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Abstract

This paper proposes a new approach to style analysis of mutual

funds in a general state space framework with particle filtering and

generalized simulated annealing (GSA). Specifically, we regard the ex-

posure of each style index as a latent state variable in a state space

model and employ a Monte Carlo filter as a particle filtering method,

where GSA is effectively applied to estimating unknown parameters.

An empirical analysis using data of three Japanese equity mu-

tual funds with six standard style indexes confirms the validity of our

method. Moreover, we create fund-specific style indexes to further

improves estimation in the analysis.

Keyword: Style analysis, Particle filtering, Monte Carlo filter,

Generalized simulated annealing, Mutual fund, State space model
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1 Introduction

It has been widely recognized particularly since the seminal work of Sharpe

(1992) that style analysis is an important process to select investment funds

as well as to monitor and evaluate funds’ actions, risks and performances.

For instance, it helps to clarify which fund’s style conforms to an in-

vestor’s own investment goal. Moreover, although each fund’s investment

report normally discloses its one-shot composition only annually or semi-

annually, 1 the return-based analysis with properly chosen style factors en-

ables us to assess funds’ risk-return profiles on a daily basis in a unified

and efficient manner. For example, one may decide and change allocations

to multiple equity funds by applying a style analysis with common stock

indexes, which represent investment categories such as large/middle/small

cap stocks, growth/value stocks and their combinations.

Also, investors are able to check and adjust their style factors and the

estimated exposures periodically by consulting funds investment reports.

Conversely, one might examine whether reported one-shot compositions at

specific timings are adequate, as compared to the past sequences of the one’s

own estimates.

In the current paper, we propose a new framework for style analysis

based on a Monte Carlo filter with generalized simulated annealing (GSA).

While a general state space model and a Monte Carlo filter are expected

to be powerful tools for style analysis, they are rarely applied to estima-

tions of mutual funds’ styles. As an example of their financial applications,

Takahashi and Sato (2001) successfully developed a method for empirical

analysis of the term structure models. This paper develops a state space

model for return-based style analysis of mutual funds with applying GSA to

estimation of model parameters.

Firstly, we suppose that there are n style indexes and that the rate of

return (from t to t+∆t), rt of a mutual fund is approximately expressed as

1Typically, these reports are published in a few months after each fund’s settlement

dates.

2



a portfolio consisting of these indexes.

rt =
n∑

i=1

βitIit + ut. (1)

In the equation, Iit denotes a rate of return (from t to t + ∆t) of a style

index i, the coefficient βit represents the so called style weight at t for the

index i, and ut is a residual. Estimating the coefficients βit, i = 1, · · · , n by

using observational data is main objective for style analysis. If each βit is

supposed to be invariant over time that is βit = βi, the problem is reduced

to a regression analysis under constraints that all βi are non-negative and

the sum of βi i = 1, · · · , n is equal to one; that is βi ≥ 0 for all i = 1, · · · , n

and
∑n

i=1 βi = 1. These constraints reflect the assumption that the fund is

a portfolio of n style indexes and only long positions are admitted. Then,

the coefficients can be estimated by a least square method with constraints.

This approach was initiated by Sharpe (1992). His framework is widely

used in practice as well as in academic research; for instance, see Busse

(1999), Fung and Hsieh (1997) and Chan, Chen and Lakonishok (2002).

From a different viewpoint, Brown and Goetzmann (1997) and Pattarina,

Paterlinib and Minervac (2004) proposed a new clustering method for style

analysis, which did not estimate the style weights.

As argued by Grinblatt, Titman and Wermers (1995) and Ferson and

Schadt (1996), it may not be acceptable to apply the models with time-

invariant weights to actual funds’ data because a portfolio manager dynam-

ically change the portfolio weights. Although Sharp (1992) tried to estimate

the coefficients by using a window regression in order to capture dynamic

variation of the weights of indexes, it is a hard task to determine the optimal

width of the window. Also, theoretically speaking, it is not appropriate to

estimate the coefficients βit in the equation (1) by a window regression, be-

cause there are too few observations relative to the number of the coefficients

(βit). An estimation for this type of models is made possible by assuming a

time series structure in time-varying coefficients based on a Bayesian frame-

work. In particular, we regard the coefficients of styles as state variables and
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regard a fund’s return and style indexes as observations. Thus, the current

paper proposes a new approach based on a general state space model and a

Monte Carlo filter frequently used in Bayesian frameworks.

In a Bayesian approach, although Swinkels and van der Sluis (2006) and

Bodson, Coën, and Hübner (2010) presented applications of Kalman filter for

the estimation of time-varying weights, they ignore non-negative constraints

of weights. Marques, Pizzinga and Vereda (2012) used a restricted Kalman

filter to satisfy the constraints. However, it is almost impossible to trace

sudden changes in the weights by those existing methods, which was pointed

out by Annaert and Campenhout (2007).

