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Abstract

This paper proposes a new analytical approximation scheme for the representation of the forward-
backward stochastic differential equations (FBSDEs) of Ma and Zhang (2002). In particular, we obtain
an error estimate for the scheme applying Malliavin calculus method for the forward SDEs combined with
the Picard iteration scheme for the BSDEs. We also show numerical examples for pricing option with
counterparty risk under local and stochastic volatility models, where the credit value adjustment (CVA)
is taken into account.

Keywords: Forward-Backward Stochastic Differential Equations (FBSDEs), Asymptotic expansion,
Malliavin calculus, CVA, Local volatility model, Stochastic volatility model

1 Introduction

In this paper, we propose a new asymptotic expansion scheme with its error estimate for the forward-
backward stochastic differential equations (FBSDEs). As an application, we derive a recursive expansion
formula for option prices with CVA under local and stochastic volatility models and show numerical
examples.

Bismut [1] introduced the backward stochastic differential equations (BSDEs) for the linear case, and
Pardoux and Peng [28] initiated the study for the non-linear BSDEs. Since then, in addition to its
theoretical researches, substantial numbers of numerical schemes for the solutions to the BSDEs have
been proposed. The one of the main reasons is that the BSDEs are closely related to various valuation
problems in finance (e.g. pricing securities under asymmetric/imperfect collateralization, optimal portfolio
and indifference pricing issues in incomplete and/or constrained markets, modeling credit risks). Their
financial applications are discussed in details for example, El Karoui et al. [7], Ma and Yong [22], a recent
book edited by Carmona [2] and references therein.

Although a large number of finite difference methods and simulation-based methods were proposed for
numerical approximations of the solutions to BSDEs, their analytical approximation methods have been
rarely discussed. Fujii and Takahashi [8], [9], [12], Fujii et. al. [13] are exceptions, where they presented a
simple analytical approximation with perturbation or/and interacting particle scheme for non-linear fully
coupled FBSDEs without error estimate. Especially, Fujii and Takahashi [9] derived an approximation
formula for dynamic optimal portfolio in an incomplete market with stochastic volatility, and confirmed
its validity through numerical experiment.

This paper presents a new analytical approximation method for the FBSDEs based on a Picard-type
iteration and an asymptotic expansion (for the asymptotic expansion approach, see Takahashi and Yamada
[33] [34] and related previous works [30][24][31][35][29] for example). Also, our method can be regarded
as an extension of the representation theorem of BSDEs by Ma and Zhang [23]. Ma and Zhang’s result
is known as the gradient representation of BSDEs without differentiation, i.e. for a system of BSDE

Xt,x
s = x+

∫ s

t

b(u,Xt,x
u )du+

d∑
j=1

∫ s

t

σj(u,X
t,x
u )dW j

u , (1)
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Y t,x
s = g(Xt,x

T ) +

∫ T

s

f(u,Xt,x
u , Y t,x

u , Zt,x
u )du−

∫ T

s

Zt,x
u dWs, (2)

where f, g are assumed to be only Lipschitz continuous, [23] showed the formula for the gradient of

u(t, x) = Y t,x
t = E

[
g(Xt,x

T ) +

∫ T

s

f(u,Xt,x
u , Y t,x

u , Zt,x
u )du

]
(3)

as

∂xu(t, x)σ(t, x) = Zt,x
t = E

[
g(Xt,x

T )N t,x
T +

∫ T

s

f(u,Xt,x
u , Y t,x

u , Zt,x
u )N t,x

u du

]
σ(t, x) (4)

where N t,x
u = 1

u−t

∫ u

t
σ−1(Xt,x

v )∂xX
t,x
v dWv is a Malliavin weight. Then by Ma and Zhang’s result, BSDE

(Y t,x
s , Zt,x

s ) = (u(s,Xt,x
s ), ∂xu(s,X

t,x
s )σ(s,Xt,x

s )) is represented without derivatives of parameters f and
g.

We expand this representation of BSDE by a perturbation method to obtain an analytical approxi-
mation. Roughly speaking, for a perturbed forward SDE Xε,t,x

s , ε ∈ (0, 1] and an associated backward
SDE (Y ε,t,x

s , Zε,t,x
s ) of the form

Xε,t,x
s = x+

∫ s

t

b(u,Xε,t,x
u )du+ ε

d∑
j=1

∫ s

t

σj(u,X
ε,t,x
u )dW j

u , (5)

Y ε,t,x
s = g(Xε,t,x

T ) +

∫ T

s

f(u,Xε,t,x
u , Y ε,t,x

u , Zε,t,x
u )du−

∫ T

s

Zε,t,x
u dWs, (6)

we show the following recursive asymptotic expansion around a Gaussian model X̄t,x
s = X0,t,x

s +ε ∂
∂εX

ε,t,x
s |ε=0:

i.e. for k ≥ 0, N ≥ 1

Y ε,t,x
t ≃ uε,k+1,N (t, x) = E

[
g(X̄t,x

T ) +

∫ T

t

f(s, X̄t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )ds

]

+
N∑
i=1

εiE

[
g(X̄t,x

T )πt,x
i,T +

∫ T

t

f(s, X̄t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )πt,x

i,s ds

]
, (7)

Zε,t,x
t ≃ (∂xu

ε,k+1,Nσ)(t, x) =

{
E

[
g(X̄0,t,x

T )N t,x
0,T +

∫ T

t

f(s, X̄t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )N t,x

0,sds

]

+

N∑
i=1

εiE

[
g(X̄0,t,x

T )N t,x
i,T +

∫ T

t

f(s, X̄t,x
s , Y ε,k,N,t,x

s , Zε,k,N,t,x
s )N t,x

i,s ds

]}
εσ(t, x), (8)

where Y ε,k,N,t,x
s = uε,k,N (s, X̄t,x

s ) and Zε,k,N,t,x
s = ∂xu

ε,k,Nσ(s, X̄t,x
s ) with a usual asymptotic expansion

(uε,0,N , ∂xu
ε,0,Nσ) and the processes πt,x

i,s , i = 1, · · · , N and N t,x
i,s , i = 0, 1, · · · , N are Malliavin weights for

the expansion. Applying properties of so called Kusuoka-Stroock functions introduced by Kusuoka [18],
we obtain an error estimate of our scheme.

The organization of this paper is as follows: The next section describes an idea for our method using
a well-known example. Section 3 generalizes the idea and summarizes our algorithm in a general setting.
After Section 4 provides the notations and basic results used in later sections, Section 5 presents our main
result with its proof. Applying our scheme, Section 6 provides a simple numerical example for pricing
option with counterparty risk under local volatility and stochastic volatility models. Section 7 concludes.

2 Motivated example

In this section, we show an idea for our approximation method using the BSDE appearing in a well-known
example of mathematical finance, so called “hedging claims with higher interest rate for borrowing” (e.g.
[7], Cvitanic and Karatzas [3]).

Specifically, let us consider the following FBSDE:

dXt = µXtdt+ σXtdWt, (9)

X0 = x0,

dYt = rYtdt− f(Yt, Zt)dt+ ZtdWt, (10)

YT = g(XT ) = max(XT −K1, 0)− 2max(XT −K2, 0), (11)
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where f(y, z) = (R− r)max
(
z
σ − y, 0

)
−
(
µ−r
σ

)
z. When the borrowing rate R is higher than the lending

rate r (i.e. R > r), the solution to the FBSDE above, Y = {Yt : 0 ≤ t ≤ T} represents the value process
of a self-financing hedging strategy for a target payoff given by g(XT ), and Z stands for the hedging
strategy where Zt/σ is the amount invested at time t in the risky asset whose price process is given by
S.1 In particular, we note that the specification of g(XT ) as an option spread creates both lending and
borrowing in the strategy. Here, r, R, µ and σ are assumed to be positive constants.

Y = (Yt)t∈[0,T ] is represented as the following non-linear expectation:

Yt = e−r(T−t)E [g(XT )|Ft] + e−r(T−t)E

[∫ T

t

f(Yu, Zu)du|Ft

]
,

where (Ft)t is the filtration generated by W , i.e., Ft = σ(Ws; s ≤ t), t ∈ [0, T ]. We denote by
(Xt,x, Y t,x, Zt,x) the adapted solution to the FBSDE’s (9) and (10) restricted to [t, T ] with Xt,x

t = x, a.s.
Next, define u as

u(t, x) := Y t,x
t = e−r(T−t)E

[
g(Xt,x

T )
]
+ e−r(T−t)E

[∫ T

t

f(Y t,x
u , Zt,x

u )du

]
.

Then, using this u, Z = (Zt)t∈[0,T ] is obtained as follows:

Zt = σXt
∂

∂x
u(t,Xt).

Moreover, applying a representation result by [23], one has

Zt,x
t = e−r(T−t)

{
E[g(Xt,x

T )N t,x
T ] + E[

∫ T

t

f(Y t,x
u , Zt,x

u )N t,x
u du]

}
σx,

where N t,x = (N t,x
s )s∈[t,T ] is the Malliavin weight process given Xt = x, t ∈ [0, T ]:

N t,x
u =

1

u− t

∫ u

t

σ−1(Xt,x
τ )

∂

∂x
Xt,x

τ dWτ .

Next, let us show an example of an analytical approximation for the BSDE using the Picard-type
iteration. In the first place, define u0(t, x) as

u0(t, x) := e−r(T−t)E
[
g(Xt,x

T )
]
. (12)

Then, the Malliavin weight representation for the Delta under Black-Scholes model (9) is well-known, that
is given by

∂

∂x
u0(t, x) = e−r(T−t)E

[
g(Xt,x

T )
1

T − t

∫ T

t

1

xσ
dWu

]
. (13)

In this simple model, we are capable of its evaluation through one dimensional integrations. That is,
we have

u0(t, x) = e−r(T−t)

∫
R

g(ey)p(t, T, z, y)dy, (14)

and

∂

∂x
u0(t, x) = e−r(T−t)

∫
R

g(ey)w(t, z, y)p(t, T, z, y)dy,

where p(t, T, z, y) is the density of logXt,x
T under (9) with log x = z:

p(t, T, z, y) =
1√

2πσ2(T − t)
exp

(
−
(y − z − µ(T − t) + 1

2σ
2(T − t))2

2σ2(T − t)

)
. (15)

1The problem is considered under the physical measure and
(
µ−r
σ

)
represents the market price of risk.
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the finite dimensional Malliavin weight w(t, z, y) is given by

w(t, z, y) = E

[
1

T − t

∫ T

t

1

xσ
dWu| logXt,x

T = y

]
=

(y − z − µ(T − t) + 1
2σ

2(T − t))

ezσ2(T − t)
. (16)

Hence, we get the 0-th iteration (Y 0, Z0) = (Y 0
t , Z

0
t )t∈[0,T ] as

Y 0
t = u0(t,Xt), Z0

t = σXt
∂

∂x
u0(t,Xt).

