
n∑

i=1

∑
tni−1≤s<tni

p−1∑
j=2

pCj(Xs− −Xi−1)
p−j(∆Xs)

j ,

where pCj = p!/[(p − j)!j!], [Xs, Xs]
c is the continuous part of the

quadratic variation of Xs and we use the convention that the last

term in (3.2) is zero when p = 2. When p ≥ 3, (3.2) is Op(n
−1/2).
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For applications of testing jumps in the underlying stochastic pro-

cesses, we need to investigate the asymptotic behavior of Vn(4) =∑n
i=1(Yi − Yi−1)

4. We first decompose Vn(4) into five terms

Vn(4) =
n∑

i=1

(Xi −Xi−1)
4

+4ϵn

n∑
i=1

(Xi −Xi−1)
3(vi − vi−1) + 6ϵ2n

n∑
i=1

(Xi −Xi−1)
2(vi − vi−1)

2

+4ϵ3n

n∑
i=1

(Xi −Xi−1)(vi − vi−1)
3 + ϵ4n

n∑
i=1

(vi − vi−1)
4

= (I) + (II) + (III) + (IV ) + (V ) ,

where each of the terms are defined as the corresponding terms in the

decomposition.

When we have the condition nϵ2n = c+ o(1) in (2.5) on the noise term,

we represent the leading term of Vn(4) as

(3.3) U0 =
∑

0≤s≤1

(∆Xs)
4 .

Then we need to evaluate the asymptotic property (i.e., the asymptotic

distribution in particular) of the several quantities in the order of op(1).

Let the sequence of random variables be

(3.4) U1n =
n∑

i=1

(Xi −Xi−1)
4 −

[ ∑
0≤s≤1

(∆Xs)
4

]
,

(3.5) U2n = 4ϵn

n∑
i=1

(Xi −Xi−1)
3(vi − vi−1) ,
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(3.6) U3n = 6ϵ2n

n∑
i=1

(Xi −Xi−1)
2(vi − vi−1)

2 ,

(3.7) U4n = 4ϵ3n

n∑
i=1

(Xi −Xi−1)(vi − vi−1)
3 ,

and

(3.8) U5n = ϵ4nn

[
1

n

n∑
i=1

(vi − vi−1)
4

]
.

When we have the condition nϵ2n = c + o(1) and after lengthy eval-

uations of each term outlined in Appendix A, we find that U1n =

Op(n
−1/2), U2n = Op(n

−1/2), U3n = Op(n
−1), U4n = Op(n

−3/2), and

U5n = Op(1/n). Thus we have the next result and the proof is given

in Appendix A.

Theorem 2 : Assume (2.1), (2.12) and (2.23) with E [v8
i ] < ∞. Let

the leading term of Vn(4) be U0 =
∑

0≤s≤1(∆Xs)
4. Then as n −→ ∞

with (2.5) we have the stable convergence

(3.9)
√
n [Vn(4) − U0]

S−c−→ U = U1 + U2 ,

where U1 is an F− conditionally Gaussian random variable with zero

means and the asymptotic variance

(3.10) E [U 2
1 |F ] = 16

∑
0≤s<1

σ2
s(∆Xs)

6 .
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In addition,

(3.11) E [U 2
2 |F ] = 32c

∑
0≤s<1

(∆Xs)
6

and U2 is an F−conditionally (and Ui (i = 1, 2) are mutually in-

dependent) Gaussian random variable with zero mean if we assume

Gaussianity for vi (i = 1, · · · , n).

There can be other possibilities in the approximations, which are dif-

ferent from the condition in (2.5) as the small-noise asymptotics. For

instance, if we have

(3.12) nϵ4n = c∗ + o(1) ,

where c is a non-negative constant. The first term should be

(3.13) U0 =
∑

0≤s≤1

(∆Xs)
4 + c∗σ4(∆v)

and

(3.14) σ4(∆v) = 8 + 2E [(v2 − 1)2] .

Similarly, we can develop the corresponding decomposition for each

sequence of ϵn. However, the small disturbance asymptotics under

the condition (2.5) often give useful approximations, as we discuss in

Sections 4 and 5.
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4. An Application to the Testing Procedures for Jumps

One interesting problem in high-frequency econometrics is whether

the underlying stochastic process for asset prices has some jump com-

ponent or whether the continuous diffusion process is appropriate.

Several testing procedures have been proposed to detect whether there

is a jump compnent. In this section we investigate two testing pro-

cedures developed by Ait-Sahalia and Jacod (2009) as an important

application of our analysis. We consider the asymptotic properties of

their test statistics. For this purpose, we use their notations

Wn(p, k) =
√
n
[
(B̂(p, k∆n)1 −B(p)1) − (B̂(p,∆n)1 −B(p)1)

]
=

√
n

[n/k]∑
i=1

|∆n
i Y (k)|p −

n∑
i=1

|∆n
i Y (1)|p

 ,(4.1)

where

(4.2) B̂(p, k∆n)t =

[t/k∆n]∑
i=1

|∆n
i Y (k)|p , B(p)t =

∑
0<s≤t

|∆Xs|p ,

(4.3) ∆n
i Y (k) = (Xik∆n

−X(i−1)k∆n
) + ϵn(v(ik∆n) − v((i− 1)k∆n))

and v(ik∆n) (= vik) are i.i.d. noise terms and ∆n = 1/n.

Then we have the next result when p = 4 and k = 2 (the proof is

given in Appendix A).

Theorem 3 : Assume (2.1), (2.12), (2.23), and E [v8
i ] <∞.
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(i) We assume an Itô semimartingale (2.23) for the underlying process

X, and vi (i = 1, · · · , n) is the sequence of Gaussian random variables.

Then for Wn(p, k) with p = 4 and k = 2, as n −→ ∞ with (2.5), we

have the following stable convergence

(4.4) Wn(p, k)
S−c−→ U = U1 + U2 ,

where Ui (i = 1, 2) are F− conditional (and mutually independent)

Gaussian random variables with zero means and

(4.5) E [U2
1 |F ] = p2(k − 1)

∑
0≤s<1

σ2
s(∆Xs)

2(p−1) ,

and

(4.6) E [U 2
2 |F ] = p2(k − 1) × 2c

∑
0≤s<1

(∆Xs)
2(p−1) .

(ii) When Xt is a Brownian Itô semimartingale (2.23) without jump

components, let the fourth-order realized variation be

(4.7) Vn(4, k) =

[n/k]∑
i=1

|∆n
i Y (k)|4 .

