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Abstract

Collateralization with daily margining has become a new standard in the post-crisis
market. Although there appeared vast literature on a so-called multi-curve framework,
a complete picture of a multi-currency setup with cross-currency basis can be rarely
found since our initial attempts. This work gives its extension regarding a general
framework of interest rates in a fully collateralized market. It gives a new formulation
of the currency funding spread which is better suited for the general dependence. In the
last half, it develops a discretization of the HJM framework with a fixed tenor structure,
which makes it implementable as a traditional Market Model.
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1 Introduction

The landscape of derivative modeling has experienced a radical change since the financial
crisis in 2008. On the one hand, evaluation of the counterparty credit risk has become
an unavoidable element for all the types of financial contracts. This is a rather natural
consequence of significant number of credit events, well exemplified by a collapse of Lehman
brothers, which was one of the most prestigious investment banks at that time. On the
other hand, clean or benchmark pricing framework has also changed significantly. Here,
explosion of various basis spreads, which were mostly negligible before the crisis, and the
recognition of collateral cost have played the central role. After some initial attempts to
explain the effects of collateralization, such as Fujii, Shimada and Takahashi (2010a) [8],
Bianchetti (2010) [1] and Piterbarg (2010) [18], there appeared vast literature to build a
dynamic multi-curve framework such as Mercurio (2009) [17], Fujii, Shimada and Takahashi
(2011) [10], Crépey, Grbac and Nguyen (2012) [5], Filipović and Trolle (2013) [7], Grbac,
Papapantoleon, Schoenmakers and Skovmond (2014) [14], and articles in a recent book
Bianchetti and Morini (editors) (2013) [2] just name a few. See Brigo, Morini and Pllavicini
(2013) [4], Crépey and Bielecki (2014) [6] and references therein for closely related topics,
such as CVA and FVA.

A term structure model in a multi-currency setup with non-zero cross currency basis was
firstly developed in [10], where LIBOR-OIS spreads were stochastic but currency funding
spreads were left deterministic. The funding spreads were made stochastic firstly in Fujii,
Shimada and Takahashi (2010b) [9] and Fujii and Takahashi (2011) [11] in a continuous
Heath-Jarrow-Morton (Heath, Jarrow and Morton, 1992 [15]) framework.

This article is a revised and extended version of our previous works and presents a gen-
eral framework for the benchmark pricing in a fully collateralized market. The formulation
of the dynamics of the currency funding spread is changed from the original one [9, 11],
which will be more useful to implement in the presence of non-zero correlation among the
collateral rates and funding spreads. In particular, in the last half of the paper, we provide
a complete picture of a discretized HJM framework for stochastic collateral rates, LIBORs,
foreign exchange rates currency funding spreads, and equities with a fixed tenor structure,
which is readily implementable as a traditional Market Model (Brace, Gatarek and Musiela,
1997 [3]). We do not repeat the details of the curve bootstrapping procedures. In fact the
methodology given in the previous papers [8, 11, 13] can be applied without significant
change.

2 Pricing in a fully collateralized market

Let us start from the review of [8, 13]. We make the following assumptions that has become
popular for the benchmark pricing:

1. Full collateralization (zero threshold) by cash.

2. The collateral is adjusted continuously with zero minimum transfer amount.

This means that the party who has negative mark-to-market posts the equal amount of
cash collateral to the counterparty, and this is done continuously until the contract expires.
Actually, daily margin call is becoming popular, and that is a market standard at least
among major broker-dealers and central counterparties. This observation allows us to see
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the above assumptions a reasonable proxy for the reality. One might consider there is
no counterparty risk remains under the above assumption. In fact, however, this is not
always the case, if there exists a sudden jump of the underlying asset and/or the collateral
values at the time of counterparty default. This is the so-called “gap risk”. If this is the
case, the remaining risk should be taken into account as a part of credit risk valuation
adjustment (CVA). In this article, we assume that no counterparty risk remains and focus
on the clean benchmark pricing. For the interested readers, we refer to [4, 6] as well as Fujii
and Takahashi (2013a) [12] to handle more generic situations with non-zero credit as well
as funding risks.

Let us mention the standing assumption of the paper:
Assumption
Throughout the paper, we assume that the appropriate regularity conditions are satisfied
whenever they are required. In particular every local martingale is assumed to be a true
martingale.
We consider a derivative whose payoff at time T is given by h(i)(T ) in terms of currency (i).
We suppose that currency (j) is used as the collateral for the contract. Let us introduce an
important spread process:

y(j)(t) = r(j)(t)− c(j)(t) , (2.1)

where r(j) and c(j) denote the risk-free interest rate and the collateral rate of the currency
(j), respectively. A common practice in the market is to set c(j) as the overnight (ON) rate
of currency (j). Economically, the spread y(j) can be interpreted as the dividend yield from
the collateral account of currency (j) from the view point of a collateral receiver. On the
other hand, from the view point of a collateral payer, it can be considered as a collateral
funding cost. Of course, the return from risky investments, or the borrowing cost from the
external market can be quite different from the risk-free rate. However, if one wants to
treat these effects directly, an explicit modeling of the associated risks is required. Here,
we use the risk-free rate as net return/cost after hedging these risks, which can be justified
in a simple credit model (see the arguments given in Section 9.4.1 of [4].). As we shall see,
the final formula does not require any knowledge of the risk-free rate, and hence there is
no need of its estimation, which is crucial for the practical implementation.

Now, we explain the derivation of the pricing formula. If we denote the present value
of the derivative at time t by h(i)(t) in terms of currency (i), collateral amount of currency
(j) posted from the counterparty is given by

h(i)(t)

f
(i,j)
x (t)

, (2.2)

where f
(i,j)
x (t) is the foreign exchange rate at time t representing the price of the unit

amount of currency (j) in terms of currency (i). It should be interpreted that the investor
posts the collateral to the counterparty when h(i)(t) is negative.

These considerations lead to the following calculation for the collateralized derivative
price,

h(i)(t) = EQ(i)

t

[
e−

∫ T
t r(i)(s)dsh(i)(T )

]
+f (i,j)

x (t)EQ(j)

t

[∫ T

t
e−

∫ s
t r(j)(u)duy(j)(s)

(
h(i)(s)

f
(i,j)
x (s)

)
ds

]
(2.3)
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where EQ(i)

t [·] is the time t conditional expectation under the risk-neutral measure of cur-
rency (i), where the money-market account of currency (i)

β
(i)
· = exp

(∫ ·

0
r(i)s ds

)
(2.4)

is used as the numeraire. Here, the second line of (2.3) represents the effective dividend
yield from the collateral account, or the cost of posting collateral to the counterparty. One
can see the second term changes its sign properly according to the value of the contract.
An economic discussion on the risk-free rate will be given also in Section 7.