Next, using the function u0(t, x), we define u1(t, x) as

u1(t, x) := u0(t, x) + e−r(T−t)

∫ T

t

∫
R

f

(
u0(v, ey), σey

∂

∂x
u0(v, ey)

)
p(t, v, z, y)dydv,

where z = log x. Then, applying the same weight w as (16), we are able to evaluate ∂
∂xu

1(t, x):

∂

∂x
u1(t, x) =

∂

∂x
u0(t, x)

+e−r(T−t)

∫ T

t

∫
R

f

(
u0(v, ey), σey

∂

∂x
u0(v, ey)

)
w(v, z, y)p(t, v, z, y)dydv.

Therefore, the first iteration is given by

Y 1
t = u1(t,Xt), Z1

t = σXt
∂

∂x
u1(t,Xt).

Thus, for k ≥ 1 let us recursively define uk+1(t, x) as

uk+1(t, x) := u0(t, x) + e−r(T−t)

∫ T

t

∫
R

f

(
uk(v, ey), σey

∂

∂x
uk(v, ey)

)
p(t, v, z, y)dydv,

where z = log x, which leads to the evaluation of ∂
∂xu

k+1(t, x) with the same weight w as (16):

∂

∂x
uk+1(t, x) =

∂

∂x
u0(t, x)

+e−r(T−t)

∫ T

t

∫
R

f

(
uk(v, ey), σey

∂

∂x
uk(v, ey)

)
w(v, z, y)p(t, v, z, y)dydv.

Hence, the k + 1-iteration is obtained by

Y k+1
t = uk+1(t,Xt), Zk+1

t = σXt
∂

∂x
uk+1(t,Xt).

Finally, applying the parameters so that X0 = 100, σ = 0.2, µ = 0.05, r = 0.01, R = 0.06, T = 0.25,
K1 = 95, K2 = 105, let us show a numerical comparison of this iterated approximation scheme with their
result.

• Benchmark value of Y0 : 2.95 with 0.01 standard deviation, which is obtained by a regression-based
Monte Carlo simulation of Gobet et al. [15].

• Our approximation values: 0-th iteration = 2.7864, the first iteration = 2.9671, and the second
iteration = 2.9531.

It is observed that our approximation values become closer to the benchmark one as the more iterations
are implemented. In the following sections, we extend our method in a more general setting.

3 Summary of algorithm of asymptotic expansion for FBSDEs

In the example of Section 2, we made use of an explicit Gaussian density since the forward process is given
by Black-Scholes model (9). However, when we consider a more complex forward process, the explicit
density is no longer obtained in general. Let us consider the perturbed forward SDE (5) with smooth

4



coefficients and ellipticity. Then, for ε > 0 we are able to derive closed form approximation of the density
and its gradient by applying N -th order asymptotic expansion around a Gaussian model X̄t,x

T :

pX
ε

(t, T, x, y) ≃ pX̄(t, T, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y), (17)

∂

∂x
pX

ε

(t, T, x, y) ≃ E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y) +

N∑
i=1

εiE[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y), (18)

with the density pX̄(t, T, x, y) of X̄t,x
T and some Malliavin weights πt,x

i,T , i = 1, · · · , N and N t,x
i,T , i =

0, 1, · · · , N , which are explicitly defined in Section 5. For the following general BSDE (6) under suitable
conditions, we define (uε, ∂xu

εσ) as

uε(t, x) = Y ε,t,x
t = E[g(Xε,t,x

T )] + E

[∫ T

t

f(s,Xε,t,x
s , Y ε,t,x

s , Zε,t,x
s )ds

]

=

∫
Rd

g(y)pX
ε

(t, T, x, y)dy +

∫ T

t

∫
Rd

f(s, y, uε(s, y), ∂xu
εσ(s, y))pX

ε

(t, s, x, y)dyds, (19)

∂xu
εσ(t, x) = Zε,t,x

t = E[g(Xε,t,x
T )Nε,t,x

T ]εσ(t, x) + E

[∫ T

t

f(s,Xε,t,x
s , Y ε,t,x

s , Zε,t,x
s )Nε,t,x

s ds

]
εσ(t, x)

=

∫
Rd

g(y)E[Nε,t,x
T |Xε,t,x

T = y]pX
ε

(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, uε(s, y), ∂xu
εσ(s, y))E[Nε,t,x

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x),

(20)

whereNε,t,x
s = 1

ε(s−t)

∫ s

t
σ−1(Xε,t,x

v )∂xX
ε,t,x
v dWv. We approximate (uε, ∂xu

εσ) using a sequence (uε,k,N , ∂xu
ε,k,Nσ)k

in the following way.

1. (uε,0,N , ∂xu
ε,0,Nσ): An approximation of the 0-th iteration

The 0-th iteration is defined by

uε,0(t, x) = E[g(Xε,t,x
T )] + E

[∫ T

t

f(s,Xε,t,x
s , 0, 0)ds

]
, (21)

∂xu
ε,0σ(t, x) = E[g(Xε,t,x

T )Nε,t,x
T ] + E

[∫ T

t

f(s,Xε,t,x
s , 0, 0)Nε,t,x

s ds

]
. (22)

Then, (uε,0, ∂xu
ε,0σ) is approximated by

Y ε,t,x
t = uε,0(t, x) ≃ uε,0,N (t, x)

=

∫
Rd

g(y){1 +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]}pX̄(t, T, x, y)dy

+

∫ T

t

∫
Rd

f(s, y, 0, 0){1 +
N∑
i=1

εiE[πt,x
i,s |X̄

t,x
s = y]}pX̄(t, s, x, y)dyds,

Zε,t,x
t = ∂xu

ε,0σ(t, x) ≃ ∂xu
ε,0,Nσ(t, x)

=

∫
Rd

g(y)
N∑
i=0

εiE[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, 0, 0)
N∑

0=1

εiE[N t,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x).

Note that the Malliavin weights πt,x
i,s , i = 1, · · · , N and N t,x

i,s , i = 0, 1, · · · , N are same as in (17) and
(18).
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2. (uε,1,N , ∂xu
ε,1,Nσ): An approximation of the first iteration

The first iteration is defined by

uε,1(t, x) = E[g(Xε,t,x
T ) +

∫ T

t

f(s,Xε,t,x
s , uε,0(s,Xε,t,x

s ), (∂xu
ε,0σ)(s,Xε,t,x

s ))ds], (23)

∂xu
ε,1σ(t, x) = E[g(Xε,t,x

T )Nε,t,x
T +

∫ T

t

f(s,Xε,t,x
s , uε,0(s,Xε,t,x

s ), (∂xu
ε,0σ)(s,Xε,t,x

s ))Nε,t,x
s ds]εσ(t, x).

(24)

Firstly, define

ûε,1(t, x) = E[g(Xε,t,x
T ) +

∫ T

t

f(s,Xε,t,x
s , uε,0,N (s,Xε,t,x

s ), (∂xu
ε,0,Nσ)(s,Xε,t,x

s ))ds],

∂xû
ε,1σ(t, x) = E[g(Xε,t,x

T ) +

∫ T

t

f(s,Xε,t,x
s , uε,0,N (s,Xε,t,x

s ), (∂xu
ε,0,Nσ)(s,Xε,t,x

s ))ds]εσ(t, x).

(ûε,1, ∂xû
ε,1σ) is an approximation of (uε,1, ∂xu

ε,1σ):

uε,1(t, x) ≃ ûε,1(t, x), ∂xu
ε,1σ(t, x) ≃ ∂xû

ε,1σ(t, x).

Using the approximations (17) and (18) again, we expand (ûε,1, ∂xû
ε,1σ) with respect to ε as follows:

ûε,1(t, x)

≃ uε,1,N (t, x) :=

∫
Rd

g(y){1 +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]}pX̄(t, T, x, y)dy

+

∫ T

t

∫
Rd

f(s, y, uε,0,N (s, y), (∂xu
ε,0,Nσ)(s, y)){1 +

N∑
i=1

εiE[πt,x
i,s |X̄

t,x
s = y]}pX̄(t, s, x, y)dyds.

(25)

∂xû
ε,1σ(t, x)

≃ ∂xu
ε,1,Nσ(t, x) :=

∫
Rd

g(y)
N∑
i=0

εiE[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, uε,0,N (s, y), (∂xu
ε,0,Nσ)(s, y))

N∑
i=0

εiE[N t,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x).

(26)

Since Y ε,1,t,x
t = uε,1(t, x) and Zε,1,t,x

t = ∂xu
ε,1σ(t, x), we get approximation Y ε,1,t,x

t ≃ uε,1,N (t, x)
and Zε,1,t,x

t ≃ ∂xu
ε,1,Nσ(t, x) using (25) and (26). Then, Y ε,0,N,t,x

s and Zε,0,N,t,x
s are given by

Y ε,0,N,t,x
s = uε,0,N (s, X̄t,x

s ) and Zε,0,N,t,x
s = ∂xu

ε,0,Nσ(s, X̄t,x
s ).

3. Numerical approximation for (uε, ∂xu
εσ)

Iterating the procedure above, we obtain the following numerical approximation for (uε, ∂xu
εσ): for

k ∈ N,

uε(t, x)

≃ uε,k,N (t, x) =

∫
Rd

g(y){1 +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]}pX̄(t, T, x, y)dy

+

∫ T

t

∫
Rd

f(s, y, uε,k−1,N (s, y), (∂xu
ε,k−1,Nσ)(s, y))

{1 +
N∑
i=1

εiE[πt,x
i,s |X̄

t,x
s = y]}pX̄(t, s, x, y)dyds, (27)

∂xu
εσ(t, x)

≃ ∂xu
ε,k,Nσ(t, x) =

∫
Rd

g(y)
N∑
i=0

εiE[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)
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+

∫ T

t

∫
Rd

f(s, y, uε,k−1,N (s, y), (∂xu
ε,k−1,Nσ)(s, y))

N∑
i=0

εiE[N t,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x). (28)

Then, Y ε,k,N,t,x
s and Zε,k,N,t,x

s are given by Y ε,k,N,t,x
s = uε,k,N (s, X̄t,x

s ) and Zε,k,N,t,x
s = ∂xu

ε,k,Nσ(s, X̄t,x
s ).

We show this conjecture and derivation rigorously using Malliavin calculus in Section 5.

4 Notations and basic results

Hereafter, we use the following notations. Let E (or E1) be a generic Euclidean space.

• ∂x: ∂x = ( ∂
∂x1

, · · · , ∂
∂xd

).

• C(T, x): a generic non-negative, non-decreasing and finite function of at most polynomial growth in
x depending on T > 0.

• C∞
b (E;E1): the space of all infinitely differentiable functions φ : E → E1 such that the all of its

derivatives are bounded. We write C∞
b (E) for C∞

b (E;R).