In order to overcome the problems, a previous unpublished discussion

paper, Kobayashi, Sato and Takahashi (2005) proposed a style analysis by

utilizing a state space model. As a subsequent work, the current paper

presents a new framework for style analysis based on a general state space

model: it develops a system model with the non-negative constraints of

weights which allows compound Poisson system noises in addition to Gaus-

sian noises, proposes a new estimation method that is, a Monte Carlo filter

with generalized simulated annealing (GSA), and implements an empirical

analysis using different typical Japanese mutual funds’ recent data with our

own fund-specific style indexes.

Specifically, for estimating parameters in the state space model, our GSA

method is more efficient than a grid search and a self-organizing method used

in the previous work, which will be explained to the detail in Section 3.2.

Further, in the empirical analysis, through examining investment reports of

the mutual funds in detail, we find that existing indexes are not appropriate

for the style analysis of some mutual funds. Even for those cases, we are able

to create more adequate ones based on the reports, and confirm that our

method is very effective in practical style analysis by using the new indexes,

which will be clarified in Section 4.2.

The paper is organized as follows. The next section overviews a general

state space model related to this study. Section 3 explains a modeling frame-
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work for style analysis with several concrete examples useful in applications.

Then, we introduce a generalized simulated annealing (GSA) method for es-

timation of parameters in our models. Section 4 tests the validity of our

method by using historical data of three Japanese mutual funds with exist-

ing and our newly developed style indexes. Section 5 concludes. Appendix

1 provides a typical algorithm of Monte Carlo filtering, and Appendix 2

describes the method applied to our empirical analysis step by step.

2 State Space Modeling

In this section, we introduce a general state space model and a Monte Carlo

filter, which will be applied to developing a new method for style analysis

of mutual funds in the following sections.

Suppose that some observations are given and that they are determined

by unobservable important variables called ”state variables” as well as by

observable exogenous variables and noises. In order to estimate state vari-

ables, a state space model consisting of a system model and an observation

model is very effective. A system model determines the dynamics or time

series structures of state variables where Markovian structure is assumed,

while an observation model mainly describes the relation between observa-

tion variables and the state variables.

We introduce a state space model that consists of the following system

model and the observation model: Xt = F (Xt−∆t, vt) (system model)

Zt = H(Xt) + ut (observation model),
(2)

where Xt, Zt and ∆t denote a N dimensional state vector, a M dimensional

observation vector at time t and the time interval of observational data,

respectively while vt and ut denote the system noise and the observational

noise whose density functions are given by q(v) and ψ(u) respectively. F

and H are generally non-linear functions of RN×RN 7→ RN and RN 7→ RM ,

and the initial state vector X0 is assumed to be a random variable whose
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density function is given by p0(X).

Further, in order to handle the cases that explicit functional relations

such as F and H cannot be obtained, we can introduce a more general state

space model based on conditional distributions: Xt ∼ F|Xt−∆t (system model)

Zt ∼ H|Xt (observation model),
(3)

where F|Xt−∆t and H|Xt denote a conditional distribution of Xt given

Xt−∆t and that of Zt given Xt respectively. See Kitagawa and Gersh (1996)

for more details of a state space model.

In style analysis we can observe only the returns of a fund, and our

objective is to estimate time-varying style exposures by using style indexes.

In the framework of state space model, the equation (1) is thought as an

observation model. Then we regard style exposures and style indexes as

unknown state variables and observable exogenous variables respectively in

the equation. In modeling dynamics of style exposures in the system model,

we need to consider the restriction of style exposures such that they should

be nonnegative and the sum of them must be equal to one. Moreover, we

take into account the possibility of sudden changes of style exposures. Our

general state space modeling approach has an advantage in a sense that

various types of system models can be applied. For example, we may utilize

a compound Poisson or a normal mixture distribution of the system noise

to express sudden changes of style exposures. However, the resulting system

and observation models become nonlinear and non Gaussian, which requires

special consideration in estimation.

Our task is to estimate unobservable state variables X through observ-

able variables Z. We need to notice that the standard Kalman filter cannot

be justified in the situation that the system or the observation models are

non-linear or non-Gaussian. Instead a particle filter is a powerful estimation

technique that can be applied to the difficult situation.

While several approaches are proposed for particle filter (see Doucet,

Barat, and Duvaut (1995), Durbin, and Koopman (1997), Gordon, Salmond,
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and Smith (1993), Tanizaki (1993), and Doucet, de Freitas and Gordon, eds.

(2001) for instance.), we take a Monte Carlo filter developed by Kitagawa

(1996), which emphasizes practical applications and presents the concrete

computational procedures under fairly general assumptions. (A good exam-

ple is Higuchi (1999).) Following the approach, we approximate the distribu-

tion of a state vector Xt by many realizations drawn from that distribution.

We call those realizations as ”particles”. Given m particles of a state vector

{ξ[1]t−∆, · · · , ξ
[m]
t−∆}, we can obtain a one step ahead predictor from the system

model (2) as a set of particles:

p
[k]
t = F (ξ

[k]
t−∆, v

[k]
t ).