By changing the measure using the Radon-Nikodym density

dQ(i)

dQ(j)

∣∣∣∣∣
t

=
β
(i)
t f

(i,j)
x (0)

β
(j)
t f

(i,j)
x (t)

(2.5)

one can show

h(i)(t) = EQ(i)

t

[
e−

∫ T
t r(i)(s)dsh(i)(T ) +

∫ T

t
e−

∫ s
t r(i)(u)duy(j)(s)h(i)(s)ds

]
. (2.6)

Thus, it is easy to check that the process X = {Xt; t ≥ 0}

X(t) := e−
∫ t
0 r(i)(s)dsh(i)(t) +

∫ t

0
e−

∫ s
0 r(i)(u)duy(j)(s)h(i)(s)ds (2.7)

is a Q(i)-martingale under the appropriate integrability conditions. This tells us that the
process of the option price can be written as

dh(i)(t) =
(
r(i)(t)− y(j)(t)

)
h(i)(t)dt+ dM(t) (2.8)

with some Q(i)-martingale M . It can be expressed as a linear backward stochastic differ-
ential equation:

h(i)(t) = h(i)(T )−
∫ T

t

(
r(i)(s)− y(j)(s)

)
h(i)(s)ds−

∫ T

t
dM(s) . (2.9)

As a result, we have the following theorem:

Theorem 2.1. Suppose that h(i)(T ) is a derivative’s payoff at time T in terms of currency
(i) and that currency (j) is used as the collateral for the contract. Then, the value of the
derivative at time t, h(i)(t) is given by

h(i)(t) = EQ(i)

t

[
e−

∫ T
t r(i)(s)ds

(
e
∫ T
t y(j)(s)ds

)
h(i)(T )

]
(2.10)

= EQ(i)

t

[
e−

∫ T
t c(i)(s)ds−

∫ T
t y(i,j)(s)dsh(i)(T )

]
= D(i)(t, T )ET(i)

t

[
e−

∫ T
t y(i,j)(s)dsh(i)(T )

]
, (2.11)

where
y(i,j)(s) = y(i)(s)− y(j)(s) (2.12)
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with y(i)(s) = r(i)(s) − c(i)(s) and y(j)(s) = r(j)(s) − c(j)(s). Here, we have defined the
collateralized zero-coupon bond of currency (i) as

D(i)(t, T ) = EQ(i)

t

[
e−

∫ T
t c(i)(s)ds

]
. (2.13)

We have also defined the “collateralized forward measure” T(i) of currency (i), for which

ET(i)

t [·] denotes the time t conditional expectation. Here, D(i)(t, T ) is used as its numeraire,
and the associated Radon-Nikodym density is defined by

dT(i)

dQ(i)

∣∣∣∣∣
t

=
D(i)(t, T )

β
(i)
c (t)D(i)(0, T )

(2.14)

where

β(i)
c (t) := exp

(∫ t

0
c(i)s ds

)
. (2.15)

Notice that the collateralized zero-coupon bond is actually a “dividend yielding” asset
due to the cash flow arising from the collateral account. This makes D(i)(t, T )/β(i)(t)
inappropriate for the definition of the forward measure. In fact it is not a Q(i)-martingale
unless one has to compensate the dividend yield y(i). This adjustment has changed β(i) to

β
(i)
c in the expression of the Radon-Nikodym density. See Section 6 for more discussions on

the arbitrage-free conditions in a collateralized market where every contract has a common
dividend yield y.

Since y(i) and y(j) denote the collateral funding cost of currency (i) and (j) respectively,
y(i,j) represents the difference of the funding cost between the two currencies. As a corollary
of the theorem, we have

h(i)(t) = EQ(i)

t

[
e−

∫ T
t c(i)(s)dsh(i)(T )

]
= D(i)(t, T )ET(i)

t [h(i)(T )] (2.16)

when both of the payment and collateralization are done in a common currency (i).
Theorem 2.1 provides the generic pricing formula under the full collateralization includ-

ing the case of foreign collateral currency. The result will be used repeatedly throughout
the article as the foundation of theoretical discussions. We would like to emphasize the
importance of the correct understanding for the reason why the collateral rate appears in
the discounting. It is the well-known fact that the “effective” discounting rate of an asset
with dividend yield y is given by (r − y), or the difference of the risk-free rate and the
dividend yield. Under the full collateralization, we can interpret the return (which can
be negative) from the collateral account y = r − c as the dividend yield, which leads to
r − (r − c) = c as the discounting rate. The arguments can be easily extended to the case
of foreign collateral currency. Now, it is clear that the so called “OIS-discounting” can
be justified only when the collateral rate“c” is given by the overnight rate of the domestic
currency. For example, suppose that there is a trade where the collateral rate or “fee” on
the posted collateral, specified in the contractual agreement, is given by the LIBOR, then
one should use the LIBOR as the discounting rate of the contract, no matter how different
it is from the risk-free rate.
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3 Heath-Jarrow-Morton framework under collateralization

In this section, we discuss the way to give no-arbitrage dynamics to the relevant quantities
using Heath-Jarrow-Morton framework. This is a generalized version of Fujii, Shimada and
Takahashi (2011) [10] and Fujii and Takahashi (2011) [11] and also provides more rigorous
arguments.

3.1 Dynamics of the forward collateral rate

We work in the filtered probability space (Ω,Ft,F(:= (Ft)t≥0), P) where F is an augmented
filtration generated by a d-dimensional Brownian motion W . We assume that the market
is complete and that the measure Q(i) is equivalent to P. We use a simple notation Et[·]
instead of Et[·|Ft] since F is the only relevant filtration.

Firstly, we consider the dynamics of the forward collateral rate, which is defined by

c(i)(t, T ) = − ∂

∂T
lnD(i)(t, T ) (3.1)

or equivalently

D(i)(t, T ) = exp

(
−
∫ T

t
c(i)(t, s)ds

)
. (3.2)

Since it can be written as

c(i)(t, T ) =
1

D(i)(t, T )
EQ(i)

t

[
e−

∫ T
t c(i)(s)dsc(i)(T )

]
(3.3)

one can see c(i)(t, t) = c(i)(t) by passing the limit T ↓ t.
Suppose that the dynamics of the forward collateral rate under the measure Q(i) is given

by

dc(i)(t, s) = α(i)(t, s)dt+ σ(i)
c (t, s) · dWQ(i)

t , (3.4)

where WQ(i)
is a d-dimensional Q(i)-Brownian motion, α(i) : Ω × R+ × R+ → R and and

σ
(i)
c : Ω×R+×R+ → Rd and α(·, s), σ(i)

c (·, s) are both F-adapted processes for every s ≥ 0.
Here, we have used the abbreviation

σ(i)
c (t, s) · dWQ(i)

t :=

d∑
k=1

(
σ(i)
c (t, s)

)
k
dWQ(i)

k (t) (3.5)

to lighten the notation.

Proposition 3.1. Under the setup given in Section 3.1, the no-arbitrage dynamics of the
collateral forward rate {c(i)(t, s), t ∈ [0, s]} for every s ≥ 0 is given by

dc(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)
c (t, u)du

)
dt+ σ(i)

c (t, s) · dWQ(i)

t (3.6)

c(i)(t, t) = c(i)(t) . (3.7)
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Proof. Simple application of Itô’s formula yields

dD(i)(t, T )/D(i)(t, T ) =

{
c(i)(t)−

∫ T

t
α(i)(t, s)ds+

1

2

∣∣∣∣∣∣∫ T

t
σ(i)
c (t, s)ds

∣∣∣∣∣∣2} dt

−
(∫ T

t
σ(i)
c (t, s)ds

)
· dWQ(i)

t . (3.8)

From the definition of the zero coupon bond D(i) in Theorem 2.1, {D(i)(t, T )/β
(i)
c (t), t ∈

[0, T ]} must be a Q(i)-martingale. This requires D(i)’s drift to be equal to c(i), which yields

α(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)
c (t, u)du

)
. (3.9)

This gives the desired result.

3.2 Dynamics of the forward LIBOR-OIS spread

We denote the LIBOR of currency (i) fixed at Tn−1 and maturing at Tn as L(i)(Tn−1, Tn).
Instead of modeling L(i) directly, we consider the dynamics of LIBOR-OIS spread, which
is defined by

B(i)(Tn−1, Tn) = L(i)(Tn−1, Tn)−
1

δ
(i)
n

(
1

D(i)(Tn−1, Tn)
− 1

)
(3.10)

where δ
(i)
n denotes the day-count fraction of L(i) for the period of [Tn−1, Tn]. It is clear that

both L(i)(Tn−1, Tn) and B(i)(Tn−1, Tn) are FTn−1 measurable.