We also prepare the basic notations and definitions of Malliavin calculus.

• (Ω,H, P ): the standard d-dimensional Wiener space.

– Ω: the continuous functions w : [0, T ] → Rd such that w(0) = 0.

– H: the Cameron-Martin space of all absolutely continuous functions h : [0, T ] → Rd with a
square integrable derivative, i.e., h′ ∈ L2([0, T ];Rd), h′(t) = d

dth(t). Here, L2([0, T ];Rd) is the

space of all Rd-measurable functions φ on [0, T ] such that
(∫ T

0
|φ(s)|2ds

)1/2
< ∞.

– P : the Wiener measure.

• Lp(Ω;G): the space of all random variables F : Ω → G such that E[∥F∥pG] < ∞ where G is a
separable Hilbert space equipped with the norm ∥ · ∥G and p ∈ [1,∞). We write Lp(Ω) when G = R
and ∥F∥p = E[|F |p]1/p for F ∈ Lp(Ω).

• S: The set of random variables F of the form

F = φ

(∫ T

0

h′
1(s)dWs, · · · ,

∫ T

0

h′
n(s)dWs

)

where φ ∈ C∞
b (Rd), h1, · · · , hn ∈ H, n ≥ 1 with the notation

∫ T

0
h′
i(s)dWs =

∑d
j=1

∫ T

0
h′
i,j(s)dW

i
s ,

h′
i = (h′

i,1, · · · , h′
i,d).

• Malliavin derivative operator D: If F ∈ S is of the above form, we define its derivative as follows

DF =
n∑

i=1

∂φ

∂xi

(∫ T

0

h′
1(s)dWs, · · · ,

∫ T

0

h′
n(s)dWs

)
hi.

The operator D is closable from Lp(Ω) to Lp(Ω;H) for any p ≥ 1.

• Dk,p: For F ∈ S, the iterated derivative DjF , j ∈ N as a random variable with values in H⊗j . We
denote by Dk,p the closure of S with respect to the seminorm

∥F∥k,p =

E[|F |p] +
k∑

j=1

E[∥DjF∥pH⊗j ]

1/p

, p ∈ [1,∞), k ∈ N.

Since Dj is closable from Lp(Ω) to Lp(Ω;H⊗j) for any p ∈ [1,∞) and j ∈ N, Dj is well defined in
Dk,p.

• D∞: D∞ = ∩p≥1 ∩k≥1 D
k,p.
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• Skorohod integral δ: We denote by δ the adjoint operator of the derivative operator D, that is an
unbounded operator from L2(Ω;H) into L2(Ω) such that the domain of δ, denoted by Dom(δ), is
the set of H-valued square integrable random variables u such that |E [⟨DF, u⟩H ]| ≤ C∥F∥2, for all
F ∈ D1,2, where C is some constant depending on u. For u ∈ Dom(δ), δ(u) is characterized by the
duality relationship:

E[Fδ(u)] = E [⟨DF, u⟩H ] , for any F ∈ D1,2.

δ(u) is called Skorohod integral of the process u.

• D−∞: the space of the Watanabe distributions (the dual of D∞).

We say F ε = O(εn) in Dk,p as ε ↓ 0 if F ε ∈ Dk,p for all ε ∈ (0, 1] and lim supε↓0 ∥F ε∥Dk,p/εn < ∞ where
n is some real constant.

In our algorithm summarized in Section 3, we need to compute the asymptotic expansion uk,N recur-
sively. From a numerical viewpoint, the stability of the approximation i.e. the asymptotic behavior of
the asymptotic expansion when t ↑ T must be checked since we iteratively integrate uk,N with respect
to time t. Hence, we introduce the Kusuoka-Stroock functions (Kusuoka [18]) which help to clarify the
order of a Wiener functional with respect to time t.

Definition 4.1 (Kusuoka-Stroock functions) Given r ∈ R and n ∈ N, we denote by KT
r (n) the set

of functions G : (0, T ]×Rd → Dn,∞ satisfying the followings:

1. G(t, ·) is n-times continuously differentiable and [∂αG/∂xα] is continuous in (t, x) ∈ (0, T ]×Rd a.s.
for any multi-index α of the elements of {1, · · · , d} with length |α| ≤ n.

2. For all k ≤ n− |α|, p ∈ [1,∞),

sup
t∈(0,T ],x∈Rd

t−r/2

∥∥∥∥∂αG

∂xα
(t, x)

∥∥∥∥
k,p

< ∞. (29)

The above definition corresponds to Definition 2.1 of Crisan and Delarue [5] of modified version of Kusuoka
[18]. We write KT

r for ∩n∈NKT
r (n).

Let (Xt,x
s ) be the solution to the following stochastic differential equation:

Xt,x
s = x+

∫ s

t

V0(X
t,x
u )du+

d∑
i=1

∫ s

t

Vi(X
t,x
u )dW i

u, (30)

Xt,x
t = x ∈ Rd,

where each Vi, i = 0, 1, · · · , d is bounded and belongs to C∞
b (Rd;Rd). We assume that the elliptic

condition holds.

Lemma 4.1 [Properties of Kusuoka-Stroock functions] The followings hold.

1. The function (s, x) ∈ (0, T ]×Rd 7→ Xt,x
s belongs to KT

0 , for any T > 0.

2. Suppose G ∈ KT
r (n) where r ≥ 0. Then, for i = 1, · · · , d,∫ ·

0

G(s, x)dW i
s ∈ KT

r+1(n) and

∫ ·

0

G(s, x)ds ∈ KT
r+2(n). (31)

3. If Gi ∈ KT
ri(ni), i = 1, · · · , N , then

N∏
i

Gi ∈ KT
r1+···+rN (min

i
ni) and

N∑
i=1

Gi ∈ KT
mini ri(min

i
ni). (32)

Proof. See Lemma 5.1.2 of Nee [26] for instance. 2

Next, we summarize the Malliavin’s integration by parts formula using Kusuoka-Stroock functions.
For any multi-index α(k) := (α1, · · · , αk) ∈ {1, · · · , d}k, k ≥ 1, we denote by ∂α(k) the partial derivative

∂k

∂xα1 ···∂xαk
.
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Proposition 4.1 Let G : (0, T ] × Rd → D∞ = D∞,∞ be an element of KT
r and let f be a function

that belongs to the space C∞
b (Rd). Then for any multi-index α(k) ∈ {1, · · · , d}k, k ≥ 1, there exists

Hα(k)(Xt,x
s , G(s, x)) ∈ KT

r−k such that

E
[
∂α(k)f(Xt,x

s )G(s, x)
]
= E

[
f(Xt,x

s )Hα(k)(Xt,x
s , G(s, x))

]
, (33)

with

sup
x∈Rd

∥Hα(k)(Xt,x
s , G(s, x))∥p ≤ C(s− t)(r−k)/2, (34)

where Hα(k)(Xt,x
s , G(s, x)) is recursively given by

H(i)(X
t,x
s , G(s, x)) = δ

 d∑
j=1

G(s, x)γ
Xt,x

s
ij DXt,x,j

s

 , (35)

Hα(k)(Xt,x
s , G(s, x)) = H(αk)(X

t,x
s ,Hα(k−1)(Xt,x

s , G(s, x))), (36)

and a positive constant C. Here, (γ
Xt,x

s
ij )1≤i,j≤d is the inverse matrix of the Malliavin covariance of Xt,x

s .

Proof. Apply Corollary 3.7 of Kusuoka and Stroock [19] and Lemma 8-(3) of Kusuoka [18] with Propo-
sition 2.1.4 of Nualart [25]. 2

5 Asymptotic expansion for FBSDEs

5.1 Forward-backward SDE

Let (Ω,H, P ) be the Wiener space on which a d-dimensional Brownian motion W = (W 1, · · · ,W d)
is defined. Let F be the Borel algebra over Ω and (Ft)t≥0 be the natural filtration generated by W ,
augmented by the P -null sets of F . In this section, we deal with a small diffusion expansion which
corresponds to the framework in Kunitomo and Takahashi [16][17] and derive a general approximation
formula for FBSDEs.

We give precise framework of our model. Consider the following d-dimensional perturbed forward
stochastic differential equation Xε

t = (X1,ε
t , · · · , Xd,ε

t ):

dXi,ε
t = bi(t,Xε

t )dt+ ε
d∑

j=1

σi
j(t,X

ε
t )dW

j
t , i = 1, · · · , d, (37)

where b : [0, T ]×Rd → Rd, σ : [0, T ]×Rd → Rd×d and ε ∈ (0, 1].
Next, we introduce the associated BSDE (Y ε, Zε) as follows:

Y ε
t = g(Xε

T ) +

∫ T

t

f(s,Xε
s , Y

ε
s , Z

ε
s )ds−

∫ T

t

Zε
sdWs, (38)

where g : Rd → R and f : [0, T ]×Rd ×R×Rd → R. Remark that for ε = 0, since the forward SDE X0
t

degenerates, does BSDE (Y 0
t , Z

0
t ), too.

We put some conditions below on the above forward-backward SDE.

Assumption 5.1

1. The coefficients of forward process b, σ are bounded Borel functions and C∞
b in x.

2. There exist constants ai > 0, i = 1, 2 such that for any vector ξ in Rd and any (t, x) ∈ [0, T ]×Rd,

a1|ξ|2 ≤
d∑

i,j=1

[σσ⊤]i,j(t, x)ξiξj ≤ a2|ξ|2. (39)

3. The driver f : [0, T ]×Rd ×R×Rd → R is continuous in t and uniformly Lipschitz continuous in
x, y, z with constant CL, i.e. for all t ∈ [0, T ], (x1, y1, z1), (x2, y2, z2) ∈ Rd ×R×Rd,

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ CL(|x1 − x2|+ |y1 − y2|+ |z1 − z2|). (40)

Also, we assume

|f(t, x, y, z)| ≤ CL(1 + |x|+ |y|+ |z|). (41)

for (t, x, y, z) ∈ [0, T ]×Rd ×R×Rd.
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4. g is Lipschitz continuous function with constant CL on Rd and |g(x)| ≤ CL(1 + |x|) for x ∈ Rd.

Under the assumption, there exists the unique solution (Y ε, Zε) such that for any p > 1, E
[
sup0≤s≤T |Y ε

s |p
]
+

E

[(∫ T

0
|Zε

s |2ds
)p/2]

< ∞ (e.g. See Theorem 5.1 in [7]).

(Xε,t,x, Y ε,t,x, Zε,t,x) represents the adapted solutions to the FBSDE’s (37) and (38), restricted to
[t, T ] with Xε,t,x

t = x, a.s. The representation (20) of Ma and Zhang [23] holds under Assumption 5.1.