Then as n −→ ∞ with (2.5), nVn(4, k) converges in probability to

(4.8) U ∗
0 (4, k) =

m4

k

∫ 1

0
σ4

sds+
12c

k

∫ 1

0
σ2

sds+
c2

k
E [(∆v)4] ,

(E [(∆v)4] = E [(vi − vi−1)
4]) and we have the stable convergence

√
n [nVn(4, k) − U ∗

0 (4, k)](4.9)

S−c−→ U ∗(4, p) = U ∗
1 (4, k) + U ∗

2 (4, k) + U ∗
3 (4, k) + U ∗

4 (4, k) + U ∗
5 (4, k) ,
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where U ∗
i (4, k) (i = 1, 2, 3, 4, 5) are (mutually independent) F−conditionally

Gaussian random variables with zero means and the (conditional)

asymptotic variances are given by

(4.10) E [(U ∗
1 (4, k))2|F ] = k3(m8 −m2

4)

∫ 1

0
σ8

sds ,

(4.11) E [(U ∗
2 (4, k))2|F ] = 32ck2

∫ 1

0
σ6

sds ,

(4.12)

E [(U∗
3 (4, k))2|F ] = 36c2k[(m4 −m2

2)Var(∆v)2 + (8m4 − 4)]

∫ 1

0
σ4

sds ,

(4.13) E [(U ∗
4 (4, k))2|F ] = 16c3Var[(∆v)3]

∫ 1

0
σ2

sds

and

(4.14) E [(U ∗
5 (4, k))2|F ] =

c4

k
Var[(∆v)4] ,

and mp is the p − th moment of v1. When vi are Gaussian ran-

dom variables, m2 = 1,m4 = 3,m6 = 15 and m8 = 105. Then

Var[(∆v)] (= E [(vi − vi−1)
2]) = 2 (i = 2, · · · , n), E [(∆v)4] = 12,

E [(∆v)6] = 120 and E [(∆v)8] = 1680.

We notice that the above results correspond to Theorem 2 of Ait-

Sahalia and Jacod (2009) when c = 0. It is straightforward to extend

this approach to more general cases with k and p.
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Let

(4.15) Ŝ(p, k,∆n) =
B̂(p, k∆n)1

B̂(p,∆n)1

be a test statistic for the composite hypothesis that there is a jump

in the underlying stochastic process for the first test of Ait-Sahalia

and Jacod (2009). We call their first test as the null hypothesis

of the presence of jump while we call their second test as the null-

hypothesis of the non-existence of jump terms. The first test can be

constructed based on the first part of Theorem 3 because its asymp-

totic distribution and the critical region can be constructed by Cn,t =

{Ŝ(p, k,∆n) > cn}, where cn is a constant. The second test can be

constructed from the second part of Theorem 3 because its asymp-

totic distribution and the critical region can be constructed by Cn,t =

{Ŝ(p, k,∆n) < ccn}, where ccn is a constant (we can construct V̂ j
n,1 and

V̂ c
n,1 in their notations).

In addition, let

(4.16)

D̂(6,∆)t =
1

kn∆n

[1/∆n]∑
i=1

|∆n
iX|p

∑
j∈In,1(j)

(∆n
jX)2I{|∆n

jX| ≤ α∆ω
n} ,

where α > 0, ω ∈ (0, 1/2) and In,1(i) = {j ∈ N : j ̸= i, 1 ≤ j ≤

[1/∆n], |i − j| ≤ kn}. We need to take kn∆ → 0 and kn → ∞ as

n→ ∞.
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Since

(4.17) D̂(6,∆)1
p−→

∑
0≤s<1

(∆Xs)
6 ×

[
2σ2

s + 4c
]

when nϵ2n = c+ o(1), it is possible to investigate the asymptotic prop-

erties of the jump test statistics.

For the first test of Ait-Sahalia and Jacod (2009), we have the next

result when p = 4 and k = 2.

Corollary 4 : We assume an Itô semimartingale (2.23) for the un-

derlying process X and micro-market noise satisfying the condition

(2.5). For Ŝ(p, k) with p = 4, k = 2, as n −→ ∞ with (2.5), we have

the stable convergence

(4.18) ∆−1/2
n

[
Ŝ(p, k) − 1

]
S−c−→ S =

U1 + U2

U0
,

where Ui (i = 0, 1, 2) are defined in Theorem 3.

Some Remarks :

(i) It is straightforward to derive the asymptotic distribution of the

test statistic when we have the Brownian Itô semimartingale as the

underlying stochastic process for the second test of Ait-Sahalia and

Jacod (2009). The result becomes rather complicated and for Ŝ(p, k)

with p = 4 and k = 2 and U ∗
0 (4, k), as n −→ ∞ with (2.5) we have
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the stable convergence

∆−1/2
n

[
Ŝ(p, k) − U ∗

0 (4, k)

U ∗
0 (4, 1)

]
S−c−→ S =

1

U ∗
0 (4, 1)

[(U ∗
1 (4, k) + U ∗

2 (4, k) + U ∗
3 (4, k) + U ∗

4 (4, k) + U ∗
5 (4, k))

−U
∗
0 (4, k)

U ∗
0 (4, 1)

(U ∗
1 (4, 1) + U ∗

2 (4, 1) + U∗
3 (4, 1) + U ∗

4 (4, 1) + U ∗
5 (4, 1))

]
,

where U ∗
i (4, k) (i = 0, 1, 2, 3, 4, 5) are defined in Theorem 3.

(ii) We can obtain the local power of the testing procedure by using

the limiting distributions of the test statistic, which are equivalent to

those in Ait-Sahalia and Jacod (2009) when c = 0,

(iii) It is possible to use the limiting distributions of test statistic when

c > 0 by using ĉ, which can be constructed by estimating the noise

variance. It would be interesting to improve the testing procedure by

Ait-Sahalia and Jacod (2009) when c > 0. We could subsequently

apply the resulting procedure even when the noise terms are not nec-

essarily small.

5. Simulation

In our simulations the data generating process can be written as

(5.1) dXt = bdt+ σtdBt + dJt ,

where b is a (constant) drift term, Bt is the standard Brownian motion,
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σt is the volatility parameter at t, Jt is a compound Poisson process.

We have adopted the simulation procedure for jumps developed by

Cont and Tankov (2004, Section 6). As a stochastic volatility model

with the leverage effect, we use

(5.2) dσ2
t = κ(β − σ2

t )dt+ ωσtdB̃
σ
t ,

where κ = 5, β = 0.2, ω = 0.5, and ρ = E [dBtdB̃
σ
t ] = −0.5.

For the micro-market noise we have adopted the Gaussian noise al-

though it is straightforward to use other distributions for the resulting

simplicity.

In Appendix B, we have given several figures on finite sample dis-

tributions of normalized statistics to illustrate the effects of CLT in

Theorem 1, Theorem 2, and Corollary 4. We standardized the empir-

ical density and distribution because they give more information than

the original parameters with their own scales. Figure 1 gives the stan-

dardized empirical density (n=1,000) with the bias-variance correction

implied by Theorem 1 and Theorem 2, respectively (because we have

additional terms in U0 when there are noise term). Theorem 1 gives a

reasonable approximation to the limiting Gaussian distribution while

we need finer data (such as n = 5, 000) in Figure 2 mainly because our

jump-related terms in Theorem 2. Figure 2 gives the standardized em-

pirical density (n=5,000) with the bias-variance correction implied by
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Theorem 2 and Corollary 4. First, we find that even a small amount

of noise contamination has significant effects on the distributions of

the limiting random variables when c ̸= 0. However, we have good

approximations for the finite sample distributions of the statistics if

we correct for the effects of noise by using the small-noise asymptotics.