Definition 3.1. The forward LIBOR-OIS spread for the period [Tn−1, Tn] is defined by

B(i)(t;Tn−1, Tn) := ET(i)
n

t

[
B(i)(Tn−1, Tn)

]
= ET(i)

n
t

[
L(i)(Tn−1, Tn)

]
− 1

δ
(i)
n

(
D(i)(t, Tn−1)

D(i)(t, Tn)
− 1

)
. (3.11)

Here, the Radon-Nikodym density for the forward measure is given, as before, by

dT(i)
n

dQ(i)

∣∣∣∣∣
t

=
D(i)(t, Tn)

β
(i)
c (t)D(i)(0, Tn)

. (3.12)

Let us denote the volatility process for B(i)(·;Tn−1, Tn) by some appropriate adapted

process σ
(i)
B (·;Tn−1, Tn) : Ω× R+ → Rd.

Proposition 3.2. Under the setup given in Sections 3.1 and 3.2, the no-arbitrage dynamics
of the LIBOR-OIS spread {B(i)(t;Tn−1, Tn), t ∈ [0, Tn−1]} for every 0 ≤ Tn−1 < Tn is given
by

dB(i)(t;Tn−1, Tn)

B(i)(t;Tn−1, Tn)
= σ

(i)
B (t;Tn−1, Tn) ·

(∫ Tn

t
σ(i)
c (t, s)ds

)
dt+ σ

(i)
B (t;Tn−1, Tn) · dWQ(i)

t

(3.13)
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with

B(i)(0;Tn−1, Tn) = ET(i)
n

[
L(i)(Tn−1, Tn)

]
− 1

δ
(i)
n

(
D(i)(0, Tn−1)

D(i)(0, Tn)
− 1

)
. (3.14)

Proof. By construction, B(i)(·;Tn−1, Tn) is a martingale under the forward measure T(i)
n .

Thus, in general, one can write its dynamics as

dB(i)(t;Tn−1, Tn)/B
(i)(t;Tn−1, Tn) = σ

(i)
B (t;Tn−1, Tn) · dWT(i)

n
t (3.15)

where WT(i)
n

t is a d-dimensional T(i)
n -Brownian motion. By Maruyama-Girsanov theorem,

one can check that the relation

dWT(i)
n

t = dWQ(i)

t +

(∫ Tn

t
σ(i)
c (t, s)ds

)
dt (3.16)

holds, which gives the desired result.

3.3 Dynamics of the forward currency funding spread

The remaining important ingredient for the term structure modeling is the dynamics of the
currency funding spread, y(i,j). To understand the direct relationship between the observed
cross currency basis and this currency funding spread, see [11]. It has shown that the
funding spread y(i,j) is the main cause of the currency basis by analyzing the actual market
data.

Definition 3.2. The instantaneous forward funding spread at time t with maturity T ≥ t
of currency (j) with respect to currency (i) is defined by

y(i,j)(t, T ) := − ∂

∂T
lnY (i,j)(t, T ) (3.17)

where

Y (i,j)(t, T ) := ET(i)

t

[
e−

∫ T
t y(i,j)(s)ds

]
. (3.18)

Let us denote the volatility process of the forward funding spread y(i,j) by σ(i,j) : Ω ×
R+ × R+ → Rd where {σ(i,j)

y (t, s), t ∈ [0, s]} is F-adapted for every s ≥ 0.

Proposition 3.3. 1 Under the setup given in Sections 3.1 and 3.3, the no-arbitrage dy-
namics of the forward funding spread {y(i,j)(t, s), t ∈ [0, s]} for every s ≥ 0 is given by

dy(i,j)(t, s) =

{
σ(i,j)
y (t, s) ·

∫ s

t
σ(i,j)
y (t, u)du+ σ(i,j)

y (t, s) ·
∫ s

t
σ(i)
c (t, u)du

}
+σ(i)

c (t, s) ·
∫ s

t
σ(i,j)
y (t, u)du

}
dt+ σ(i,j)

y (t, s) · dWQ(i)

t (3.19)

with y(i,j)(t, t) = y(i,j)(t) .

1Notice that in Eq (6.31) and hence also in (6.39) of [13], the third component σ
(i)
c (t, s) ·

∫ s

t
σ
(i,j)
y (t, u)du

of the drift term is missing, which should be corrected as in this proposition.
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Proof. Define

Ỹ (i,j)(t, T ) := EQ(i)

t

[
e−

∫ T
t (c(i)(s)+y(i,j)(s))ds

]
(3.20)

and the corresponding forward rate {ỹ(i,j)(t, T ), t ∈ [0, T ]} as

ỹ(i,j)(t, T ) = − ∂

∂T
ln Ỹ (i,j)(t, T ) . (3.21)

Notice that

ỹ(i,j)(t, T ) = − ∂

∂T
ln Ỹ (i,j)(t, T )

=
1

Ỹ (i,j)(t, T )
EQ(i)

t

[
e−

∫ T
t (c(i)(s)+y(i,j)(s))ds(c(i)(T ) + y(i,j)(T ))

]
(3.22)

and hence using the fact that Ỹ (i,j)(t, t) = 1, one obtains by passing to the limit T ↓ t,

ỹ(i,j)(t, t) = c(i)(t) + y(i,j)(t) . (3.23)

Using the above result and the fact that{
e−

∫ t
0 (c

(i)(s)+y(i,j)(s))dsỸ (i,j)(t, T ), t ∈ [0, T ]
}

(3.24)

is a Q(i)-martingale for every T ≥ 0, one obtains, for t ∈ [0, s] for every s ≥ 0, that

dỹ(i,j)(t, s) = σ̃(i,j)(t, s) ·
(∫ s

t
σ̃(i,j)(t, u)du

)
dt+ σ̃(i,j)(t, s) · dWQ(i)

t (3.25)

ỹ(i,j)(t, t) = c(i)(t) + y(i,j)(t) (3.26)

from exactly the same arguments in Proposition 3.1. Here, σ̃(i,j) : Ω × R+ × R+ → Rd

corresponds to some volatility process, and {σ̃(i,j)(t, s), t ∈ [0, s]} is F-adapted.
Now, let us decompose ỹ(i,j) into two parts as

ỹ(i,j)(t, s) = c(i)(t, s) + y(i,j)(t, s) . (3.27)

From the definition of the forward collateral rate, one sees the second component satisfies

exp
(
−
∫ T

t
y(i,j)(t, s)ds

)
= Y (i,j)(T ) (3.28)

which is consistent with Definition 3.2.
One can write a general dynamics of the funding spread as

dy(i,j)(t, s) = µ(i,j)(t, s)dt+ σ(i,j)
y (t, s) · dWQ(i)

t (3.29)

using an appropriate adapted drift process {µ(i,j)(t, s), t ∈ [0, s]}. Then, by construction,
one must have

σ̃(i,j)(t, s) = σ(i)
c (t, s) + σ(i,j)

y (t, s) . (3.30)

By taking the difference dy(i,j)(t, s) = dỹ(i,j)(t, s)− dc(i)(t, s), one obtains

µ(i,j)(t, s) = σ(i,j)
y (t, s) ·

∫ s

t

[
σ(i,j)
y (t, u) + σ(i)

c (t, u)
]
du+ σ(i)

c (t, s) ·
∫ s

t
σ(i,j)
y (t, u)du (3.31)

for every s ≥ 0. This gives the desired result.
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3.4 Dynamics of the spot foreign exchange rate

Now, the last piece for the term structure modeling is the dynamics of the spot foreign

exchange rate f
(i,j)
x . Since we have the relation

r
(i)
t − r

(j)
t = c

(i)
t − c

(j)
t + y

(i,j)
t (3.32)

it is easy to see that the relevant dynamics is given by

df (i,j)
x (t)/f (i,j)

x (t) =
(
c
(i)
t − c

(j)
t + y

(i,j)
t

)
dt+ σ

(i,j)
X (t) · dWQ(i)

t . (3.33)

where σ
(i,j)
X : Ω× R → Rd is an appropriate adapted process for the spot FX volatility.