5.2 Asymptotic expansion

Under 1 and 2 in Assumption 5.1, the solution to SDE Xε,t,x
s (0 ≤ t < s ≤ T ) has a smooth density

pX
ε

(t, s, x, y). In order to obtain the expansion of the density pX
ε

(t, s, x, y), we approximate Xε,t,x
s by an

asymptotic expansion around the solution to ordinary differential equation X0,t,x
s = x+

∫ s

t
b(u,X0,t,x

u )ds.

Hereafter, let us denote by Xε,t,x
i,s , i ∈ N the i-th order differentiation of Xε,t,x

s with respect to ε, i.e.
1
i!

∂i

∂εiX
ε,t,x
s . In the first place, we provide a key result as the lemma below.

Lemma 5.1 For s ∈ (t, T ], we have Xε,t,x
i,s ∈ KT

i , i ∈ N.

Proof. See Appendix A. 2

Let us define X0,t,x
i,s as 1

i!
∂i

∂εiX
ε,t,x
s |ε=0, i ∈ N. For every p ∈ [1,∞), k ∈ N and N ∈ N,

Xε,t,x
s = X0,t,x

s +

N∑
i=1

εiX0,t,x
i,s +O(εN+1) in Dk,p as ε ↓ 0. (42)

Hereafter, we derive an asymptotic expansion of density ofXε,t,x
T . Define F ε,t,x

T as F ε,t,x
T :=

Xε,t,x
T

−X0,t,x
T

ε
and then we have

F ε,t,x
T = F 0,t,x

T +
N∑
i=1

εiF 0,t,x
i,T +O(εN+1) in D∞, (43)

where F 0,t,x
T = X0,t,x

1,T , F 0,t,x
i,T = X0,t,x

i+1,T , i ≥ 1.

Let Σ(t, T ) = {Σi,j(t, T )}i,j be the d× d-matrix whose element is defined by

Σi,j(t, T ) =
d∑

k=1

∫ T

t

σ̂i
k(s,X

0,t,x
s )σ̂j

k(s,X
0,t,x
s )ds, 1 ≤ i, j ≤ d, (44)

where σ̂i
k(s,X

0,t,x
s ) = (∂xX

0,t,x
T (∂xX

0,t,x
s )−1σk(s,X

0,t,x
s ))i.

Under Assumption 5.1 we obtain the following expansions for E[φ(Xε,t,x
T )] with Lipschitz function φ,

which are useful for giving the properties of the expansion of Y ε and proving our main result Theorem
5.1.

Proposition 5.1 For N ∈ N and a Lipschitz continuous function φ : Rd → R with constant CL, there
exists CN depending on CL and N such that∣∣∣∣∣E[φ(Xε,t,x

T )]−

{
E[φ(X̄t,x

T )] +

N∑
i=1

εiE[φ(X̄t,x
T )πt,x

i,T ]

}∣∣∣∣∣ ≤ εN+1CN (T − t)(N+2)/2, (45)

where X̄t,x
T = X0,t,x

T + εX0,t,x
1,T and πt,x

i,T =
∑(i)

k Hα(k)(X
0,t,x
1,T ,

∏k
l=1 X

0,t,x,αl

βl+1,T ) ∈ KT
i , i = 1, · · · , N . Here,∑(i)

k ≡
∑i

k=1

∑
β1+···+βk=i,βj≥1

∑
α(k)∈{1,···,d}k

1
k! .

Proof. See Appendix B. 2

We also obtain an expansion for E[φ(Xε,t,x
T )Nε,t,x

T ]εσ(t, x) with Lipschitz function φ, which are useful
for giving the properties of the expansion of Zε.
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Proposition 5.2 For N ∈ N and a Lipschitz continuous function φ : Rd → R with constant CL, there
exists CN depending on CL and N such that∣∣∣∣∣E[φ(Xε,t,x

T )Nε,t,x
0,T ]εσ(t, x)−

{
E[φ(X̄t,x

T )N t,x
0,T ] +

N∑
i=1

εiE[φ(X̄t,x
T )N t,x

i,T ]

}
εσ(t, x)

∣∣∣∣∣
≤ εN+1CN (T − t)(N+1)/2, (46)

where X̄t,x
T = X0,t,x

T + εX0,t,x
1,T , N t,x

0,T = (N t,x,1
0,T · · · , N t,x,d

0,T ) and N t,x
i,T = (N t,x,1

i,T , · · · , N t,x,d
i,T ), i = 1, · · · , d

are given by N t,x,η
0,T =

∑d
j=1 H(j)(X̄

t,x
T , ∂ηX̄

t,x,j
T ), and N t,x,η

i,T =
∑d

j=1 H(j)(X̄
t,x
T , ∂ηX̄

t,x,j
T πt,x

i,T ) + ∂ηπ
t,x
i,T ,

1 ≤ η ≤ d.

Proof. See Appendix C. 2

Remark 5.1 Using the similar arguments in Proposition 5.1 and 5.2, we are able to see the following
results. For a measurable function φ : Rd → R of at most polynomial growth, there exists non-negative,
non-decreasing and finite function C(N,x) of at most polynomial growth in x depending on N such that∣∣∣∣∣E[φ(Xε,t,x

T )]−

{
E[φ(X̄t,x

T )] +

N∑
i=1

εiE[φ(X̄t,x
T )πt,x

i,T ]

}∣∣∣∣∣ ≤ εN+1C(N, x)(T − t)(N+1)/2,

(47)∣∣∣∣∣E[φ(Xε,t,x
T )Nε,t,x

0,T ]εσ(t, x)−

{
E[φ(X̄t,x

T )N t,x
0,T ] +

N∑
i=1

εiE[φ(X̄t,x
T )N t,x

i,T ]

}
εσ(t, x)

∣∣∣∣∣
≤ εN+1C(N, x)(T − t)N/2, (48)

with the same weights in Proposition 5.1 and 5.2. In the above estimates, we do not use the smoothness
of φ while we use the Lipschitz differentiability in Proposition 5.1 and 5.2.

Using the weights πt,x
i,s , i = 0, 1, · · · , N in Proposition 5.1 and N t,x

i,s , i = 0, 1, · · · , N in Proposition 5.2,

we have formulas for (uε,k,N , ∂xu
ε,k,Nσ) as (27) and (28) without using derivatives of f and g.

The following property holds for (uε,k,N , ∂xu
ε,k,Nσ) by Lipschitz continuity of g.

Lemma 5.2 For k ≥ 0, N ∈ N,

|uε,k,N (t, x)| ≤ C(T, x), (49)

|∂xuε,k,Nσ(t, x)| ≤ C(T, x). (50)

where C(T, x) denotes a generic non-negative, non-decreasing and finite function of at most polynomial
growth in x depending on T .

Proof. See Appendix D. 2

5.3 Error estimate

For any β, µ > 0, let Hβ,µ be the space of functions v : [0, T ]×Rd → Rn such that

∥v∥2Hβ,µ
=

∫ T

0

∫
Rd

eβs|v(s, x)|2e−µ|x|dxds < ∞.

We also define the space Hβ,µ,X , For any β, µ > 0, and Xε
s , 0 ≤ s ≤ T starting from x at time 0, let

Hβ,µ,X be the space of functions v : [0, T ]×Rd → Rn such that

∥v∥2Hβ,µ,X
=

∫ T

0

∫
Rd

eβsE[|v(s,Xε
s )|2]e−µ|x|dxds < ∞.

Remark that the following well-known norm equivalence result holds (e.g. Proposition 3.8 in Gobet
and Labert [14]): there exist two constants c1, c2 > 0 such that v ∈ L2([0, T ]×Rd, eβsds× e−µ|x|dx)

c1∥v∥2Hβ,µ
≤ ∥v∥2Hβ,µ,X

≤ c2∥v∥2Hβ,µ
. (51)
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The next theorem is our main result, which evaluates a global approximation error of (uε,k,N , ∂xu
ε,k,Nσ)

(in (27) and (28)) for (uε, ∂xu
εσ) (in (19) and (20)).

Theorem 5.1 Suppose that Assumption 5.1 holds. Let C be C = c2/c1 and β be such that 2CC2
L(T+1) <

β and fix δ :=
2CC2

L(T+1)
β < 1. Then, for arbitrary k ≥ 0 and N ∈ N, there exists C0(T ) depending on T

and C1(T,N) depending on T and N such that

∥uε − uε,k,N∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,k,Nσ)∥2Hβ,µ

≤
{
C0(T ) · δk + ε2(N+1)C1(T,N) ·

(
1− δk+1

1− δ

)}
, ε ∈ (0, 1].

Proof.
Note that the following inequality holds:

∥uε − uε,k,N∥2Hβ,µ
+ ∥∂xuεσ − ∂xu

ε,k,Nσ∥2Hβ,µ

≤ 2(∥uε − uε,k∥2Hβ,µ
+ ∥∂xuεσ − ∂xu

ε,kσ∥2Hβ,µ
)

+2(∥uε,k − uε,k,N∥2Hβ,µ
+ ∥∂xuε,kσ − ∂xu

ε,k,Nσ∥2Hβ,µ
).

First, we show the error ∥uε −uε,k∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,kσ)∥2Hβ,µ
by using the norm equivalence, (51)

and the similar argument in the proof of Theorem 2.1 in El Karoui et al. [7]:

∥uε − uε,k∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,kσ)∥2Hβ,µ

≤ 2CC2
L(T + 1)

β
{∥uε − uε,k−1∥2Hβ,µ

+ ∥(∂xuεσ)− (∂xu
ε,k−1σ)∥2Hβ,µ

}.

Therefore,

∥uε − uε,k∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,kσ)∥2Hβ,µ
≤ C0(T ) ·

(
2CC2

L(T + 1)

β

)k

, (52)

where C0(T ) such that ∥uε − uε,0∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,0σ)∥2Hβ,µ
≤ C0(T ).

Next, we estimate the error ∥uε,k − uε,k,N∥2Hβ,µ
+ ∥∂xuε,kσ − ∂xu

ε,k,Nσ∥2Hβ,µ
.

The difference uε,k+1 − uε,k+1,N is represented as follows:

uε,k+1(t, x)− uε,k+1,N (t, x)

=

∫
Rd

g(y)pX
ε

(t, T, x, y)dy +

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))pX

ε

(t, s, x, y)dyds

−
∫
Rd

g(y)

{
pX̄(t, T, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dy

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y)){

pX̄(t, s, x, y) +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dyds

=

∫
Rd

g(y)pX
ε

(t, T, x, y)dy −
∫
Rd

g(y)

{
pX̄(t, T, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dy

+

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))pX

ε

(t, s, x, y)dyds

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))pX

ε

(t, s, x, y)dyds

+

∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))pX

ε

(t, s, x, y)dyds

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y)){

p0(t, s, x, y) +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dyds.

12



Remark that after the second equality, we add the terms

±
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))pX

ε

(t, s, x, y)dyds.