We also include several figures to examine the finite sample and

asymptotic distributions of the (standardized) test statistics proposed

by Ait-Sahalia and Jacod (2009) under the null-hypothesis and the

alternative hypotheses in Figure 3 and Figure 4. For this purpose we

consider four cases.

(i) X0, which stands for the diffusion + Poisson jump model versus

X1, which stands for the diffusion model.

(ii) Y0, which stands for the diffusion + Poisson jump + large noise

model versus Y1, which stands for the diffusion + large noise model.

(iii) V0, which stands for the diffusion + Poisson jump + type-1 small

noise model versus V1, which stands for the diffusion model + type-1

small noise model.

(iv) W0, which stands for the diffusion + Poisson jump + type-2 small

noise model versus X1, which stands for the diffusion + type-2 small

noise model.

Here the type-1 small noise corresponds to ϵnvi ∼ (c∆n)
1/2N(0, 1),
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while the type-2 small noise corresponds to ϵnvi ∼ (c∆
1/2
n )1/2N(0, 1),

where N(0, 1) is the standard normal random variable. The large

noise corresponds to the case when ϵn = c (a constant). For the

Poisson jumps we have set λ (intensity) to 10, the jump size N(0, 5),

and the simulation size is 1,000. We note that it is sometimes difficult

to see the figures drawn according to the same scale because their

distributions are also drawn using the same scale when there are noise

terms.

We simulated many cases, but we only report those that provide

essential findings in our simulations. First for the diffusion case we

have good approximations of the finite distributions with their limiting

distributions, even when n = 1, 000. We find that we need finer data

to have good approximations when there are jumps and noise at the

same time. This is reasonable because when there are jump terms, we

need finer data to distinguish between the effects of jumps and noise.

Second, we investigated the rejection and acceptance probabilities

by using the empirical distributions of two statistics proposed by Ait-

Sahalia and Jacod (2009) for detecting possible jumps. Then in Figure

3 and Figure 4 we compared the limiting distributions of the statis-

tics in the small-noise asymptotics we have developed. The red curves

correspond to the standard normal distribution, which gives often rea-
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sonable approximations of the finite sample distributions in the small-

noise asymptotics. In two cases, W0 and Y0, the normalizations by the

small-noise asymptotics are not appropriate. The scales of the em-

pirical distributions and the approximate Gaussian distributions are

quite different in these cases.

When we have large noise in comparison with the underlying stochas-

tic process, the so-called large noise cases, we cannot obtain good

approximations because the effects of noise dominate the finite dis-

tributions of the statistics. However, when we have small noise, i.e.,

the (2.5) condition, the formulas we derived in Theorem 1 and The-

orem 2 give good approximations. Among the two test procedures,

the limiting distributions of the second test are more complicated in

Theorem 3 and it seems that we need finer data to have good approx-

imations of the finite sample distributions. However, for the first test

statistics, the approximations derived in Theorem 3 are often good

approximations. In sum, we find that the first test statistic is quite

robust to the presence of small noise, while the second test statistic is

quite sensitive to the presence of noise (the details of our simulation

results on the power properties of the test statistics for jumps will be

reported on another occasion). The distributions of the test statistics

can be approximated quite well by the small-noise asymptotics.
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In their jump tests under micro-market noise, Ait-Sahalia, Jacod

and Li (2012) developed several modified testing procedure based on

the pre-averaging method. As an application of our simulations we

investigated the finite sample distribution of the test statistics with

their notations defined by

(5.3) S(Y, g, h, 4) =
V̄ (Y, g, 4)n

2V̄ (Y, h, 4)n
,

where we take the simplest weight functions g(x) = (0.5 − |x− 0.5|)+

and h(x) = g(2x). In Figure 5, we plot the empirical density of the

normalized statistics NX = n1/4(S(X0, g, h, 4) − 1)/
√

Σ, NY , NV and

NW , implied by Theorem 3 in Ait-Sahalia, Jacod and Li (2012) and

use their notations such that

Σ =
D(g, g) − 2D(g, h) + 4D(h, h)

(0.0125 ×
∑

0≤s≤1 |∆Xs|4)2 ,

D(g, h) = 16 [ψ−(g, h) + ψ+(g, h)]

(∑
0≤s≤1

σ2
s |∆Xs|6

)

+ 16c2 [ψ−(g, h) + ψ+(g, h)]

(∑
0≤s≤1

|∆Xs|6
)
,

and ψ±(g, h) are variables defined in their paper. In this simulation,

the simulation size is 1, 000, and we set ∆n = 1/10, 000, the averaging

window is kn = 120; the parameter of the noise term is c = 10. As we

expected, the normal approximation is not often appropriate mainly

because the construction of their test statistics are rather complicated
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when based on our settings. Kurisu (2016) gave the more details of the

simulation method we have used and the resulting simulation results

in a systematic way.

6. Concluding Remarks

In this paper, we investigated the effects of jumps and noise in fi-

nancial high-frequency data problems. For this purpose, we developed

a small noise asymptotic analysis when the size of the micro-market

noise depends on the sample size. By using this approach we identi-

fied the effects of jumps and noise on our volatility estimation and on

some jump test procedures. We found that the first test by Ait-Sahalia

and Jacod (2009) (testing the presence of jumps as a null-hypothesis)

is asymptotically robust in the small-noise asymptotic sense against

possible misspecifications, while the second test (testing no jumps as

a null hypothesis) is quite sensitive to the presence of noise.

We conducted a number of simulations and found that the asymp-

totic distributions obtained in the small noise asymptotics gave good

approximations for the distributions of the estimators and test statis-

tics in the standard high-frequency asymptotics.

In addition to these results, it is possible to investigate the sample

size and noise size needed to justify the estimation and testing pro-

cedures proposed in earier studies. In this paper we have developed
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small-noise asymptotics, that allow to analyze the asymptotic theory

without jumps and noise as well as the finite sample properties of

the statistics with jumps and noise. We show that the approxima-

tions based on the small-noise asymptotics often give quite accurate

distributions.

Furthermore, it is interesting to note that even when n = 1, 000 and

c = 100 the asymptotic distributions we derived often gave useful ap-

proximations for the limiting distributions of the sequence of random

variables. We illustrate this finding in Figure 6, Appendix B where we

show the empirical densities of the normalized limiting random vari-

ables with c = 0 (the uncorrected random variable) and c = 100 (the

corrected random variable). (In Figure 6 the small-noise approximated

distributions are on the right-hand side while the original simulated

distributions are on the left-hand side.)