The Radon-Nikodym density between two money-market measures with different cur-
rencies are given by

dQ(j)

dQ(i)

∣∣∣∣∣
t

=
β(j)(t)f

(i,j)
x (t)

β(i)(t)f
(i,j)
x (0)

=
β
(j)
c (t)f

(i,j)
x (t)

β
(i)
c (t)β

(i,j)
y (t)f

(i,j)
x (0)

(3.34)

where β
(i,j)
y (t) = e

∫ t
0 y

(i,j)
s ds . Since we have the relation

dWQ(j)

t = dWQ(i)

t − σ
(i,j)
X (t)dt , (3.35)

it is easy to change the currency measure. For example, one can check that the dynamics
of the forward collateral rate of currency (j) becomes

dc(j)(t, s) = σ(j)
c (t, s) ·

[(∫ s

t
σ(j)
c (t, u)du

)
− σ

(i,j)
X (t)

]
dt+ σ(j)

c (t, s) · dWQ(i)

t (3.36)

under the money-market measure of currency (i).

3.5 Summary of the dynamics

From Sections 3.1 to 3.4, we have derived the dynamics of all the relevant processes in the
HJM framework. For the convenience of readers, let us summarize the resultant system of
stochastic differential equations (SDEs). Here, we set currency (i) as the base currency.

Rates for the base currency

dc(i)(t, s) = σ(i)
c (t, s) ·

(∫ s

t
σ(i)
c (t, u)du

)
dt+ σ(i)

c (t, s) · dWQ(i)

t (3.37)

dB(i)(t;Tn−1, Tn)

B(i)(t;Tn−1, Tn)
= σ

(i)
B (t;Tn−1, Tn) ·

(∫ Tn

t
σ(i)
c (t, s)ds

)
dt+ σ

(i)
B (t;Tn−1, Tn) · dWQ(i)

t

(3.38)

Funding spreads with respect to the base currency

dy(i,j)(t, s) =

{
σ(i,j)
y (t, s) ·

(∫ s

t

[
σ(i,j)
y (t, u) + σ(i)

c (t, u)
]
du
)

+σ(i)
c (t, s) ·

∫ s

t
σ(i,j)
y (t, u)du

}
dt+ σ(i,j)

y (t, s) · dWQ(i)

t (3.39)
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Foreign exchange rate

df (i,j)
x (t)/f (i,j)

x (t) =
(
c
(i)
t − c

(j)
t + y

(i,j)
t

)
dt+ σ

(i,j)
X (t) · dWQ(i)

t (3.40)

Rates for a foreign currency

dc(j)(t, s) = σ(j)
c (t, s) ·

[(∫ s

t
σ(j)
c (t, u)du

)
− σ

(i,j)
X (t)

]
dt+ σ(j)

c (t, s) · dWQ(i)

t (3.41)

dB(j)(t;Tn−1, Tn)

B(j)(t;Tn−1, Tn)
= σ

(j)
B (t;Tn−1, Tn) ·

[(∫ Tn

t
σ(i)
c (t, s)ds

)
− σ

(i,j)
X (t)

]
dt

+σ
(i)
B (t;Tn−1, Tn) · dWQ(i)

t (3.42)

Funding spreads with respect to a foreign currency

dy(j,k)(t, s) =

{
σ(j,k)
y (t, s) ·

(∫ s

t

[
σ(j,k)
y (t, u) + σ(j)

c (t, u)
]
du− σ

(i,j)
X (t)

)
+σ(j)

c (t, s) ·
∫ s

t
σ(j,k)
y (t, u)du

}
dt+ σ(j,k)

y (t, s) · dWQ(i)

t (3.43)

4 Some remarks on the formulation in [9, 11]

In our previous works, we have defined the instantaneous forward rate of the funding spread
as

e
∫ T
t y(i,j)(t,s)ds = EQ(i)

t

[
e−

∫ T
t y(i,j)(s)ds

]
(4.1)

or equivalently,

y(i,j)(t, T ) = − ∂

∂T
lnEQ(i)

t

[
e−

∫ T
t y(i,j)(s)ds

]
. (4.2)

Notice the difference in the associated measure in Definition 3.2. In the above definition,
the dynamics of the funding spread is actually simpler:

dy(i,j)(t, s) = σ(i,j)
y (t, s) ·

(∫ s

t
σ(i,j)
y (t, u)du

)
dt+ σ(i,j)

y (t, s) · dWQ(i)

t . (4.3)

However, the above formulation makes the calibration procedures rather complicated
in the presence of non-zero correlation between the collateral rate and the funding spread.
Suppose that there is a currency-(j) collateralized zero coupon bond denominated by cur-
rency (i). This is an important building block for the pricing of the collateralized contracts
with a foreign currency. The present value of this bond is

EQ(i)

t

[
e−

∫ T
t (c(i)(s)+y(i,j)(s))ds

]
. (4.4)

Due to the non-zero correlation, the above quantity depends on the dynamics of both of
the forward rates, and is impossible to separate the two effects. On the other hand , in the
formulation proposed in Section 3.3, the above quantity is given by D(i)(t, T )Y (i,j)(t, T )
without any independence assumption (See Eqs.(2.11) and (3.18).). In addition, if the
market quotes are available for this type of products, then one can easily get the clean
information for Y (i,j) which directly gives the initial condition for the funding spread by
differentiation.
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5 Collateralized FX

5.1 Collateralized FX forward

Let first consider a collateralized FX forward contract between currency (i) and (j), in which
a unit amount of currency (j) is going to be exchanged by K units amount of currency
(i) at the maturity T . The amount of K is fixed at t, the trade inception time. Assume
the contract is fully collateralized by currency (k). Here, the amount of K that makes this
exchange have the present value 0 at time t is called the forward FX rate.

The break-even condition for the amount of K is given by

KEQ(i)

t

[
e−

∫ T
t (c

(i)
s +y

(i,k)
s )ds

]
= f (i,j)

x (t)EQ(j)

t

[
e−

∫ T
t (c

(j)
s +y

(j,k)
s )ds

]
. (5.1)

Here, the left-hand side represents the value of K units amount of currency (i) paid at T
with collateralization in currency (k). In the right-hand side the value of a unit amount of
currency (j) is represented in terms of currency (i) by multiplying the spot FX rate. By
solving the equation for K, we obtain the forward FX as (See definition (3.20).)

f (i,j)
x (t;T, (k)) = f (i,j)

x (t)
Ỹ (j,k)(t, T )

Ỹ (i,k)(t, T )
(5.2)

where the last argument (k) denotes the currency used as the collateral. In general, the
currency triangle relation among forward FXs only holds with the common collateral cur-
rency:

f (i,j)
x (t, T ; (k))× f (j,l)

x (t, T ; (k)) = f (i,l)
x (t, T ; (k)) . (5.3)

Suppose the same contract is made with a collateral currency either (i) or (j), which
seems more natural in the market. In this case, we have one-to-one relation between the
forward FX value and the forward funding spread. For example, if currency (i) is used as
the collateral, we have

f (i,j)
x (t;T, (i)) = f (i,j)

x (t)
D(j)(t, T )

D(i)(t, T )
Y (j,i)(t, T ). (5.4)

Therefore, if we can observe the forward FX with various maturities in the market, we can
bootstrap the forward curve of {y(j,i)(t, ·)} since we already know D(i) and D(j) from each
OIS market. When collateralization is done by currency (j), we can extract {y(i,j)(t, ·)} by
the same arguments.

When the collateral currency is (i), one can easily show that

f (i,j)
x (t)EQ(j)

t

[
e−

∫ T
t (c

(j)
s +y

(j,i)
s )ds

]
= EQ(i)

t

[
e−

∫ T
t c

(i)
s dsf (i,j)

x (T )
]

(5.5)

by using the Radon-Nikodym density (3.34). Thus, we see

f (i,j)
x (t;T, (i)) = ET(i)

t

[
f (i,j)
x (T )

]
(5.6)

from Eq. (5.4). Hence, the forward FX collateralized by its domestic currency (i) is a
martingale under the associated forward measure T(i). In more general situation, we have
the expression

f (i,j)
x (t;T, (k)) = ET(i,k)

t

[
f (i,j)
x (T )

]
(5.7)
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where the new forward measure is defined by

dT(i,k)

dQ(i)

∣∣∣∣∣
t

=
Ỹ (i,k)(t, T )

β
(i)
c (t)β

(i,k)
y (t)Ỹ (i,k)(0, T )

, (5.8)

and {f (i,j)
x (t;T, (k)), t ∈ [0, T ]} is a T(i,k)-martingale. One can see, Ỹ (i,k)(t, T ), the price of a

zero-coupon bond of currency (i) collateralized by currency (k) is associated as a numeraire
for the forward measure T(i,k).