Let I1, I2 and I3 be

I1(t, x) :=

∫
Rd

g(y)pε(t, T, x, y)dy −
∫
Rd

g(y)

{
pX̄(t, T, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dy,

I2(t, x) :=

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))pX

ε

(t, s, x, y)dyds

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))pX

ε

(t, s, x, y)dyds,

I3(t, x) :=

∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))pX

ε

(t, s, x, y)dyds

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y)){

pX̄(t, s, x, y) +
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dyds.

The difference (∂xu
ε,k+1σ)− (∂xu

ε,k+1,Nσ) is represented as

(∂xu
ε,k+1σ)− (∂xu

ε,k+1,Nσ)

=

∫
Rd

g(y)E[Nε,t,x
T |Xε,t,x

T = y]pX
ε

(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))E[Nε,t,x

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

−
∫
Rd

g(y)E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

−
N∑
i=1

εi
∫
Rd

g(y)E[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

0,s |X̄t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x)

−
N∑
i=1

εi
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

i,T |X̄
t,x
T = y]pX̄(t, T, x, y)dydsεσ(t, x)

=

∫
Rd

g(y)E[Nε,t
T |Xε,t,x

T = y]pX
ε

(t, T, x, y)dyεσ(t, x)

−
∫
Rd

g(y)E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

−
N∑
i=1

εi
∫
Rd

g(y)E[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))E[Nε,t,x

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[Nε,t,x

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[Nε,t

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

0,s |X̄t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x)

−
N∑
i=1

εi
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

i,s |X̄
t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x).

13



Let

J1(t, x)

:=

∫
Rd

g(y)E[Nε,t,x
T |Xε,t,x

T = y]pX
ε

(t, T, x, y)dyεσ(t, x)

−
∫
Rd

g(y)E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

−
N∑
i=1

εi
∫
Rd

g(y)E[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x),

J2(t, x)

:=

∫ T

t

∫
Rd

f(s, y, uε,k(s, y), (∂xu
ε,kσ)(s, y))E[Nε,t

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[Nε,t

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

J3(t, x)

:=

∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[Nε,t,x

s |Xε,t,x
s = y]pX

ε

(t, s, x, y)dydsεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

0,s |X̄t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x)

−
N∑
i=1

εi
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))E[N t,x

i,s |X̄
t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x).

Then, we have

∥uε,k+1 − uε,k+1,N∥2Hβ,µ
≤ 3∥I1∥2Hβ,µ

+ 3∥I2∥2Hβ,µ
+ 3∥I3∥2Hβ,µ

,

∥(∂xuε,k+1σ)− (∂xu
ε,k+1,Nσ)∥2Hβ,µ

≤ 3∥J1∥2Hβ,µ
+ 3∥J2∥2Hβ,µ

+ 3∥J3∥2Hβ,µ
.

By Proposition 5.1 and Proposition 5.2 and Lemma 5.2, we have the following estimates

|I1(t, x)| =

∣∣∣∣∣
∫
Rd

g(y)

{
pX

ε

(t, T, x, y)− pX̄(t, T, x, y)−
N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dy

∣∣∣∣∣
≤ c(T,N, x)εN+1(T − t)(N+2)/2, (53)

|J1(t, x)| =

∣∣∣∣∣
∫
Rd

g(y)

{
E[Nε,t,x

T |Xε,t,x
T = y]pX

ε

(t, T, x, y)

−E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y)−

N∑
i=1

εiE[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dyεσ(t, x)

∣∣∣∣∣
≤ r(T,N, x)εN+1(T − t)(N+1)/2, (54)

and

|I3(t, x)| =

∣∣∣∣∣
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y)){

pX
ε

(t, s, x, y)− pX̄(t, s, x, y)−
N∑
i=1

εiE[πt,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dyds

∣∣∣∣∣
≤ C(T,N, x)εN+1

∫ T

t

(s− t)(N+1)/2ds

= C(T,N, x)εN+1(T − t)(N+3)/2, (55)
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|J3(t, x)| =

∣∣∣∣∣
∫ T

t

∫
Rd

f(s, y, uε,k,N (s, y), (∂xu
ε,k,Nσ)(s, y))

{
E[Nε,t,x

T |Xε,t,x
T = y]pX

ε

(t, s, x, y)

−E[N t,x
0,s |X̄t,x

s = y]pX̄(t, s, x, y)−
N∑
i=1

εiE[N t,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dydsεσ(t, x)

∣∣∣∣∣
≤ R(T,N, x)εN+1

∫ T

t

(s− t)N/2ds

= R(T,N, x)εN+1(T − t)(N+2)/2. (56)

Here, c(T,N, x), C(T,N, x), r(T,N, x) and R(T,N, x) are some non-negative, non-decreasing and finite
functions of at most polynomial growth in x depending on T and N .

Therefore, we obtain

∥I1∥2Hβ,µ
≤ ε2(N+1)K1(T,N), ∥I3∥2Hβ,µ

≤ ε2(N+1)K3(T,N),

∥J1∥2Hβ,µ
≤ ε2(N+1)L1(T,N), ∥J3∥2Hβ,µ

≤ ε2(N+1)L3(T,N),

for some K1(T,N), K3(T,N), L1(T,N) and L3(T,N) depending on T and N .
In order to estimate ∥I2∥2β,µ and ∥J2∥2β,µ, we define

ûε,k+1(t, x) = E[g(Xε,t,x
T )] + E

[∫ T

t

f(s,Xε,t,x
s , uε,k,N (s,Xε,t,x

s ), (∂xu
ε,k,Nσ)(s,Xε,t,x

s ))ds

]
. (57)

Since f is Lipschitz countinuous with constant CL, again using the norm equivalence result, (51) and the
similar argument in the proof of Theorem 2.1 in El Karoui et al. [7] we obtain

∥I2∥2Hβ,µ
≤ c−1

1 ∥uε,k+1 − ûε,k+1∥2β,µ,Xε

= c−1
1

∫
Rd

∫ T

0

eβsE[|uε,k+1(s,Xε
s )− ûε,k+1(s,Xε

s )|2]dse−µ|x|dx

≤ c−1
1

T

β

∫
Rd

E

[∫ T

0

eβs|f(s,Xε
s , u

ε,k(s,Xε
s ), ∂xu

ε,kσ(s,Xε
s ))

−f(s,Xε
s , u

ε,k,N (s,Xε
s ), (∂xu

ε,k,Nσ)(s,Xε
s ))|2ds

]
e−µ|x|dx

≤ 2c−1
1 C2

LT

β

∫
Rd

E

[∫ T

0

eβs{|uε,k(s,Xε
s )− uε,k,N (s,Xε

s )|2

+|(∂xuε,kσ)(s,Xε
s )− (∂xu

ε,k,Nσ)(s,Xε
s )|2}ds

]
e−µ|x|dx

≤ 2CC2
LT

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

},

∥J2∥2Hβ,µ
≤ c−1

1 ∥(∂xuε,k+1σ)− (∂xû
ε,k+1σ)∥2β,µ,Xε

= c−1
1

∫
Rn

∫ T

0

eβsE[|(∂xuε,k+1σ)(s,Xε
s )− (∂xû

ε,k+1σ)(s,Xε
s )|2]dse−µ|x|dx

≤ c−1
1

1

β

∫
Rd

E

[∫ T

0

eβs|f(s,Xε
s , u

ε,k(s,Xε
s ), (∂xu

ε,kσ)(s,Xε
s ))

−f(s,Xε
s , u

ε,k,N (s,Xε
s ), (∂xu

ε,k,Nσ)(s,Xε
s ))|2ds

]
e−µ|x|dx

≤ 2c−1
1 C2

L

β

∫
Rd

E

[∫ T

0

eβs{|uε,k(s,Xε
s )− uε,k,N (s,Xε

s )|2

+|(∂xuε,kσ)(s,Xε
s )− (∂xu

ε,k,Nσ)(s,Xε
s )|2}ds

]
e−µ|x|dx

≤ 2CC2
L

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

}.
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Then, we have the following estimates

∥uε,k+1 − uε,k+1,N∥2Hβ,µ

≤ ε2(N+1)K(T,N) +
2CC2

LT

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

},

(58)

∥(∂xuε,k+1σ)− (∂xu
ε,k+1,Nσ)∥2Hβ,µ

≤ ε2(N+1)L(T,N) +
2CC2

L

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

},

(59)

where K(T,N) = 2max{K1(T,N),K3(T,N)} and L(T,N) = 2max{L1(T,N), L3(T,N)}. Therefore, by
(58) and (59), we obtain

∥uε,k+1 − uε,k+1,N∥2Hβ,µ
+ ∥(∂xuε,k+1σ)− (∂xu

ε,k+1,Nσ)∥2Hβ,µ

≤ ε2(N+1)γ(T,N)

+
2CC2

L(T + 1)

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

}, (60)

where γ(T,N) = 2max{K(T,N), L(T,N)}.
Remark that the differences uε,0 − uε,0,N and ∂xu

ε,0σ − ∂xu
ε,0,Nσ are given as follows:

uε,0(t, x)− uε,0,N (t, x)

=

∫
Rd

g(y)pX
ε

(t, T, x, y)dy

−
∫
R

g(y)

{
pX̄(t, T, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)

}
dy

+

∫ T

t

∫
Rd

f(s, y, 0, 0)pX
ε

(t, s, x, y)dyds

−
∫ T

t

∫
Rd

f(s, y, 0, 0)

{
pX̄(t, s, x, y) +

N∑
i=1

εiE[πt,x
i,T |X̄

t,x
s = y]pX̄(t, s, x, y)

}
dyds

and

(∂xu
ε,0σ)(t, x)− (∂xu

ε,0,Nσ)(t, x)

=

∫
Rd

g(y)E[Nε,t,x
T |Xε,t,x

T = y]pX
ε

(t, T, x, y)dyεσ(t, x)

−
∫
Rd

g(y)E[N t,x
0,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

−
N∑
i=1

εi
∫
Rd

g(y)E[N t,x
i,T |X̄

t,x
T = y]pX̄(t, T, x, y)dyεσ(t, x)

+

∫ T

t

∫
Rd

f(s, y, 0, 0)E[Nε,t,x
s |Xε,t,x

s = y]pX
ε

(t, s, x, y)dyεσ(t, x)

−
∫ T

t

∫
Rd

f(s, y, 0, 0)E[N t,x
0,s |X̄t,x

s = y]pX̄(t, s, x, y)dyεσ(t, x)

−
N∑
i=1

εi
∫ T

t

∫
Rd

f(s, y, 0, 0)E[N t,x
i,s |X̄

t,x
s = y]pX̄(t, s, x, y)dydsεσ(t, x).