In addition, if (2.1) is a reasonable approximation of the real situa-

tion, it is possible to estimate the parameter c by using high-frequency

data with noise. Let the estimator of the integrated volatility be σ̂2
n.

One possibility is to use the SIML estimator proposed by Kunitomo

and Sato (2013), and another possibility is to use the spectral method

by Bibinger and Reiss (2014) (there are also other ways to estimate
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c). We can then construct

(6.1) ĉ =
1

2
[

n∑
i=1

(∆n
i Yi)

2 − σ̂2
n] ,

where we denote ∆n
i Y = Yi − Yi−1 and Yi = Y (tni ).

By using an estimate of c, we can use the asymptotic distributions

derived in the previous sections and Kurisu (2016) investigated the

related problems in details. In Section 2.1, we have indicated that

it is possible to extend our investigation to more general non-linear

situations. We are currently iunvestigating this problem as well as

the asymptotic behavior of other statistics and statistical procedures

when there are jumps and noise in underlying continuous processes.
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APPENDIX A : Mathematical Derivations

In this Appendix A we give some details of the proofs of mathge-

matical results omitted in previous sections. Since the derivations are

often slight modifications of Jacod and Protter (2012), and Ait-Sahalia

and Jacod (2009), we refer to their book and some related papers for

some mathematical details on the underlying arguments. We need

some additional arguments because of the presence of noise in the fol-

lowing arguments.

Proof of Lemma 1 : From (2.12) we represent that for tni−1 < t ≤ tni

and tni − tni−1 = 1/n (i = 1, · · · , n),

(A.2) σt = σ(tni−1) +

∫ t

tni−1

µσ
sds+

∫ t

tni−1

ωσ
s dB

σ
s .

Then we have

(A.3)

∫ t

tni−1

σudu =
1

n
σ(tni−1) +Op(

1

n
√
n

) .

It is because

(A.4)

∫ tni

tni−1

∫ u

tni−1

µσ
sdsdu = Op(

1

n2 )

due to the assumption that µσ
s is bounded and

(A.5)

∫ tni

tni−1

∫ u

tni−1

ωσ
s dB

σ
s du =

∫ tni

tni−1

(

∫ tni

s

du)ωσ
s dB

σ
s = Op(

1

n
√
n

) .

37



Then by using Itô
′
s Lemma∫ tni

tni−1

σ2
udu− (tni − tni−1)σ

2(tni−1)(A.6)

=

∫ tni

tni−1

∫ u

tni−1

[2σuµ
σ
s + (ωσ

s )2ds]du+

∫ tni

tni−1

[

∫ u

tni−1

2σuω
σ
s dB

σ
s ]du .

Again by interchanging the integrations, using (A.3)-(A.5) and evalu-

ating two terms separately, we find the result. Q.E.D.

Proof of Lemma 2 : We use the notation that ωσ(tni ) = ωσ
s at

s = tni .

(i) From (2.12) we find that for tni−1 < t ≤ tni and tni − tni−1 = 1/n (i =

1, · · · , n),

(A.7) σt = σ(tni−1) + ωσ(tni−1)[B
σ(t) −Bσ(tni−1)] + op(

1√
n

)

because

(A.8) E [

∫ t

tni−1

(ωσ(s) − ωσ(tni−1))
2ds] = o(

1

n
) .

Then we write

Xi −Xi−1 =

∫ tni

tni−1

σsdBs

=

∫ tni

tni−1

[σ(tni−1) + ωσ(tni−1)(B
σ(s) −Bσ(tni−1))] dBs + op(

1

n
) ,

where we denote Xi = X(tni ) (i = 1, · · · , n). Here we decompose for

s ≥ tni−1

Bσ(s) −Bσ(tni−1) = ρ[Bs −B(tni−1)] +
√

1 − ρ2[B∗
s −B∗(tni−1)]
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to make B∗
s and Bs being independent (ρ is the correlation coefficient

of Bs and B∗
s), and we use the fact that

(A.9)

∫ tni

tni−1

[Bs −B(tni−1)]dBs =
1

2

[
(Bs −B(tni−1))

2 − (s− tni−1)
2]tni

tni−1
,

which is Op(n
−1). Hence we have (2.15).

(ii) We write (Xi −Xi−1)
2 = X2

i −X2
i−1 − 2Xi−1(Xi −Xi−1) and apply

Ito’s Lemma to X2
i . Then we have

(Xi −Xi−1)
2 =

∫ tni

tni−1

2XsdXs +

∫ tni

tni−1

d[Xs, Xs] − 2Xi−1(Xi −Xi−1)

=

∫ tni

tni−1

2(Xs −Xi−1)dXs + [Xi, Xi] − [Xi−1, Xi−1] ,

where [Xi, Xi] is the quadratic variation of Xi (i = 1, · · · , n) with the

notation [X0, X0] = 0. Since

(A.10) [Xi, Xi] − [Xi−1, Xi−1] =

∫ tni

tni−1

σ2
sds ,

we have

(A.11)
n∑

i=1

(Xi −Xi−1)
2 −

∫ tni

tni−1

σ2
sds =

n∑
i=1

∫ tni

tni−1

2(Xs −Xi−1)dXs .

Because the right-hand side is a martingale,

[

∫ tni

tni−1

(Xs −Xi−1)dXs,

∫ tni

tni−1

(Xs −Xi−1)dXs] =

∫ tni

tni−1

(Xs −Xi−1)
2σ2

sds ,

and (Xs −Xi−1)
2 = Op(n

−1), we have the result of (2.16). Q.E.D.

Proof of Theorem 1 : We use the fact that the limiting random
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variables of Uin (i = 1, 2, 3) follow the (F−conditionally) Gaussian dis-

tributions, which are mutually independent, by using the central limit

theorem. Because we can apply the arguments in Jacod and Prot-

ter (2012), we have the stable convergence of the underlying random

variables and then Ui (i = 1, 2, 3) are F−conditionally independent.

Since Var[Z2
i − 1] = 2, we find that

Var[U1n] ∼ 2

∫ 1

0
σ4

sds ,(A.12)

Var[U2n] ∼ 8c

∫ 1

0
σ2

sds ,(A.13)

Also the asymptotic variance of the third term U3n is approximately

equal to (1/n)E [4
∑n

i=2(v
2
i − 1)2 + 4

∑n
i=2 v

2
i v

2
i−1]. It is because we use

a simple relation

[
n∑

i=1

(vi − vi−1)
2 − 2n]2 ∼ [2

n∑
i=1

(v2
i − 1) − 2

n∑
i=1

vivi−1]
2

= 4[
n∑

i=1

(v2
i − 1)2 +

n∑
i=1

v2
i v

2
i−1 − 2

n∑
i=1

(v2
i − 1)

n∑
i=1

vivi−1]

and 4[E(v4
i ) − (E(v2

i ))
2)] + 4(E(v2

i ))
2) = 4[2 + κ4] + 4. Thus we find

that

(A.14) Var[U3n] ∼ [12 + 4κ4]c
2 .