5.2 FX option

Just for completeness, we give a brief remark on collateralized FX European options. Let

us consider a T -maturing European call option on f
(i,j)
x with strike K collateralized by a

currency (k). The present value of the option is

PVt = EQ(i)

t

[
e−

∫ T
t (c

(i)
s +y

(i,k)
s )ds

(
f (i,j)
x (T )−K

)+]
, (5.9)

where X+ denotes max(X, 0). Since we can rewrite it as

PVt = D(i)(t, T )Y (i,k)(t, T )ET(i,k)

t

[(
f (i,j)
x (T ;T, (k))−K

)+]
(5.10)

it is enough to know the dynamics of fx(t;T, (k)) under the measure T(i,k). By applying
Itô formula to (5.2), we obtain

df (i,j)
x (t;T, (k))/f (i,j)

x (t;T, (k)) =
{
σ
(i,j)
X (t) + Γ(i,k)(t, T )− Γ(j,k)(t, T )

}
· dWT(i,k)

t (5.11)

where WT(i,k)
is a d-dimensional T(i,k)-Brownian motion. Here, for m = {i, j}, we have

defined

Γ(m,k)(t, T ) =

∫ T

t

(
σ(m)
c (t, s) + σ(m,k)

y (t, s)
)
ds . (5.12)

Thus, when both of the collateral and funding spread volatilities are deterministic (hence
follow Gaussian HJM), one can use Black’s formula. Although there is no closed-form
solution except this special case, asymptotic expansion technique can be applied to derive
an analytical approximate solution. See, for example, Takahashi (2015) [22] and references
therein.

6 Implementation with a fixed tenor structure

Due to the infinite dimensionality, a direct numerical implementation of the proposed HJM
framework is impossible. An obvious solution is to reduce its dimension by discretization
following the idea of BGM (or LIBOR market) model [3]. One can see, for example,
Mercurio [17] (2009) as an early attempt. In recent years, many researchers have followed
the same route or adopted an Affine model for tractability. However, a complete picture
including multiple currencies and currency funding spreads, which are necessary to explain
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the cross currency basis, have only been found in continuous HJM framework given in our
previous works [10, 9, 11].

In the remainder of the paper, we shall give a directly implementable discretization
for the complete HJM framework including multiple currencies and the associated funding
spreads. Due to the limited capacity for numerical simulation, using a daily span for
the overnight rates looks difficult. When using a more sparse time partition, considering
a daily compounding nature of the OIS, it seems more useful to define a continuously
compounded forward rate with a finite accrual period. It also looks suitable for the modeling
of the funding spread since it is the dividend yield being paid everyday to the collateral
holder. In addition, it possesses a much stronger similarity to the HJM framework than
a traditional BGM-like discretization. Thanks to this similarity, one can use a continuous
HJM framework, which allows more concise treatments, for the analytical study of the
implemented model with a fixed tenor structure.

6.1 Setup

We work in a filtered probability space (Ω,F ,F,P) satisfying the usual conditions, where F
is assumed to be an augmented filtration generated by the d-dimensional Brownian motion
W . It is assumed to support every stochastic variable to appear in the model. We first
introduce a partition of the time interval called a tenor structure as

0 = T0 < T1 < T2 < · · · < TN∗ (6.1)

and δi := Ti+1 − Ti, where TN∗ is some fixed time horizon. We also define

q(t) := min
{
n;Tn ≥ t

}
(6.2)

and hence we always have Tq(t)−1 < t ≤ Tq(t). We assume, for each currency, that the
traditional risk-free zero coupon bonds and the collateralized zero coupon bonds are con-
tinuously tradable at any time t ∈ [0, TN∗ ]. Their price processes are assumed to be strictly
positive and denoted by

P (i)(t, Tq(t)), · · · , P (i)(t, TN∗) (6.3)

and

D(i)(t, Tq(t)), · · · , D(i)(t, TN∗) (6.4)

for each currency.
Following the idea of Schlögl [20], for every currency (i), we assume that the prices of the

shortest bonds P (i)(t, Tq(t)) D
(i)(t, Tq(t)) are FTq(t)−1

-measurable and absolutely continuous
with respect to the Lebesgue measure. Then, we can define the associated short rate
processes (r(i), c(i)) in such a way that

exp
(
−
∫ Tq(t)

t
r(i)(s)ds

)
= P (i)(t, Tq(t)) (6.5)

exp
(
−
∫ Tq(t)

t
c(i)(s)ds

)
= D(i)(t, Tq(t)) (6.6)
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for every t ∈ [0, TN∗ ], and (r(i), c(i)) are FTq(t)−1
-measurable processes. We denote

y(i)(t) := r(i)(t)− c(i)(t), t ∈ [0, TN∗ ] (6.7)

which corresponds to the dividend yield associated to the currency-(i) collateralized prod-
ucts.

Let us first define a discrete bank account for a given currency (i):

B(i)(t) := exp
(q(t)−1∑

m=0

δmf (i)
m (Tm)

)
P (i)(t, Tq(t)) . (6.8)

Here,

f (i)
m (t) := − 1

δm
ln

(
P (i)(t, Tm+1)

P (i)(t, Tm)

)
, t ∈ [0, Tm] (6.9)

is a forward rate at time t for the period [Tm, Tm+1] with a continuous compounding 2. It is

easy to show that the market is arbitrage free if there exists a measure Q(i)
B equivalent to P

such that every (non-dividend paying) asset price denominated in currency (i) discounted

by B(i) is a Q(i)
B -martingale.

Remark

Suppose we create the continuous money market account β(i)(t) = exp
(∫ t

0 r
(i)(s)ds

)
by

using the rate process defined in (6.5). Then the new measure Q(i) associated with this β(i)

as the numeraire, is actually equal to Q(i)
B since both numeraires have finite variation.

Although the above numeraire asset is conceptually useful, it remains completely im-
plicit in a collateralized market. In the presence of collateralization, the fundamental assets
are dividend yielding assets. Let us define a discrete collateral account by

C(i)(t) := exp
(q(t)−1∑

m=0

δmc(i)m (Tm)
)
D(i)(t, Tq(t)) , (6.10)

where

c(i)m (t) := − 1

δm
ln

(
D(i)(t, Tm+1)

D(i)(t, Tm)

)
, t ∈ [0, Tm] (6.11)

is the corresponding collateral forward rate.
Now, let us choose a certain base currency and omit its specification (i). Consider the

market that contains m non-dividend paying assets and n y-yielding collateralized assets.
Let us denote their price processes by {Si(t), t ∈ [0, TN∗ ]} and {Uj(t), t ∈ [0, TN∗ ]} for
i ∈ {1, · · · ,m} and j ∈ {1, · · · , n}.

Proposition 6.1. The market is arbitrage free if {Si(t)/B(t), t ∈ [0, TN∗ ]}1≤i≤m and
{Uj(t)/C(t), t ∈ [0, TN∗ ]}1≤j≤n are all QB-martingales.

2If we adopt a simple rate convention, we obtain a traditional BGM model.
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Proof. Let us denote the self-financing trading strategy by {(πi(t), ηi(t)), t ∈ [0, TN∗ ]},
i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}. The associated wealth process {V (t), t ∈ [0, TN∗ ]} is given
by

dV (t) = π(t) · dS(t) + η(t) · dU(t) + y(t)(η(t) · U(t))dt

+
[
Vt − π(t) · S(t)− η(t) · U(t)

]dB(t)

B(t)
. (6.12)

Note that the investments into the collateralized zero coupon bonds require continuous
reinvestments of their dividends, which eventually leads to the same expression.