Then, the term ∥uε,0 − uε,0,N∥2Hβ,µ
+ ∥(∂xuε,0σ)− (∂xu

ε,0,Nσ)∥2Hβ,µ
is estimated by the asymptotic error,

that is,

∥uε,0 − uε,0,N∥2Hβ,µ
+ ∥(∂xuε,0σ)− (∂xu

ε,0,Nσ)∥2Hβ,µ
≤ ε2(N+1)K0(T,N),
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for some K0(T,N).
Therefore, we obtain

∥uε,k+1 − uε,k+1,N∥2Hβ,µ
+ ∥(∂xuε,k+1σ)− (∂xu

ε,k+1,Nσ)∥2Hβ,µ

≤ ε2(N+1)C1(T,N) +
2CC2

L(T + 1)

β
{∥uε,k − uε,k,N∥2Hβ,µ

+ ∥(∂xuε,kσ)− (∂xu
ε,k,Nσ)∥2Hβ,µ

}

≤ ε2(N+1)C1(T,N)

+
2CC2

L(T + 1)

β

{
ε2(N+1)C1(T,N) +

2CC2
L(T + 1)

β
{∥uε,k−1 − uε,k−1,N∥2Hβ,µ

+ ∥(∂xuε,k−1σ)− (∂xu
ε,k−1,Nσ)∥2Hβ,µ

}
}

· · ·

≤ ε2(N+1)C1(T,N)

{(
2CC2

L(T + 1)

β

)k+1

+ · · ·+
(
2CC2

L(T + 1)

β

)
+ 1

}

= ε2(N+1)C1(T,N) ·

1−
(

2CC2
L(T+1)
β

)k+2

1−
(

2CC2
L
(T+1)

β

)
 , (61)

where C1(T,N) = max{γ(T,N),K0(T,N)}.
Finally, Choose β such that 2CC2

L(T +1) < β and set δ =
2CC2

L(T+1)
β < 1, by (52) and (61) we obtain

the global error

∥uε − uε,k,N∥2Hβ,µ
+ ∥(∂xuεσ)− (∂xu

ε,k,Nσ)∥2Hβ,µ
≤
{
C0(T ) · δk + ε2(N+1)C1(T,N) ·

(
1− δk+1

1− δ

)}
.

2

6 Application: pricing option with counterparty risk under local
and stochastic volatility models

This section applies our approximation algorithm to option pricing with counterparty risk in a FBSDE
setting. Here, we omit a discussion on modeling and pricing issues under default risk, and concentrate on
the concrete description of our approximation scheme with investigation of its validity by using a simple
example.2 Particularly, we use local volatility and stochastic volatility models for the underlying (forward)
price process X under the risk-neutral measure. Let Y be the solution to the following non-linear BSDE:

Yt = g(XT )− (1−R)β

∫ T

t

(Ys)
+ds−

∫ T

t

ZsdWs. (62)

Here, Y represents the value process with a target payoff g(XT ) taking the risky (substitution) closing
out CVA into account; R ≥ 0 and β > 0 denote a constant recovery rate and a constant default intensity,
respectively. Also, the risk-free interest rate and the dividend rate of the underlying asset are assumed to
be zero for simplicity. Next, let (Y k, Zk)k≥0 be a sequence of the following linear BSDEs:

Y 0
t = g(XT )−

∫ T

t

Z0
sdW

1
s . (63)

Y 1
t = g(XT )− (1−R)β

∫ T

t

(Y 0
s )

+ds−
∫ T

t

Z1
sdWs.

Y k+1
t = g(XT )− (1−R)β

∫ T

t

(Y k
s )+ds−

∫ T

t

Zk+1
s dWs, k ≥ 1,

which is an approximation sequence of the value process Y .

Remark 6.1 Under the setting above, suppose we consider plain-vanilla options, that is g(XT ) = (XT −
K)+ or (K − XT )

+. Then, given constant values of R and β as well as Y k > 0 for usual setup of

2See Fujii and Takahashi (2010, 2011) for the detail of modeling and pricing issues under default risk, for instance.
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parameters in practice, due to the martingale property of the (risk-free) option value Y 0 under the risk-

neutral measure, we are able to express uk(t, x) := Y k,t,x
t for each k = 0, 1, 2, · · · as follows:

uk(t, x) = u0(t, x)

[
1 +

k∑
i=1

qi

i!

]
, (64)

where q = (−1)(1−R)β(T − t). Hence, for this simplest case we can easily obtain the benchmark values
uk(t, x) through evaluation of u0(t, x) by numerical computation such as the Monte Carlo simulation,
against which the validity of our approximation scheme is examined. However, note that it is much more
tough task to get the benchmark values under the situation with stochastic intensity and recovery, while
our scheme is applicable under the setting without substantial effort.

6.1 Local volatility model

First, we consider local volatility model (one dimensional process)

dXε
t = εσ(t,Xε

t )dWt, Xε
0 = x0 (65)

where σ(t, x) is the local volatility function. Define uε(t, x) := Y ε,t,x
t = E

[
g(Xε,t,x

T )
]
−E

[∫ T

t
(1−R)β(Y ε,t,x

s )+ds
]
.

Then, u0(t, x) := Y ε,0,t,x,0
t , uk+1(t, x) := Y ε,k+1,t,x

t , k ≥ 0, are approximated by

u0(t, x) ≃ u0,N (t, x) =

∫
R

g(y)pX̄N (t, T, x, y)dy, (66)

uk+1(t, x) ≃ uk+1,N (t, x)

= u0,N (t, x)− (1−R)β

∫ T

t

∫
R

(uk,N (τ, y))+pX̄N (t, τ, x, y)dydτ, k ≥ 0, (67)

where y 7→ pX̄N (t, s, x, y) is the N -th order asymptotic expansion of the density of Xε,t,x
s . In our numerical

example, we take εσ(t, x) = εx1−α
0 xα (CEV volatility). Here, ε can be regarded as the instantaneous

volatility of the log-normal (or the Black-Scholes) process. The terminal condition for the backward SDE
is characterized as g(x) = (x−K)+, the call option payoff function.

The parameters of the model are specified as follows:

t = 0.0, T = 2.0, x0 = 10, 000, α = 0.5, ε = 0.1,

β = 0.06 (intensity), R = 0.0 (recovery rate).

Also, the expansion order N is set to be N = 1.
In this case, we can easily obtain u0,N (t, x) in (66) as follows:

u0,N (t, x) = yN

(
y√

Σ(t, T )

)
+

(
Σ(t, T )− ζ(t, T )

Σ(t, T )
y

)
n[y : 0,Σ(t, T )], (68)

where N(x) and n[x : µ,Σ] denote the standard normal distribution function, and the normal density
function with the mean µ and the variance Σ, respectively. Also, y, Σ(t, , T ) and ζ(t, T ) are defined in
the following:

y = x−K,

Σ(t, T ) = ε2σ2x2α(T − t),

ζ(t, T ) = αε4σ4x4α−1 (T − t)2

2
. (69)

The result is given in Table 1–3: AE uk,N (= uk,N (0, x0)), (k = 0, 1, 2) are evaluated based on the
corresponding equations in (67) and (68). Exact value u(0, x0) is approximated as in (64) by the equation
(70) below with k = 5, which gives the sufficiently convergent value for this case. Also, Benchmark
uk = uk(0, x0), k = 1, 2 are computed by the following equation (70) with k = 1, 2, respectively:

u0(0, x0)

[
1 +

k∑
i=1

qi

i!

]
, (70)
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where q = (−1)(1 − R)βT , and the value of u0(0, x0) is obtained based on Monte Carlo simulation for
the CEV process. In each simulation, the numbers of the trials and the time steps are 1,000,000 with the
antithetic variable method and 750, respectively. Also, in Table 1–3 the relative errors denoted by AE
Error u and AE Error uk of our asymptotic expansion are computed by (uk,N (0, x0)−u(0, x0))/u(0, x0)
and (uk,N (0, x0) − uk(0, x0))/u

k(0, x0), respectively. It is observed that uk,N (= uk,N (0, x0)), k = 1, 2,
N = 1 become closer towards u(0, x0).

Although this example use only the ε1-order expansion of the density, we already know from the
existing work (e.g. Takahashi et al. (2012)) that higher order expansions produce much more better
approximation for the risk-free option price u0, which is expected to provide more precise approximations
for the solution to the BSDE as well.

Table 1: European call option price with CVA under CEV model (In-the-money case : K = 7500, Exact
value u(0, x0) = 2230.24)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 2514.59 2514.49 12.75% 0.00%
1st 2212.84 2212.81 -0.78% 0.00%
2nd 2230.41 2231.11 0.04% 0.01%

Table 2: European call option price with CVA under CEV model (At-the-money case : K = 10000, Exact
value u(0, x0) = 499.45)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 563.13 564.19 12.96% 0.19%
1st 495.55 496.51 -0.59% 0.19%
2nd 499.61 500.61 0.23% 0.20%

Table 3: European call option price with CVA under CEV model (Out-of-the-money case : K = 12500,
Exact value u(0, x0) = 26.01)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 29.33 29.28 12.55% -0.18%
1st 25.81 25.76 -0.97% -0.20%
2nd 26.02 25.97 -0.16% -0.20%

6.2 Stochastic volatility model

As an application, we consider a stochastic volatility model (SABR model):

dXε
t = εσε

tC(t,Xε
t )dWt, Xε

0 = x0 > 0, (71)

dσε
t = εσε

t dZt, σε
0 = σ0 > 0, (72)

dWtdZt = ρdt, (73)

where C(t, x) is the local volatility function and ρ ∈ [−1, 1] is the correlation parameter. As in section
7.1, we put the terminal condition of the backward SDE as g(x) = (x−K)+. Define u(t, x, σ) := Y ε,t,x,σ

t =

E
[
g(Xε,t,x,σ

T )
]
−E

[∫ T

t
(1−R)β(Y ε,t,x,σ

s )+ds
]
. Then, u0(t, x, σ) := Y ε,0,t,x,σ

t and uk+1(t, x, σ) := Y ε,k+1,t,x,σ
t ,

k ≥ 0, are approximated by

u0(t, x, σ) ≃ u0,N (t, x, σ) = E[g(X̄t,x,σ
T )π

(X),t,x,σ
N,T ]. (74)

uk+1(t, x, σ) ≃ uk+1,N (t, x, σ)

= E[g(X̄t,x,a
T )π

(X),t,x,a
N,T ]

−(1−R)β

∫ T

t

E[(uk,N (τ, X̄t,x,σ
τ , σ̄t,σ

τ ))+πt,x,σ
N,τ ]dτ, k ≥ 0, (75)
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where π
(X),t,x,σ
N,s is the Malliavin weight of the N -th order expansion for the marginal Xε,t,x,σ

s , and πt,x,σ
N,s is

the Malliavin weight of the N -th order expansion for (Xε,t,x
s , σε,t,σ

s ). We take the local volatility function
as C(t, x) = cx1−α

0 xα.
The parameters of the model are specified as follows:

t = 0.0, T = 1.0, x0 = 100, σ0 = 0.25, α = 0.5, ε = 0.2, εc = 1,

ρ = −0.5, β = 0.05 (intensity), R = 0.0 (recovery rate).