Since Ui (i = 1, 2, 3) are F−conditionally uncorrelated, they are

F−conditionally independent. By applying the stable convergence
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theorem and the central limit theorem (CLT), we have the desired

result. Q.E.D.

Derivations of (2.24)-(2.26) : We use the relation that

n∑
i=1

(Xi −Xi−1)
2 =

n∑
i=1

∫ tni

tni−1

µsds+

∫ tni

tni−1

σsdBs +
∑

tni−1<s≤tni

∆Xs

2

.

We note that the last term does make sense because we have assumed

the boundedness of jumps and tni − tni−1 = 1/n (i = 1, · · · , n). Since

the effect of the drift term is op(1), which is stochastically negligible,

by using the standard result on semi-martingales we have

(A.15)
n∑

i=1

(Xi −Xi−1)
2 p−→

∫ 1

0
σ2

sds+
∑

0<s≤1

(∆Xs)
2 .

Then we have (2.24) by using LLN (the law of large numbers) to

(1/n)
∑n

i=1(vi − vi−1)
2.

Let

(A.16) Zn =
√
n

[
n∑

i=1

(Xi −Xi−1)
2 − (

∫ 1

0
σ2

sds+
∑

0<s≤1

(∆Xs)
2)

]
,

which is approximately equal to

√
n

 n∑
i=1

σ(tni−1)(B(tni ) −B(tni−1)) +
∑

tni−1<s≤tni

∆Xs

2

(A.17)

−[

∫ 1

0
σ2

sds+
∑

0<s≤1

(∆Xs)
2]

)
.
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Then the additional term of the constant order in probability from

(A.16) is given by

(A.18) 2
n∑

i=1

 ∑
tni−1<s≤tni

∆Xs

√
nσ(tni−1)(B(tni ) −B(tni−1)) .

The additional cross product of jump term and the noise term from

the second term of Vn(2), i.e. 2ϵn
∑n

i=2(Xi −Xi−1)(vi − vi−1) is given

by

(A.19)
√
n× 2

√
c√
n

 n∑
i=1

∑
tni−1<s≤tni

∆Xs

 (vi − vi−1) .

If we assume the Gaussianity on vi (i = 1, · · · , n), we have the

F−conditional Gaussianity.

The remaining arguments of the stable convergence are followed by

the corresponding ones of Jacod and Protter (2012). Q.E.D.

Proof of Lemma 3 : Let Y (t) = [X(t)−X(tni−1)]
p for p ≥ 2 and we

apply Itô
′
s lemma for the general Ito semi-martingale to Y (t). (The-

orem 32 of Protter (2003), for instance.) For p ≥ 3, (3.2) is op(1).
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Then we have

(Xi −Xi−1)
p −

 ∑
tni−1≤s≤tni

(∆Xs)
p


=

∫ tni

tni−1

p(Xs− −Xi−1)
p−1dXs +

∫ tni

tni−1

p(p− 1)

2
(Xs− −Xi−1)

p−2d[Xs, Xs]
c

+
∑

tni−1≤s<tni

[
(Xs −Xi−1)

p − (Xs− −Xi−1)
p − p(Xs− −Xi−1)

p−1∆Xs

]
−

∑
tni−1≤s<tni

[(Xs −Xi−1) − (Xs− −Xi−1)]
p .

In the above derivation we use the relation (Xs − Xi−1)
p − (Xs− −

Xi−1)
p = [∆+(Xs−−Xi−1)]

p−(Xs−−Xi−1)
p, which equal to

∑p−1
j=2 pCj(Xs−−

Xi−1)
p−j(∆Xs)

j. Then by taking the summation with respect to i =

1, · · · , n, we have the result. Q.E.D.

Proof of Theorem 2 : By using Lemma 3, we have

(A.20)
n∑

i=1

(Xi −Xi−1)
4 p−→

∑
0≤s<1

(∆Xs)
4 .

By using the similar arguments as (A.15) and (A.16), we can express

√
n

[
n∑

i=1

(Xi −Xi−1)
4 −

∑
0≤s<1

(∆Xs)
4

]
(A.21)

=
4√
n

n∑
i=1

∑
tni−1≤s<tni

σ(τn
i−1)Z(τn

i )(∆Xs)
3 + op(

1√
n

) ,

where τn
i (i = 1, 2, · · · ) correspond to the stopping times for jumps of

the Itô semimartingale (and if there were no jumps in tni−1 ≤ s < tni ,

they do not appear). The remaining term in the decomposition we
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need to evaluate is

U2n =
4
√
c√
n

n∑
i=1

(Xi −Xi−1)
3(vi − vi−1)(A.22)

=
4
√
c√
n

∑
0≤s≤1

(∆Xs)
3[v(τn

i ) − v(τn
i−1)] +Op(

1√
n

) ,

where we have used the notation ∆n = 1/n, ∆n
iX = Xi − Xi−1 (i =

2, · · · , n). We set

U
′

2n =
√
ϵn

[
n∑

i=1

(∆n
iX)3vi −

n∑
i=1

(∆n
iX)3vi−1

]

=
√
ϵn

[
n−1∑
i=1

[(∆n
iX)3 − (∆n

i+1X)3]vi + (∆n
nX)3vn − (∆n

1X)3v0

]
.

Then by using the Cauchy-Swartz inequality, we evaluate the condi-

tional expectation E [(U
′

2n)
2|X], which is given by

E [(U
′

2n)
2|X] = ϵn

[
n−1∑
i=1

[(∆n
iX)3 − (∆n

i+1X)3]2 + (∆n
nX)6(∆n

1X)6

]

= 2ϵn

[
n∑

i=1

(∆n
iX)6 −

n−1∑
i=1

(∆n
iX)3(∆n

i+1X)3

]

≤ 4ϵn

n∑
i=1

(∆n
iX)6 .

We notice that
∑n

i=1(∆
n
iX)6 = Op(1),

∑n−1
i=1 (∆n

iX)3(∆n
i+1X)3 = op(1),

and then we have E [(U
′

2n)
2] = O(n−1). In these relations the most

important step is to show that
∑n−1

i=1 (∆n
iX)3(∆n

i+1X)3 = op(1), which

can be proven by applying Theorem 8.2.1 of Jacod and Protter (2012).

We set F (x1, x2) = x3
1x

3
2, f1(x) = F (x1, 0), f2(x) = F (0, x2) and f1 ∗
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µ1 + f2 ∗ µ1 = 0 (here µ1 is the associated jump measure) in their

notation.

Then we have

(A.23) E [(∆−1/2
n U

′

2n)
2|X]

p−→ 2cE [v2
1]
∑

0<s≤1

(∆Xs)
6 .