For the absence of arbitrage, it is enough to show that {V (t)/B(t), t ∈ [0, TN∗ ]} is a
QB-martingale. It is easy to see

d

(
V (t)

B(t)

)
=

dV (t)

B(t)
− V (t)

B(t)2
dB(t)

= πt ·
(dS(t)
B(t)

− S(t)

B(t)2
dB(t)

)
+

C(t)

B(t)
η(t) ·

(dU(t)

C(t)
− U(t)

C(t)2
dC(t)

)
+
η(t) · U(t)

B(t)

(dC(t)

C(t)
+ y(t)dt− dB(t)

B(t)

)
. (6.13)

Since the last term vanishes, one obtains

d

(
V (t)

B(t)

)
= π(t) · d

(S(t)
B(t)

)
+

C(t)

B(t)
η(t) · d

(U(t)

C(t)

)
(6.14)

which proves the desired result.

The above result implies that one can guarantee the absence of arbitrage in a market
collateralized by the domestic currency (i) by imposing that every C(i)-discounted price

process is a Q(i)
B -martingale. The arguments is easily extendable to the situation where there

exist collateralized products by a foreign currency (j). In this market, one can additionally
trade the set of domestic zero-coupon bonds with the same tenor structure but collateralized
by the foreign currency (j):

Ỹ (i,j)(t, Tq(t)), · · · , Ỹ (i,j)(t, TN∗) , (6.15)

which are assumed to have a common dividend yield y(j) = r(j) − c(j). The shortest bond
satisfies

Ỹ (i,j)(t, Tq(t)) = exp
(
−
∫ Tq(t)

t
(r(i)(s)− y(j)(s))ds

)
= exp

(
−
∫ Tq(t)

t
(c(i)(s) + y(i,j)(s))ds

)
(6.16)

where y(i,j) = y(i) − y(j) and are FTq(t)−1
-measurable. Let us define a new collateralized

account by the currency (j) as

C(i,j)(t) = exp
(q(t)−1∑

m=0

δm(c(i)m (Tm) + y(i,j)m (Tm))
)
Ỹ (i,j)(t, Tq(t)) . (6.17)
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with

y(i,j)m (t) = − 1

δm
ln

(
Y (i,j)(t, Tm+1)

Y (i,j)(t, Tm)

)
(6.18)

Y (i,j)(t, Tm) := Ỹ (i,j)(t, Tm)/D(i)(t, Tm) . (6.19)

It is clear that Y (i,j)(t, Tq(t)) is FTq(t)−1
-measurable. By exactly the same arguments in

Proposition 6.1, the absence of arbitrage is guaranteed by requiring that every price process

of (j)-collateralized (i)-denominated asset divided by C(i,j) is a Q(i)
B -martingale.

6.2 Dynamics of discretized collateral rates

We want to derive the dynamics of {c(i)m }m∈{0,··· ,N∗−1} under Q(i)
B . Its dynamics in our

Brownian setup can generally be represented by

dc(i)m (t) = α(i)
m (t)dt+ σ(i)

m (t) · dWQ(i)
B

t (6.20)

for m ∈ {0, · · · , N∗ − 1}. Here, α
(i)
m : Ω × [0, Tm] → R and σ

(i)
m : Ω × [0, Tm] → R are

F-adapted processes. We define c
(i)
m (t) = c

(i)
m (Tm) for t ≥ Tm.

Proposition 6.2. The no-arbitrage dynamics of the collateral forward rate is given by

dc(i)n (t) =

σ(i)
n (t) ·

 n−1∑
m=q(t)

δmσ(i)
m (t)

+
1

2
δn|σ(i)

n (t)|2
 dt+ σ(i)

n (t) · dWQ(i)
B

t (6.21)

for t ∈ [0, Tn] with every n ∈ {0, · · · , N∗ − 1}.

Proof. For the absence of arbitrage,

D(i)(t, Tn)

C(i)(t)
, t ∈ [0, Tn] (6.22)

must be a Q(i)
B -martingale for every n ∈ {0, · · · , N∗}. It is not difficult to confirm that the

ratio (6.22) is continuous at every Ti, i ∈ {0, · · · , n} by using the expression

D(i)(t, Tn) = D(i)(t, Tq(t))

n−1∏
m=q(t)

D(i)(t, Tm+1)

D(i)(t, Tm)

= D(i)(t, Tq(t)) exp
(
−

n−1∑
m=q(t)

δmc(i)m (t)
)
, (6.23)

and (6.10). Thus, it is enough to require

X(i)
n (t) := exp

(
−

n−1∑
m=q(t)

δmc(i)m (t)
)

(6.24)

to be a Q(i)
B -martingale within each interval (Tq(t)−1, Tq(t)) for every n.
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An application of Itô-formula in a given interval yields that

dX(i)
n (t) = X(i)

n (t)

−
n−1∑

m=q(t)

δmdc(i)m (t) +
1

2

n−1∑
m,m′=q(t)

δmδm′d⟨c(i)m , c
(i)
m′⟩t


= X(i)

n (t)

−
n−1∑

m=q(t)

δmα(i)
m (t) +

1

2

∣∣∣ n−1∑
m=q(t)

δmσ(i)
m (t)

∣∣∣2
 dt

−X(i)
n (t)

n−1∑
m=q(t)

δmσ(i)
m (t) · dWQ(i)

B
t . (6.25)

This implies

n−1∑
m=q(t)

δmα(i)
m (t) =

1

2

∣∣∣ n−1∑
m=q(t)

δmσ(i)
m (t)

∣∣∣2 . (6.26)

Since this relation must hold for every n ∈ {0, · · · , N∗ − 1}, one obtains, by taking the
difference, that

δnα
(i)
n (t) =

1

2

∣∣∣ n∑
m=q(t)

δmσ(i)
m (t)

∣∣∣2 − 1

2

∣∣∣ n−1∑
m=q(t)

δmσ(i)
m (t)

∣∣∣2
=

1

2
δ2n|σ(i)

n (t)|2 + δnσ
(i)
n (t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

)
(6.27)

and hence

α(i)
n (t) =

1

2
δn|σ(i)

n (t)|2 + σ(i)
n (t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

)
. (6.28)

Once we fix α
(i)
n as above, one can recursively verify that the relation (6.26) is satisfied for

every n. This proves the proposition.

6.3 Dynamics of collateralized LIBOR-OIS spreads

The LIBOR-OIS spread B(i)(Tn−1, Tn) itself is merely an index and not a tradable asset.
However, a collateralized forward contract is of course tradable and hence

EQ(i)
B

t

[
e−

∫ Tn
t c(i)(s)dsB(i)(Tn−1, Tn)

]
= D(i)(t, Tn)B

(i)(t;Tn−1, Tn), t ∈ [0, Tn−1] (6.29)

is a price process of a “dividend y(i)” yielding asset.
Let us write the general dynamics as

dB(i)(t;Tn−1, Tn) := B(i)(t;Tn−1, Tn)

(
b(i)n (t)dt+ σ

(i)
B,n(t) · dW

Q(i)
B

t

)
, (6.30)

with some appropriate F-adapted processes b
(i)
n : Ω×[0, Tn−1] → R and σ

(i)
B,n : Ω×[0, Tn−1] →

Rd.

18



Proposition 6.3. The no-arbitrage dynamics of the LIBOR-OIS forward spread is given
by

dB(i)(t;Tn−1, Tn) = B(i)(t;Tn−1, Tn)

σ
(i)
B,n(t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

)
dt+ σ

(i)
B,n(t) · dW

Q(i)
B

t


(6.31)

for t ∈ [0, Tn−1] with every n ∈ {0, · · · , N∗} .