Also, the expansion order N is set to be N = 1.
Similarly as in the local volatility model, u0,N (t, x) is explicitly computed as follows:

u0,N (t, x, σ) = yN

(
y√

Σ(t, T )

)
+

(
Σ(t, T )− ζ(t, T )

Σ(t, T )
y

)
n[y : 0,Σ(t, T )], (76)

where N(x) and n[x : µ,Σ] denote the standard normal distribution function, and the normal density
function with the mean µ and the variance Σ, respectively. Also, y, Σ(t, , T ) and ζ(t, T ) are defined in
the following:

y = x−K,

Σ(t, T ) = ε2σ2c2x2α(T − t),

ζ(t, T ) = (αε4σ4c4x4α−1 + ρε4σ3c3x3α)
(T − t)2

2
. (77)

The result is given in Table 4–6 similarly as in the local volatility case: AE uk,N (= uk,N (0, x0, σ0))
(k = 0, 1, 2, N = 1) are evaluated based on the equations in (74) by applying the closed form approximation
(76) and (75) by a numerical integration. Exact value u(0, x0, σ0) is approximated by the method (70)
for SABR model with iteration k = 5. Also, Benchmark uk = uk(0, x0, σ0), k = 1, 2 are computed

by u0(0, x0, σ0)
[
1 +

∑k
i=1

qi

i!

]
with k = 1, 2 where q = (−1)(1 − R)βT , and the value of u0(0, x0, σ0) is

obtained based on Monte Carlo simulation for the SABR process. In each simulation, the numbers of the
trials and the time steps are 10,000,000 with the antithetic variable method and 1000, respectively. The
relative errors in Table 4–6 are computed similarly as in local volatility case. We can observe that even
low order expansions work well for numerical approximations of u(0, x0, σ0).
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Table 4: European call option price with CVA under SABR model (In-the-money case : K = 70, Exact
value u(0, x0, σ0) = 29.779)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 31.306 31.330 5.21% -0.08%
1st 29.741 29.763 -0.05% -0.08%
2nd 29.780 29.802 0.08% -0.08%

Table 5: European call option price with CVA under SABR model (At-the-money case : K = 100, Exact
value u(0, x0, σ0) = 9.459)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 9.944 9.974 5.43% -0.29%
1st 9.447 9.475 0.17% -0.29%
2nd 9.460 9.488 0.30% -0.30%

Table 6: European call option price with CVA under SABR model (Out-of-the-money case : K = 130,
Exact value u(0, x0, σ0) = 1.403)

Iteration k Benchmark uk AE uk,N AE Error u AE Error uk

0th 1.475 1.475 5.19% -0.08%
1st 1.401 1.401 -0.08% -0.05%
2nd 1.403 1.403 0.05% -0.05%

Remark 6.2 In the option valuation with CVA in FBSDE framework, we can easily obtain an approxi-
mation value for option price, only using the closed form approximation of clean price (76), as follows:

u(0, x0, σ0) ≃ u0,N (0, x0, σ0)

[
1 +

k∑
i=1

qi

i!

]
, k ≥ 1. (78)

Actually, we have the following results using (78) with k = 2:

(K = 70) Benchmark : 29.779, Approximation using (78) : 29.802 (error 0.079%), (79)

(K = 100) Benchmark : 9.459, Approximation using (78) : 9.487 (error 0.295%), (80)

(K = 130) Benchmark : 1.403, Approximation using (78) : 1.403 (error 0.059%). (81)

Then, we can attain enough accuracy without using numerical methods such as Monte Carlo simulation
or numerical integral in this case.

7 Conclusion

This paper has developed a new general approximation method for forward-backward stochastic differ-
ential equations (FBSDEs). In particular, we have proposed an analytical approximation based on an
asymptotic expansion for forward SDEs combined with Picard-type iteration scheme for BSDEs. Based
on the expansion with Malliavin calculus, we have justified our method with its error estimate for the
approximation.

From a practical viewpoint, examination of our scheme under more complex examples is an important
and interesting problem. Moreover, a challenging task is to develop mathematical validity of approxima-
tions with perturbation for fully coupled FBSDEs. Those topics as well as our approximation method
under weaker mathematical condition will be discussed in our future researches.
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A Proof of Lemma 5.1

We prove the assertion by induction. First,

∂

∂ε
Xε,t,x

s =
d∑

i=1

∫ s

t

∂xX
ε,t,x
s (∂xX

ε,t,x
u )−1σi(u,X

ε,t,x
u )dW i

u (82)

+ε

d∑
i=1

∫ s

t

∂xX
ε,t,x
s (∂xX

ε,t,x
u )−1∂xσi(u,X

ε,t,x
u )σi(u,X

ε
u)du. (83)

Since ∂xX
ε,t,x
s , (∂xX

ε,t,x
s )−1 ∈ KT

0 , we have ∂
∂εX

ε,t,x
s ∈ KT

1 .

For k ≥ 2, 1
k!

∂k

∂εk
Xε,t,x

s =
(

1
k!

∂k

∂εk
Xε,t,x,1

s , · · · , 1
k!

∂k

∂εk
Xε,t,x,d

s

)
is recursively determined by the following:

1

k!

∂k

∂εk
Xε,t,x,j

s =

(k)∑
lβ ,dβ

∫ s

t

 β∏
j=1

1

lj !

∂lj

∂εlj
Xε,t,x,dj

u

 ∂β
dβ
bj(u,Xε,t,x

u )du (84)

+

(k−1)∑
lβ ,dβ

∫ s

t

 β∏
j=1

1

lj !

∂lj

∂εlj
Xε,t,x,dj

u

 d∑
i=1

∂β
dβ

σj
i (u,X

ε,t,x
u )dW i

u (85)

+ε

(k)∑
lβ ,dβ

∫ u

t

 k∏
j=1

1

lj !

∂lj

∂εlj
Xε,t,x,dj

u

 d∑
i=1

∂k
dk
σj
i (u,X

ε,t,x
u )dW i

s (86)

where ∂β
dβ

= ∂β

∂xd1
···∂xdβ

,

(l)∑
lβ ,dβ

:=
l∑

β=1

∑
lβ∈Ll,β

∑
dβ∈{1,···,d}β

1

β!
, (87)

and Ll,β :=
{
lβ = (l1, · · · , lβ);

∑β
j=1 lj = l; (l, lj , β ∈ N)

}
. The above SDE is linear and the order of the

Kusuoka function 1
i!

∂i

∂εiX
ε,t,x
s is determined inductively by the term

(i−1)∑
lβ ,dβ

1

β!

∫ s

t

∂Xε,t,x
s

(
∂Xε,t,x

u

)−1

 β∏
j=1

1

lj !

∂lj

∂εlj
Xε,t,x,dj

u

 d∑
i=1

∂β
dβ

σi(u,X
ε,t,x
u )dW i

u ∈ KT
i . (88)

Then, 1
i!

∂i

∂εiX
ε,t,x
s ∈ KT

i . 2

B Proof of Proposition 5.1

Let (φn)n∈N ⊂ C∞
b (Rd) be a mollifier converging to φ. The following Taylor formula

φn(F
ε,t,x
T ) = φn(F

0,t,x
T ) +

N∑
i=1

εi

i!

∂i

∂εi
φn(F

ε,t,x
T )|ε=0 + εN+1

∫ 1

0

(1− u)N

N !

∂N+1

∂νN+1
φn(F

ν,t,x
T )|ν=εudu,

and the integration by parts on the Wiener space, we have

E[φn(F
ε,t,x
T )] = E[φn(F

0,t,x
T )] +

N∑
i=1

εi
(i)∑
k

E[∂α(k)φn(F
0,t,x
T )

k∏
l=1

F 0,t,x,αl

βl,T
]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
k

E

[
∂α(k)φn(F

εu,t,x
T )

k∏
l=1

F εu,t,x,αl

βl,T

]
du

= E[φn(F
0,t,x
T )] +

N∑
i=1

εiE[φn(F
0,t,x
T )πt,x

i,T ]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
k

E[∂α(1)φn(F
εu,t,x
T )Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]du,

22



where, πt,x
i,T =

∑(i)
k Hα(k)(F

0,t,x
T ,

∏k
l=1 F

0,t,x,αl

βl,T
) =

∑(i)
k Hα(k)(X

0,t,x
1,T ,

∏k
l=1 X

0,t,x,αl

βl+1,T ).
Therefore, we have

E[φn(X
ε,t,x
T )]

= E[φn(X̄
t,x
T )] +

N∑
i=1

εiE[φn(X̄
t,x
T )πt,x

i,T ]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
k

E[∂α(1)φn(X̃
εu,t,x
T )Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]du,

(89)

where X̃εu,t,x
T = X0,t,x

T + εF εu,t,x
T , u ∈ [0, 1]. By Proposition 4.1 with Lemma 4.1 and 5.1, we have∑(N+1)

k Hα(k−1)(F
εu,t,x
T ,

∏k
l=1 F

εu,t,x,αl

βl,T
) ∈ KT

N+2.
Then, we obtain∣∣∣∣∣E[φn(X

ε,t,x
T )]− E[φn(X̄

t,x
T )] +

N∑
i=1

εiE[φn(X̄
t,x
T )πt,x

i,T ]

∣∣∣∣∣ ≤ εN+1∥∇φn∥∞(T − t)(N+2)/2. (90)

Finally, by mollifier argument, we have the assertion. 2

C Proof of Proposition 5.2

For a mollifier (φn)n∈N ⊂ C∞
b (Rd) converging to φ, we differentiate the expansion (89) of E[φn(X

ε,t,x
T )]

with respect to initial x as follows: for 1 ≤ η ≤ d,

∂

∂xη
E[φn(X

ε,t,x
T )]

=
∂

∂xη
E[φn(X̄

t,x
T )] +

N∑
i=1

εi
∂

∂xη
E[φn(X̄

t,x
T )πt,x

i,T ]

+εN+1

∫ 1

0

(1− u)N (N + 1)

(N+1)∑
k

∂

∂xη
E[∂α(1)φn(X̃

εu,t,x
T )Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]du.