Finally, since U1n and U2n are F−conditionally uncorrelated, they

are F−conditionally independent. By using the stable convergence

arguments in Jacod and Protter (2012), we have the desired result.

Q.E.D.

Proof of Theorem 3 : We follow Ait-Sahalia and Jacod (2009) for

basic method of their proof, but we need some additional arguments

because we have the effects of noise as well as jumps in the underlying

processes.

[Part 1] : We apply Lemma 3 with a general k( k ≥ 1) and p ≥ 4 to
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[∆n
i Y (k)]p, and then we can express that

[n/k]∑
i=1

[Y (ik∆n) − Y ((i− 1)k∆n)]
p

=

[n/k]∑
i=1

[X(ik∆n) −X((i− 1)k∆n)]
p

+pϵn

[n/2]∑
i=1

[X(ik∆n) −X((i− 1)k∆n)]
p−1[v(ik∆n) − v((i− 1)k∆n)]

+op(
1√
n

)

=
∑

0≤s<1

(∆Xs)
p + p

√
k

n
[

[n/k]∑
i=1

∑
tn(i−1)k≤s<tnik

σ(tn(i−1)k)Z
n
i (k)(∆Xs)

p−1]

+
p
√
c√
n

[

[n/k]∑
i=1

∑
tn(i−1)k≤s<tnik

(∆Xs)
p−1[v(ik∆n) − v((i− 1)k∆n)]] + op(

1√
n

) ,

where we denote that Zn
i (k) =

√
n/k[B(tnik) − B(tn(i−1)k)] and then

Zn
i = Zn

i (1) in (2.7).

For the ease of exposition we shall use the notations that ∆n
iX(k) =

X(ik∆n)−X((i− 1)k∆n), ∆n
iB(k) = B(ik∆n)−B((i− 1)k∆n), and

∆n
i v(k) = v(ik∆n) − v((i − 1)k∆n) = vik − v(i−1)k in the following

analysis.

By taking the p−the realized variation with k (k ≥ 2) and the p−the
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realized variation with k (k = 1) for p = 4, we decompose

(A.24)

√
n

[n/k]∑
i=1

[Y (ik∆n) − Y ((i− 1)k∆n)]
4 −

n∑
i=1

[Y (i∆n) − Y ((i− 1)∆n)]
4


into four terms except other negligible terms asymptotically, which

are given by

W1n = 4

[n/k]∑
i=1

σ(tn(i−1)k)[
√
kZn

i (k)
∑

τn
(i−1)k≤s<τn

ik

(∆Xs)
3] ,

W2n = −4
n∑

i=1

σ(tn(i−1))[Z
n
i (1)

∑
τn
(i−1)≤s<τn

i

(∆Xs)
3] ,

W3n = 4
√
c

[n/k]∑
i=1

∑
tn(i−1)k≤s<tnik

(X(ik∆n) −X((i− 1)k∆n)]
3∆n

i v(k)

and

(A.25) W4n = −4
√
c

n∑
i=1

∑
tn(i−1)≤s<tni

[X(i∆n) −X((i− 1)∆n)]
3∆n

i v(k) ,

respectively, where Zn
i (k) (i = 1, · · · , n) are Gaussian random vari-

ables with N(0, 1).

In order to obtain the asymptotic distribution of (A.24), we need to

evaluate the asymptotic variances ofW1n+W2n and W3n+W4n, respec-

tively. Since the asymptotic covariance of W1n +W2n and W3n +W4n

are asymptotically negligible, we need to evaluate the variance of

W1n + W2n (and that of W3n + W4n). For this purpose we decom-

pose W1n + W2n = 4
∑[n/k]

i=1 Un
i,k, where we further decompose U

(n)
i,k =
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Un
i,k(1) − Un

i,k(2) as

Un
i,k(1) = σ(tn(i−1)k)

∑
tn(i−1)k≤s<tnik

(∆Xs)
p−1

k−1∑
l=0

[B(tn(i−l)k) −B(t(i−1)k−1)],

Un
i,k(2) =

k−1∑
l=0

σ(tn(i−1))k+l)
∑

tn(i−1)k+l≤s<tn(i−1)k+l+1

(∆Xs)
p−1[B(tn(i−1)k+l+1) −B(tn(i−l)k+l)].

Then it is straightforward to evaluate that for p = 4

Var[Un
i,k(1)|F(i−1)k] ∼ k

n
[σ(tn(i−1)k)]

2[
∑

tn(i−1)k≤s<tnik

(∆Xs)
6],

Var[Un
i,k(2)|F(i−1)k] ∼ 1

n

k−1∑
l=0

[σ(tn(i−1)k+l)]
2[

∑
tn(i−1)k+l≤s<tn(i−1)k+l+1

(∆Xs)
6],

Cov[Un
i,k(1)Un

i,k(2)|F(i−1)k] ∼ 1

n

k−1∑
l=0

σ(tn(i−1)k)σ(tn(i−1)k+l)
∑

tn(i−1)k+l≤s<tn(i−1)k+l+1

(∆Xs)
6,

where we have used the notation that F(i−1)k is the σ−field given at

t = (i− 1)k∆n in the discretization of the underlying continuous time

processes.

Because we have assumed the volatility process as (2.12), we find that

Var[Un
i,k|F(i−1)k] = Var[Un

i,k(1)|F(i−1)k] + Var[Un
i,k(2)|F(i−1)k]

−2Cov[Un
i,k(1), Un

i,k(2)|F(i−1)k]

is approximately

(A.26) Var[Un,∗
i,k |F(i−1)k] = [

k − 1

n
][σ(tn(i−1)k)]

2[
∑

tn(i−1)k≤s<tnik

(∆Xs)
6] .
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By taking the summation with respect to i = 1, · · · , [n/k], we can

obtain (4.5). By applying the similar arguments to W3n + W4n, we

also obtain (4.6). Since the remaining arguments are similar to the

proof of Theorem 2 as we have done in the derivations of Theorem 2,

we have the first part of Theorem 3.

[Part 2] : We re-write Vn(4, k), which can be decomposed into five

terms as

Vn(4, k) =

[n/k]∑
i=1

(Y (ik∆n) − Y ((i− 1)k∆n))
4

=

[n/k]∑
i=1

(X(ik∆n) −X((i− 1)k∆n))
4

+4ϵn

[n/k]∑
i=1

(X(ik∆n) −X((i− 1)k∆n))
3(vik − v(i−1)k)

+6ϵ2n

[n/k]∑
i=1

(X(ik∆n) −X((i− 1)k∆n))
2(vik − v(i−1)k)

2

+4ϵ3n

[n/k]∑
i=1

(X(ik∆n) −X((i− 1)k∆n))(vik − v(i−1)k)
3

+ϵ4n

[n/k]∑
i=1

(vik − v(i−1)k)
4

= (I) + (II) + (III) + (IV ) + (V ) (say).