Proof. For the absence of arbitrage,

D(i)(t, Tn)B
(i)(t;Tn−1, Tn)

C(i)(t)
, t ∈ [0, Tn−1] (6.32)

must be a Q(i)
B -arbitrage. This is equivalent to require the process

X
(i)
B,n(t) := exp

(
−

n−1∑
m=q(t)

δmc(i)m (t)
)
B(i)(t;Tn−1, Tn) (6.33)

to be a Q(i)
B -martingale within an each interval (Tq(t)−1, Tq(t)), since (6.32) is continuous at

every node Ti, i ∈ {0, · · · , n− 1}.
An application of Itô-formula in a given interval and the result of Proposition 6.2 yield

dX
(i)
B,n(t) = X

(i)
B,n(t)

b(i)n (t)− σ
(i)
B,n(t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

) dt

+X
(i)
B,n(t)

(
σ
(i)
B,n(t)−

n−1∑
m=q(t)

δmσ(i)
m (t)

)
· dWQ(i)

B
t . (6.34)

This implies

b(i)n (t) = σ
(i)
B,n(t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

)
, (6.35)

which proves the proposition 3.

6.4 Dynamics of currency funding spreads

As in the previous section, the funding spread itself is not directly tradable but a zero
coupon bond collateralized by a foreign currency is a tradable asset. Hence

Ỹ (i,j)(t, Tn) = EQ(i)
B

[
e−

∫ Tn
t (c(i)(s)+y(i,j)(s))ds

]
= D(i)(t, Tn)Y

(i,j)(t, Tn), t ∈ [0, Tn] (6.36)

3The same result can be obtained from the measure-change technique and the fact that
{B(i)(t;Tn−1, Tn), t ∈ [0, Tn−1]} is a martingale under the forward measure T(i)

n .
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is a price process of a tradable asset. An important fact is that this asset has a stream of
dividend yield

y(j) = y(i) − y(i,j) . (6.37)

According to the discussion in Section 6.1, we have to discount it by C(i,j)(t) of (6.17) to
impose a martingale condition.

Let us write the dynamics of y
(i,j)
m as follows:

dy(i,j)m (t) = α(i,j)
m (t)dt+ σ(i,j)

y,m (t) · dWQ(i)
B

t (6.38)

where α
(i,j)
m : Ω× [0, Tm] → R and σ

(i,j)
m : Ω× [0, Tm] → Rd are F-adapted processes.

Proposition 6.4. The no-arbitrage dynamics of the forward funding spread is given by

dy(i,j)n (t) =

{
σ(i,j)
y,n (t) ·

( n−1∑
m=q(t)

δm[σ(i,j)
y,m (t) + σ(i)

m (t)]
)
+ σ(i)

n (t) ·
( n−1∑
m=q(t)

δmσ(i,j)
y,m (t)

)

+
1

2
δn|σ(i,j)

y,n (t)|2 + δn(σ
(i,j)
y,n (t) · σ(i)

n (t))

}
dt+ σ(i,j)

y,n (t) · dWQ(i)
B

t (6.39)

for t ∈ [0, Tn] with every n ∈ {0, · · · , N∗ − 1}.

Proof. The absence of arbitrage requires

Ỹ (i,j)(t, Tn)

C(i,j)(t)
, t ∈ [0, Tn] (6.40)

to be a Q(i)
B -martingale for every n ∈ {0, · · · , N∗}. As before, one can check that the ratio

(6.40) is continuous at every Ti, i ∈ {0, · · · , n}. Thus, this condition is equivalent to require,
for every n ∈ {0, · · · , N∗},

X(i,j)
n (t) := exp

−
n−1∑

m=q(t)

δmỹ(i,j)m (t)

 (6.41)

to be a Q(i)
B -martingale within an each interval (Tq(t)−1, Tq(t)). Here, we have put

ỹ(i,j)m (t) := c(i)m (t) + y(i,j)m (t) (6.42)

for notational simplicity.
By following the same arguments given in Proposition 6.2, the no-arbitrage dynamics

of ỹ
(i,j)
n for n ∈ {0, · · · , N∗ − 1} is give by

dỹ(i,j)n (t) =

σ̃(i,j)
n (t) ·

( n−1∑
m=q(t)

δmσ̃(i,j)
m (t)

)
+

1

2
δn|σ̃(i,j)

n |2
 dt+ σ̃(i,j)

n (t) · dWQ(i)
B

t (6.43)
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with some appropriate F-adapted processes σ̃
(i,j)
m : Ω× [0, Tm] → Rd, m ∈ {0, · · · , N∗ − 1}.

Thus, by the relation dy
(i,j)
n (t) = dỹ

(i,j)
n (t)− dc

(i)
n (t), the drift term is obtained by

α(i,j)
n (t) = σ̃(i,j)

n (t) ·
( n−1∑
m=q(t)

δmσ̃(i,j)
m (t)

)
+

1

2
δn|σ̃(i,j)

n |2

−σ(i)
n (t) ·

 n−1∑
m=q(t)

δmσ(i)
m (t)

− 1

2
δn|σ(i)

n (t)|2 . (6.44)

By the definition of ỹ(i,j), we have for every m ∈ {0, · · · , N∗ − 1},

σ̃(i,j)
m (t) = σ(i)

m (t) + σ(i,j)
y,m (t) , (6.45)

and hence

α(i,j)
n (t) = σ(i,j)

y,n (t) ·
( n−1∑
m=q(t)

δm[σ(i,j)
y,m (t) + σ(i)

m (t)]
)
+ σ(i)

n (t) ·
( n−1∑
m=q(t)

δmσ(i,j)
y,m (t)

)
+
1

2
δn|σ(i,j)

y,n (t)|2 + δn(σ
(i,j)
y,n (t) · σ(i)

n (t)) (6.46)

which proves the claim.

Remark

Although the dynamics of the funding spread is rather complicated, it has exactly the same
structure as the forward hazard rate model [21]. Thus, if a term structure model of a default
intensity has already been implemented, then modifying it for the stochastic funding spread
should not be difficult for practitioners.

6.5 Dynamics of foreign exchange rates

Finally, let us consider the dynamics of the foreign exchange rate and the associated measure

change. The spot foreign exchange rate {f (i,j)
x (t)}t≥0 itself is not tradable but the foreign

currency is.

We can define the measure change between Q(i)
B and Q(j)

B by

dQ(j)
B

dQ(i)
B

∣∣∣
Ft

=
B(j)(t)f

(i,j)
x (t)

B(i)(t)f
(i,j)
x (0)

(6.47)

since the right hand side should be a positive Q(i)
B -martingale for the absence of arbitrage.

This fact immediately tells us that

Proposition 6.5. The no-arbitrage dynamics of the foreign exchange rate of a foreign
currency (j) with respect to a domestic currency (i) is given by

df (i,j)
x (t)/f (i,j)

x (t) =
(
r(i)(t)− r(j)(t)

)
dt+ σ

(i,j)
X (t) · dWQ(i)

B
t

=
(
c(i)(t)− c(j)(t) + y(i,j)(t)

)
dt+ σ

(i,j)
X (t) · dWQ(i)

B
t (6.48)

with some appropriate volatility process σ
(i,j)
X : Ω× [0, TN∗ ] → Rd, which is F-adapted.
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By the non-randomness assumption on the shortest bonds, one can easily check that
the relation

dQ(j)
B

dQ(i)
B

∣∣∣
Ft

=
C(j,k)(t)f

(i,j)
x (t)

C(i,k)(t)f
(i,j)
x (0)

(6.49)

holds for an arbitrary currency (k). It is interesting to observe that one must use the
common collateral currency to define the measure change. This is due to the existence of
the funding spreads {y(i,j)}, which is a direct consequence of the non-zero cross currency
basis being observed in the market [11].