We have

∂

∂xη
E[φn(X̄

t,x
T )] =

d∑
j=1

E[∂jφn(X̄
t,x
T )∂ηX̄

t,x,j
T ] = E[φn(X̄

t,x
T )N t,x,η

0,T ], (91)

and, for 1 ≤ i ≤ N ,

∂

∂xη
E[φn(X̄

t,x
T )πt,x

i,T ] =
d∑

j=1

{E[∂jφn(X̄
t,x
T )∂ηX̄

t,x,j
T πt,x

i,T ] + E[φn(X̄
t,x
T )∂ηπ

t,x
i,T ]}

= E[φ(X̄t,x
T )N t,x,η

i,T ]. (92)

Moreover, 1 ≤ η ≤ d, u ∈ [0, 1],

∂

∂xη
E[∂α(1)φn(X̃

εu,t,x
T )Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]

=

d∑
j=1

E[∂j,α(1)φn(X̃
εu,t,x
T )∂ηX̃

εu,t,x,j
T Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]

+E[∂α(1)φn(X̃
εu,t,x
T )∂ηHα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)]

= E

[
∂α(1)φn(X̃

εu,t,x
T )

{
d∑

j=1

Hj(X̃
εu,t,x
T , ∂ηX̃

εu,t,x,j
T Hα(k−1)(F

εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
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+∂ηHα(k−1)(F
εu,t,x
T ,

k∏
l=1

F εu,t,x,αl

βl,T
)
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where
∑d

j=1 Hj(X̃
εu,t,x
T , ∂ηX̃

εu,t,x,j
T Hα(k−1)(F

εu,t,x
T ,

∏k
l=1 F

εu,t,x,αl

βl,T
))+∂ηHα(k−1)(F

εu,t,x
T ,

∏k
l=1 F

εu,t,x,,αl

βl,T
) ∈

KT
N+1. Therefore, we have the assertion. 2

D Proof of Lemma 5.2

uε,0,N and ∂xu
ε,0,Nσ are represented as

uε,0,N (t, x) = E[g(X̄t,x
T )ϑT ] + E

[∫ T

t

f(s, X̄t,x
s , 0, 0)ϑsds

]
,

∂xu
ε,0,Nσ(t, x) =

{
E
[
g(X̄t,x

T )γT
]
+ E

[∫ T

t

f(s, X̄t,x
s , 0, 0)γsds

]}
εσ(t, x),

where ϑs = 1 +
∑N

i=1 ε
iπt,x

i,s and γs =
∑N

i=0 ε
iN t,x

i,s . Remark that ϑs ∈ KT
min{0,1,···,N} = KT

0 and γs ∈
KT

min{−1,0,···,N−1} = KT
−1. Since g is Lipschitz continuous and of linear growth, we obtain∣∣E[g(X̄t,x

T )ϑT ]
∣∣ ≤ ∥g(X̄t,x

T )∥Lp∥ϑT ∥Lq ≤ C(T, x), (93)∣∣E[g(X̄t,x
T )γT ]εσ(t, x)

∣∣ ≤ εCLC(T, x). (94)

Also, as f is of linear growth, we have∣∣∣∣∣E[

∫ T

t

f(s, X̄t,x
s , 0, 0)ϑsds]

∣∣∣∣∣ ≤
∫ T

t

C(T, x)ds, (95)∣∣∣∣∣E[

∫ T

t

f(s, X̄t,x
s , 0, 0)γsds]εσ(t, x)

∣∣∣∣∣ ≤
∫ T

t

C(T, x)
1√
s− t

ds, (96)

where C(T, x) denotes a non-negative, non-decreasing and finite function of at most polynomial growth
in x depending on T . Then, we obtain estimates for uε,0,N and ∂xu

ε,0,Nσ:

|uε,0,N (t, x)| ≤ C(T, x), (97)

|∂xuε,0,Nσ(t, x)| ≤ C(T, x). (98)

Note that for k ≥ 1,

uε,k,N (t, x) = E[g(X̄t,x
T )ϑT ]

+E

[∫ T

t

f(s, X̄t,x
s , uε,k−1,N (s, X̄t,x

s ), ∂xu
ε,k−1,Nσ(s, X̄t,x

s ))ϑsds

]
,

∂xu
ε,k,Nσ(t, x) = E[g(X̄t,x

T )γT ]εσ(t, x)

+E

[∫ T

t

f(s, X̄t,x
s , uε,k−1,N (s, X̄t,x

s ), ∂xu
ε,k−1,Nσ(s, X̄t,x

s ))γsds

]
εσ(t, x),

with (93), (94) and∣∣∣∣∣E
[∫ T

t

f(s, X̄0,t,x
s , uε,k−1,N (s, X̄t,x

s ), ∂xu
ε,k−1,Nσ(s, X̄t,x

s ))ϑsds

]∣∣∣∣∣
≤
∫ T

t

C(T, x)ds, (99)∣∣∣∣∣E
[∫ T

t

f(s, X̄0,t,x
s , uε,k−1,N (s, X̄t,x

s ), ∂xu
ε,k−1,Nσ(s, X̄t,x

s ))γsds

]
εσ(t, x)

∣∣∣∣∣
≤
∫ T

t

C(T, x)
1√
s− t

ds. (100)

Then, recursively using (93), (94), (99) and (100) we obtain (49) and (50). 2

24



References

[1] J.M. Bismut, Conjugate Convex Functions in Optimal Stochastic Control, J. Political Econ., 3,
637-654, (1973).

[2] R. Carmona (editor), Indifference Pricing, Princeton University Press, (2009)

[3] J. Cvitanic and I. Karatzas, Hedging Contingent Claims with Constrained Portfolios, The Annals
of Applied Probability, 2, 652-681, (2003).

[4] J. Cvitanic, J. Ma and J. Zhang, Efficient Computation of Hedging Portfolios for Options with
Discontinuous Payoffs, Mathematical Finance, (2003).

[5] D. Crisan and F. Delarue, Sharp Derivative Bounds for Solutions of Degenerate Semi-linear Partial
Differential Equations, Journal of Functional Analysis, 263, 3024-3101, (2012).

[6] D. Crisan, K. Manolarakis and C. Nee, Cubature Methods and Applications, Paris-Princeton Lectures
on Mathematical Finance 2013, Springer, (2013).

[7] N. El Karoui, Peng and Quenez, Backward Stochastic Differential Equations in Finance, Mathemat-
ical Finance, (1997).

[8] M. Fujii and A. Takahashi, Analytical Approximation for Non-Linear FBSDEs with Perturbation
Scheme, International Journal of Theoretical and Applied Finance, Vol. 15, No. 5, (2012a).

[9] M. Fujii and A. Takahashi, Perturbative Expansion of FBSDE in an Incomplete Market with Stochas-
tic Volatility, Quarterly Jornal of Finance Vol.2, No.3, (2012b).

[10] M. Fujii and A. Takahashi, Collateralized CDS and Default Dependence -Implications for the Central
Clearing-, The Journal of Credit Risk, Vol.8-3, fall, (2012).

[11] M. Fujii and A. Takahashi, Derivative pricing under Asymmetric and Imperfect Collateralization and
CVA, Quantitative Finance, Vol. 13, No.5, pp.749-768, (2013).

[12] M. Fujii and A. Takahashi, Perturbative Expansion Technique for Non-linear FBSDEs with Inter-
acting Particle Method, Asia-Pacific Financial Markets, Vol 22, Issue 3, pp 283-304, (2015).

[13] M. Fujii, S. Sato and A. Takahashi, An FBSDE Approach to American Option Pricing with an
Interacting Particle Method, Asia-Pacific Financial Markets, Vol 22-3, pp 239-260, (2015).

[14] E. Gobet and C. Labert, Solving BSDE with adaptive control variate, SIAM Journal on Numerical
Analysis, Vol.48(1), pp.257-277, (2010).

[15] E. Gobet, J.-P. Lemor and X.A. Warin, Regression-based Monte Carlo method to solve backward
stochastic differential equations, The Annals of Applied Probability, Vol.15(3), pp.2172-2002, (2005).

[16] N. Kunitomo and A. Takahashi, The Asymptotic Expansion Approach to the Valuation of Interest
Rate Contingent Claims, Mathematical Finance, Vol.11, 117-151, (2001).

[17] N. Kunitomo and A. Takahashi, On Validity of the Asymptotic Expansion Approach in Contingent
Claim Analysis, The Annals of Applied Probability, 13, no.3, 914-952, (2003).

[18] S. Kusuoka, Malliavin Calculus Revisited, J. Math. Sci. Univ. Tokyo, 261-277, (2003).

[19] S. Kusuoka and D. Stroock, Applications of the Malliavin Calculus Part I, Stochastic Analysis
(Katata/Kyoto 1982) 271-306 (1984)

[20] C. Li, Managing Volatility Risk: Innovation of Financial Derivatives, Stochastic Models and Their
Analytical Implementation, Ph.D thesis in Columbia University, (2010).

[21] C. Li, Closed-form Expansion, Conditional Expectation, and Option Valuation, Mathematics of
Operations Research, Vol.39, Issue 2, pp.487-516, (2014).

[22] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and their Applications,
Springer, (2000).

[23] J. Ma and J. Zhang, Representation Theorems for Backward Stochastic Differential Equations, The
Annals of Applied Probability, (2002).

[24] R. Matsuoka, A. Takahashi and Y. Uchida, A New Computational Scheme for Computing Greeks by
the Asymptotic Expansion Approach, Asia-Pacific Financial Markets, Vol.11, pp.393-430, (2006).

[25] D. Nualart, The Malliavin Calculus and Related Topics, Springer, (2006).

[26] C. Nee, Lecture notes on Gradient bounds for Solutions of stochastic Differential Equations, Appli-
cations to numerical schemes, (2010).

25



[27] C. Nee, Sharp Gradient Bounds for the Diffusion Semigroup, Ph.D thesis in Imperial College London,
(2011).

[28] E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equation, Systems
Control Lett. 14, no. 1, 55-61, (1990).

[29] K. Shiraya, A. Takahashi and T. Yamada Pricing Discrete Barrier Options Under Stochastic Volatil-
ity, Asia-Pacific Financial Markets, Vol 19 -3, pp 205-232, (2012)

[30] A. Takahashi, An Asymptotic Expansion Approach to Pricing Contingent Claims, Asia-Pacific Fi-
nancial Markets, 6, 115-151, (1999).

[31] A. Takahashi, K. Takehara, An Asymptotic Expansion Approach to Currency Options with a Market
Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates, Asia-Pacific
Financial Markets, Vol.14-1,2, pp.69-121, (2007).

[32] A. Takahashi, K. Takehara and M. Toda, A General Computation Scheme for a High-Order Asymp-
totic Expansion Method, International Journal of Theoretical and Applied Finance, Vol.15-6, (2012).

[33] A. Takahashi. and T. Yamada, An Asymptotic Expansion with Push-Down of Malliavin Weights,
SIAM Journal on Financial Mathematics, 3, 95-136, (2012).

[34] A. Takahashi. and T. Yamada, On Error Estimates for Asymptotic Expansions with Malliavin
Weights -Application to Stochastic Volatility Models-, Mathematics of Operations Research, 40(3),
513-551, (2015).

[35] K. Yamamoto and A. Takahashi, A Remark on a Singular Perturbation Method for Option Pricing
under a Stochastic Volatility Model, Asia-Pacific Financial Markets, Vol.16-4, pp.333-345, (2009).

26