Then we evaluate the stochastic order of each terms and we find that

(I) = Op(n
−1), (II) = (F2n, say) = Op(n

−3/2), (III) = Op(n
−1),

(IV ) = (F4n, say) = Op(n
−3/2) and (V ) = Op(n

−1). Because
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n× (I) ∼ k(k/n)
∑[n/k]

i=1 [∆n
iX(k)/

√
k∆n]

4,

n× (III) ∼ n× 6(c/n)
∑[n/k]

i=1 [∆n
iX(k)/

√
k∆n]

2[∆iv(k)]
2

and

n× (V ) ∼ n(c/n)2∑[n/k]
i=1 [∆iv(k)]

2,

we can obtain the limiting random variable as (4.8).

Then we set

F1n = n× (I) − km4

∫ 1

0
σ4

sds ,(A.27)

F3n = n× (III) − 6c× 2

∫ 1

0
σ2

sds ,(A.28)

and

(A.29) F5n = n× (V ) − c2

k
× E [(∆iv(k))

4] ,

which are Op(n
−1/2).

For the ease of expositions we shall use the notations that Uin cor-

respond to Fin for i = 2, 3, 4 except constant terms. Then we need

to evaluate the limiting random variables of Uin (i = 2, · · · , 4) and

the limiting random variables of
√
n × F1n, n

√
n × (II),

√
n × F3n,

n
√
n× (IV ) and

√
n× F5n, separately.

The explicit evaluations of these terms are straightforward, but they

are a little bit tedious especially for F3n. Since careful calculations at

several places are needed, we give some details of those points.

First, it is straightford to find that the limiting random variable of
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Var[
√
nF1n] as E [(U∗

1 (4, k))4|F ] ∼ k3(m8 −m2
4)
∫ 1

0 σ
8
sds in (4.10).

Second, let

U2n = k3/2∆2
n

[n/k]∑
i=1

[
∆n

iX(k)√
k∆n

]3[∆iv(k)](A.30)

= k3/2∆2
n

[n/k]∑
i=1

[(
∆n

iX(k)√
k∆n

)3 − (
∆n

i+1X(k)√
k∆n

)3][∆iv(k)]

+k3/2∆2
n[(

∆n
nX(k)√
k∆n

)3vn − (
∆n

1X(k)√
k∆n

)3v0],

Then we have the conditional expectation given X as

∆−3
n E [(U2n)

2|X]

= k3∆n

[n/k]∑
i=1

[(
∆n

iX(k)√
k∆n

)3 − (
∆n

i+1X(k)√
k∆n

)3]2

+k3∆n[(
∆[n/k]X(k)
√
k∆n

)6 + (
∆n

1X(k)√
k∆n

)6]

= 2k2

k∆n

[n/k]∑
i=1

(
∆n/kX(k)
√
k∆n

)6 − k∆n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

)3(
∆n

i+1X(k)√
k∆n

)3

 ,
which converges in probability to 2k2

∫ 1
0 σ

6
sds because the second term

is stochastically negligible. By multiplying 43c to Var[U2n], we have

(4.11) as the second term.

Third, we set

(A.31) U3n = k∆2
n

[n/k]∑
i=1

[
∆n

iX(k)√
k∆n

]2[∆iv(k)]
2 ,

which is the order Op(∆n) (= Op(n
−1)). (The explicit calculation

of the limiting random variables of U3n involves some complications
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because of the evaluation of the associated discretization errors and

auto-correlation structures.) For this evaluation we define a sequence

of random variables Wn = nU3n − 2E [v2
1]m2

∫ 1
0 σ

2
sd; , which can be re-

written as

Wn = k∆n

[n/k]−1∑
i=1

(
(∆n

iX(k)/
√
k∆n)

2 + (∆n
i+1X(k)/

√
k∆n)

2
)
v2

ik


− 2E [v2

1]m2

∫ 1

0
σ2

sds

− 2k∆n

[n/k]−1∑
i=1

(∆n
iX(k)/

√
k∆n)

2vikv(i−1)k + op(
1√
n

) ,

where we have used the relation∫ 1

0
σ2

sds =
k

n

[n/k]∑
i=1

σ2
t(i−1)k

+Op(
1

n
) .

We further decompose Wn as

Wn =
k

n

[n/k]−1∑
i=1

(∆n
iX(k)/

√
k∆n)

2(v2
ik − E [v2

ik])


+

k

n

[n/k]−1∑
i=1

(∆n
i+1X(k)/

√
k∆n)

2(v2
ik − E [v2

ik])


+ E [v2

1]
k

n

[n/k]−1∑
i=1

(
(∆n

iX(k)/
√
k∆n)

2 + (∆n
i+1X(k)/

√
k∆n)

2 − 2σ2
tk(i−1)

)
−2

k

n

[n/k]−1∑
i=1

(∆n
iX(k)/

√
k∆n)

2vikv(i−1)k

+ op(
1√
n

)

= WI +WII +WIII +WIV + op(
1√
n

) (say).
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Then we shall evaluate the asymptotic variances and covariances of

each terms in the following analysis.

(i) Evaluation of WI

We set

ξn,I
i =

k

n

(
∆n

iX(k)√
k∆n

)2

[v2
ik − E(v2

ik)] ,

and

ξ̃i
n,I

=
k

n
σ2

(i−1)k(Z
n
i (k))2[v2

ik − E(v2
ik)] .

Since (∆n
iX(k)/

√
k∆n)

2 = σ2
(i−1)k(Z

n
i (k))2 + Op(

1√
n
) by the result of

Lemma 2, we find that n
∑[n/k]−1

i=1 ((ξn,I
i )2 − (ξ̃n,I

i )2) is asymptotically

negligible. Therefore we can replace ξn,I
i with ξ̃n,I

i in Wn. Moreover,

k × 1

(k
n)

[n/k]−1∑
i=1

E [(ξ̃n,I
i )2|Fk(i−1)] = kVar[v2

1]m4

k∆n

[n/k]−1∑
i=1

σ4
(i−1)k


p−→ kVar[v2

1]m4

∫ 1

0
σ4

sds (≡ VI = VII) .

Hence we have the stable convergence as

(A.32)
√
n×WI

L−s−→ N

(
0, kVar[v2

1]m4

∫ 1

0
σ4

sds

)
.

(ii) Evaluation of WII

We set

ξn,II
i =

k

n

(
∆n

i+1X(k)√
k∆n

)2

[v2
ik − E(v2

ik)],

and

ξ̃i
n,II

=
k

n
σ2

(i−1)k(Z
n
i+1(k))

2(v2
ik − E [v2

ik]) .
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By using Lemma 1, we can evaluate II in the same way as WI .

(iii) Evaluation of WIII

We use the fact that
√
nWIII is approximately equivalent to

2
√
k × 1√

n
k

[n
k ]∑

i=1

[(
∆n

iX(k)

k∆n

)2

− σ2
tk(i−1)

]
.