By arranging the right hand side and using the definition (5.2), one sees that

f (i,j)
x (t, Tq(t); (k)), t ∈ [Tq(t)−1, Tq(t)] (6.50)

is a Q(i)
B -martingale regardless of the collateral currency (k). In addition, its volatility must

be identical to that of the spot exchange rate so that its gives the same Radon-Nikodym
density. This gives the following result:

Proposition 6.6. The no-arbitrage dynamics of the rolling forward exchange rate of a
foreign currency (j) with respect to a domestic currency (i) collateralized by a currency (k)
is given by

df (i,j)
x (t, Tq(t); (k)) = f (i,j)

x (t, Tq(t); (k))σ
(i,j)
X (t) · dWQ(i)

B
t , (6.51)

with a condition at each rollover date f
(i,j)
x (Tn, Tn+1; (k)) = f

(i,j)
x (Tn, Tn; (k))

Ỹ (j,k)(Tn, Tn+1)

Ỹ (i,k)(Tn, Tn+1)

for every n ∈ {0, · · · , N∗ − 1}. σ
(i,j)
X : Ω× [0, TN∗ ] → Rd is an F-adapted volatility process

equal to that of the spot exchange rate (6.48).

Note that f
(i,j)
x (t, t; (k)) = f

(i,j)
x (t). The following corollary is obvious by the standard

application of Girsanov-Maruyama theorem.

Corollary 6.1. The Brownian motion under the measure Q(j)
B is related to that of Q(i)

B by

W
Q(j)

B
t = W

Q(i)
B

t −
∫ t

0
σ
(i,j)
X (s)ds . (6.52)

6.6 Dynamics of Equities

If one tries to model a spot equity dynamics directly, it requires to simulate the risk-free
rate r or the dividend yield implied by the collateral account y, neither of them is easy
to observe. The best way to avoid this problem is to use the equity forward price. Let

us consider a price process of a equity {S(i)
t }t≥0 denominated by currency (i). We do

not ask whether the equity has dividend payments or not. Let us denote the price of a
forward contract on this equity with maturity Tn collateralized by the same currency (i) as
S(i)(t, Tn):

S(i)(t, Tn) =
EQ(i)

B
t

[
e−

∫ Tn
t c(i)(s)dsS(i)(Tn)

]
D(i)(t, Tn)

, t ∈ [0, Tn]. (6.53)

Then, by exactly the same reasoning of Proposition 6.3, one obtains:

22



Proposition 6.7. The no-arbitrage dynamics of the equity forward price is given by

dS(i)(t, Tn) = S(i)(t, Tn)

σS(i),n(t) ·
( n−1∑
m=q(t)

δmσ(i)
m (t)

)
dt+ σS(i),n(t) · dW

Q(i)
B

t

 (6.54)

for t ∈ [0, Tn], n ∈ {0, · · · , N∗ − 1} with some appropriate F-adapted volatility process
σS(i),n : Ω× [0, Tn] → Rd.

The same technique can be applied to an arbitrary asset or index, as long as there exists
a corresponding forward market.

6.7 Summary of the dynamics

For easy reference, we summarize the dynamics of various rates in the multi-currency setup
with a base currency (i) below. For actual implementation, one has to decide the size of
dimension “d” and reproduce the observed correlation among the underlyings as accurately
as possible. For these points, we recommend Rebonato (2004) [19]), which contains many
valuable insights for implementation, in particular Chapter 19 and 20.
Rates for the base currency

dc(i)n (t) =

σ(i)
n (t) ·

 n−1∑
m=q(t)

δmσ(i)
m (t)

+
1

2
δn|σ(i)

n (t)|2
 dt+ σ(i)

n (t) · dWQ(i)
B

t (6.55)

dB(i)(t;Tn−1, Tn)

B(i)(t;Tn−1, Tn)
= σ

(i)
B,n(t) ·

( n−1∑
m=q(t)

δmσ(i)
m (t)

)
dt+ σ

(i)
B,n(t) · dW

Q(i)
B

t (6.56)

Funding spreads with respect to the base currency

dy(i,j)n (t) =

{
σ(i,j)
y,n (t) ·

( n−1∑
m=q(t)

δm[σ(i,j)
y,m (t) + σ(i)

m (t)]
)
+ σ(i)

n (t) ·
( n−1∑
m=q(t)

δmσ(i,j)
y,m (t)

)

+
1

2
δn|σ(i,j)

y,n (t)|2 + δn(σ
(i,j)
y,n (t) · σ(i)

n (t))

}
dt+ σ(i,j)

y,n (t) · dWQ(i)
B

t (6.57)

Foreign exchange rate

df (i,j)
x (t)/f (i,j)

x (t) =
(
c
(i)
t − c

(j)
t + y

(i,j)
t

)
dt+ σ

(i,j)
X (t) · dWQ(i)

t (6.58)

Rates for a foreign currency

dc(j)n (t) =

σ(j)
n (t) ·

 n−1∑
m=q(t)

δmσ(j)
m (t)− σ

(i,j)
X (t)

+
1

2
δn|σ(j)

n (t)|2
 dt+ σ(j)

n (t) · dWQ(i)
B

t

dB(j)(t;Tn−1, Tn)

B(j)(t;Tn−1, Tn)
= σ

(j)
B,n(t) ·

( n−1∑
m=q(t)

δmσ(j)
m (t)− σ

(i,j)
X (t)

)
dt+ σ

(j)
B,n(t) · dW

Q(i)
B

t (6.59)
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Funding spreads with respect to a foreign currency

dy(j,k)n (t) =

{
σ(j,k)
y,n (t) ·

( n−1∑
m=q(t)

δm[σ(j,k)
y,m (t) + σ(j)

m (t)]− σ
(i,j)
X (t)

)
+ σ(j)

n (t) ·
( n−1∑
m=q(t)

δmσ(j,k)
y,m (t)

)

+
1

2
δn|σ(j,k)

y,n (t)|2 + δn(σ
(j,k)
y,n (t) · σ(j)

n (t))

}
dt+ σ(j,k)

y,n (t) · dWQ(i)
B

t (6.60)

7 Remarks on a risk-free money market account

It is clear from the results in Sections 3 and 6, one need not refer to risk-free interest
rates and the associated money-market accounts in a fully collateralized market. In fact,
it is matter of preference for the user to choose a certain currency (i) as a base currency
and treat its collateral account C(i) as a unique risk (default)-free bank account. It makes
y(i) = 0 but does not change dynamics given in the previous sections at all.

However, due to the presence of non-zero cross currency basis, this requires asymmetric
treatments for the other collateral rates of foreign currencies, which cannot be treated as
traditional risk-free rates. Furthermore, it has become clear that the authority can force the
collateral rate to be negative as observed in recent EONIA market, for example. Considering
the fact that there exist firms which are outside the banking regulation and do not have to
collateralize their contracts, it is not always rational to treat the overnight rate as risk-free.
Even for those who are forced to collateralize the contracts, it is more natural to consider
the collateral agreement has some dividend yield which makes overnight rate effectively
negative.

In our setup, there is no problem to make a collateral rate negative since there is no
a priori restriction to the dividend yield process {y(i)}. Due to these observations, we
have chosen to use a risk-free money market account separately from a collateral account.
The biggest assumption for our framework is the existence of a common “risk-free” money
market account for every market participant. It is completely rational that each financial
firm wants to reflect its own funding/investment conditions instead of a common “risk-free”
rate, but then it will inevitably produce the company dependent price of derivatives [6].
Therefore, we think that the company-specific effects should be treated in FVA, separately
from the benchmark pricing we have described in this article.

8 Conclusion

This paper is an extension of previous works [10, 9, 11] and provided more detailed ex-
planation for the general framework for the interest rate modeling in a fully collateralized
market. In particular, we gave a new formulation for the funding spread dynamics which
is more suitable in the presence of non-zero correlation to the collateral rates. We also
presented a complete picture of a discretized HJM model with a fixed tenor structure under
a multi-currency setup, which is arbitrage free, readily implementable and capable of taking
the stochastic cross currency basis into account.
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