Then by applying CLT, we have that
√
n × WIII

L−s−→ N (0, VIII) ,

where VIII = 4k(m4 −m2
2)
∫ 1

0 σ
4
sds.

(iv) Evaluation of WIV

Let

ξn,IV
i =

k

n

(
∆n

iX(k)√
k∆n

)2

vikv(i−1)k, ξ̃i
n,IV

=
k

n
σ2

(i−1)k(Z
n
i (k))2vikv(i−1)k .

By using the similar argument of the evaluation of WI , we obtain,

4n

[n/k]−1∑
i=1

E [(ξ̃n,IV
i )2|Fk(i−1)] = 4kE [v2

1]
2m4

k∆n

[n/k]−1∑
i=1

σ4
(i−1)k


p−→ 4km4

∫ 1

0
σ4

sds (≡ VIV).

Also we find that the correlations of WI and WIII , WI and WIV , WII

and WIII , WII and WIV , WIII and WIV is asymptotically negligible.

(v) Evaluation of the correlation of WI and WII

From the similar arguments of the evaluation of WI , we know that
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n
∑[n/k]−1

i=1 (ξn,I
i ξn,II

i − ξ̃n,I
i ξ̃n,II

i ) is asymptotically negligible. Moreover,

n

[n/k]−1∑
i=1

(
E [ξ̃n,I

i ξ̃n,II
i |Fk(i−1)] − E [ξ̃n,I

i |Fk(i−1)]E [ξ̃n,II
i |Fk(i−1)]

)

= kVar[v2
1]m

2
2

k∆n

[n/k]−1∑
i=1

σ4
(i−1)k


p−→ kVar[v2

1]m
2
2

∫ 1

0
σ4

sds(≡ VI,II)

Then by summarizing (i)-(v), we conclude that
√
nWn

L−s−→ N (0, VW ) ,

where

VW = VI + VI + VIII + VIV + 2VI,II

= k
[
Var(v2

1)m4 + Var(v2
1)m4 + 4Var(v2

1) + 4m4 + 2Var(v1)
] ∫ 1

0
σ4

sds .

(We have the relation that Var[(∆v)2] = 2E(v4
1) + 2 and it is 8 for

the Gaussian case.) Then by multiplying 62c2 to VW , we finally have

(4.12) as the third term.

Fourth, we set

U4n = k1/2∆2
n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

)(∆vi(k))
3

= k1/2∆2
n

[n/k]∑
i=1

[(
∆n

iX(k)√
k∆n

) − (
∆n

i+1X(k)√
k∆n

)]v3
ik

+k1/2∆2
n[(

∆n
iX(k)√
k∆n

)v3
k[n/k] − (

∆n
1X(k)√
k∆n

)v3
0]

−3k1/2∆2
n[(

∆n
iX(k)√
k∆n

)v2
ikv(i−1)k − (

∆n
iX(k)√
k∆n

)vikv
2
(i−1)k] .
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Then we find that

∆−3
n E [(U4n)

2|X]

= 2E [v6
1]k∆n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

)2 − 2

[n/k]∑
i=1

(
∆n

i+1X(k)√
k∆n

)


+2 × 9E [v4

1]E [v2
1]k∆n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

)2

−2 × 3E [v4
1]E [v2

1]k∆n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

−
∆n

i+1X(k)√
k∆n

)(
∆n

i+1X(k)√
k∆n

)

+2 × 3E [v4
1]E [v2

1]k∆n

[n/k]∑
i=1

(
∆n

iX(k)√
k∆n

− ∆n
i+1

X√
k∆n

)(
∆n

iX(k)√
k∆n

)

−2 × 9(E [v2
1])

3k∆n

[n/k]−1∑
i=1

(
∆n

iX(k)√
k∆n

)(
∆n

i+1X√
k∆n

)

+op(1)

p−→ [2E [v6
1] + 30E [v4

1]E [v2
1]]

∫ 1

0
σ2

sds ,

which is Var([∆v])3]
∫ 1

0 σ
2
sds. By multiplying 42(c

√
c)2, we have (4.13).

Fifth, we use the relation that

ϵ4n

[n/k]∑
i=1

[(∆vi(k))
4−E(∆vi(k))

4] ∼ c2

n

√
n

k

1√
n
k

[n/k]∑
i=1

[(∆vi(k))
4−E(∆vi(k))

4],

whose asymptotic variance is the limit of 1/n3times[c2
√
k]Var(∆v)4.

Then it becomes (4.14) as the limit of Var[
√
nF5n].

Finally, because F1n includes the sum of [Zn
i (k)]4 essentially, F2n in-

cludes the sum of [Zn
i ]3∆iv(k) essentially, F3n includes the sum of

56



[Zn
i ]2[∆iv(k)]

2 essentially, F4n includes the sum of [Zn
i ][∆iv(k)]

3 and

F5n includes the sum of [∆iv(k)]
3 essentially. Then they are asymptoti-

cally and F−conditionally uncorrelated and thus they are F−conditionally

independent. By using the stable convergence and summarizing the

limiting random variables of each terms, we have the result. Q.E.D.

Proof of Corollary 4 : Because of (4.17), we have

(A.33) Ŝ(p, k) − 1 =
B̂(p, k∆n)1 − B̂(p,∆n)1

B̂(p,∆n)1
.

Then by applying Theorem 3, we have the first part.

For the second part, we consider

B̂(p, k∆n)1

B̂(p,∆n)1
− kp/2−1

=
[∆

1−p/2
n B̂(p, k∆n)1 − kp/2−1mpA(p)] − kp/2−1[∆

1−p/2
n B̂(p,∆n)1 −mpA(p)]

[∆
1−p/2
n B̂(p,∆n)1 −mpA(p)] +mpA(p)

−kp/2−1 .

Then by applying Theorem 3, we have the second part. Q.E.D.
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APPENDIX B : Some Figures

In this Appendix B we have given several figures we mentioned to in

Sections 5 and 6. We have given the empirical density of the normal-

ized (limiting) random variables for each normalized statistics based

on a set of simulations. (The details are explained in Section 5.) For

the comparative purpose, the density of the limiting normal density

has been drawn by bold (red) curves in each figures.
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Figure 1 : Effects of Noise for CLT (Theorem 1,n = 1, 000)

Figure 2 : Effects of Noise for CLT (Theorem 2,n = 5, 000)

59



Figure 3 : Effects of Noise for CLT (1st Jump-Test)

Figure 4 : Effects of Noise for CLT (2nd Jump-Test))
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Figure 5 : Empirical distribution of the test statistics proposed in Ait-Sahalia,

Jacod and Li(2012) when 1/∆n = 10000, c = 10, kn = 120 and vi ∼ N(0, 1).

Figure 6 : Effects of Noise (c=100, Theorem 1)
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