Then we have a filter distribution of Xt through resampling from the predic-

tor distribution {p[1]t , · · · , p
[m]
t }. In resampling, a higher weight is assigned

on p
[k]
t which fits better to a given observation Zt. The resampled particles

denoted by {ξ[1]t , · · · , ξ[m]
t } are regard as the filter estimates of Xt. We re-

peat these steps up to T . Appendix 1 provides more explanations and an

algorithm of Monte Carlo filtering. Moreover, Appendix 2 describes how to

apply the general method to a practical example of style analysis.

3 Style Analysis in a General State Space Model

This section explains an application of state space modeling to style analysis

for mutual funds and introduces generalized simulated annealing (GSA) for

the parameters’ estimation.

3.1 Modeling Framework for Style Analysis

First, we consider a system model. Essentially, we regard the coefficients

of style indexes denoted by βit, i = 1, · · · , n in the equation (1) as state

variables which follow stochastic processes with constraints. Moreover, we

do not model βit directly, but introduce more fundamental state variables

Y behind βit which determines the dynamics of βit.
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Let us define Rn+k-valued state variables Xt = (Yt, βt)
′, where the Rk-

valued state variables Yt follow

Yt = f(Yt−∆t, βt−∆t, t) + vt.

Here,

Yt = (Y1t, · · · , Ykt),

βt = (β1t, · · · , βnt),

and the system noise vt follows a distribution A whose density function is

given by q(v):

vt ∼ distribution A.

This system model includes the model such that the current Yt depends not

only on Yt−∆t in the previous period, but also on βt−∆t. On the other hand,

the state variables βit, i = 1, · · · , n are determined based on the current Yt

so that βit satisfy the constraints:

βit ≥ 0 for all i = 1, · · · , n,
n∑

i=1

βit = 1.

We are able to introduce various formulations for the relation between βt

and Yt. In particular, we show two examples below.

(i) The first example describes the case that an analytic expression between

these variables can be obtained. For instance, βit, i = 1, · · · , n are given by

βit = hi(Yt, t), i = 1, · · · , n, (4)

where hi(Yt, t), i = 1, · · · , n are R-valued some functions of Yt and t, so that

the constraints are satisfied. For instance, we can use a logit transformation.

That is, βit, i = 1, · · · , n are determined by

βit = hi(Yt, t) =
eYit∑n
i=1 e

Yit
.
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Hence, in this case the system equation is expressed as follows:

Yt = f(Yt−∆t, βt−∆t, t) + vt, (5)

βit = hi(Yt, t) =
eYit∑n
i=1 e

Yit
, i = 1, · · · , n,

the system noise vt ∼ distribution A.

We note that the equation (5) corresponds to F (·) in the equation (2) of

the state space model. The functional form in the equation (5) reflects our

assumption stated before that the fund can be regarded as a portfolio of

style indexes with long positions. Those constraints can be captured by the

functions hi(·), i = 1, · · · , n such as in (5). We also note that βt and Yt are

estimated by using a Monte Carlo filter since they are not observable, the

functions f and h are non-linear in general, and the system noise vt may

follow a non-normal distribution.

(ii) In the second example, we apply models to the case that it is difficult

to capture the required constraints as explicit functions. In the case, we go

back to a general state space framework introduced in the equation (3). We

first notice that the condition
∑n

i=1 βit = 1 allows us to reduce the dimension

of β = (β1, · · · , βn) from n to n− 1. Next we fix some j ∈ {1, 2, · · · , n} and

introduce the notation x(j) as a vector of which the j-th element is removed

from a vector x. For example, β
(j)
t is defined as

β
(j)
t ≡ (β1t, · · · , βj−1t, βj+1t, · · · , βnt).

Let k = n, and hence Yt = (Y1t, · · · , Ynt). Next, let some j ∈ {1, · · · , n}

fixed. For each i = 1, · · · , n, i ̸= j, we assume that Yit is generated by the

equation:

Yit = fi(Yt−∆t, βt−∆t, t) + vit. (6)

Let us define a set A
(j)
t as

A
(j)
t = {0 ≤ Y1t, · · · , 0 ≤ Yj−1t, 0 ≤ Yj+1t, · · · , 0 ≤ Ynt,

∑
i ̸=j

Yit ≤ 1}. (7)
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Then, β
(j)
t is generated according to the distribution function G(y(j)) which

is defined by

G(y(j)) = Pr({Y (j)
t ≤ y(j)}|A(j)

t ) =
Pr({Y (j)

t ≤ y(j)} ∩A(j)
t )

Pr(A
(j)
t )

, y(j) ∈ R.

(8)

Finally, βjt is determined by

βjt = 1−
∑
i ̸=j

βit.

Moreover, in order to avoid any bias caused by j being fixed, we randomly

choose j ∈ {1, · · · , n} with probability 1
n at each time point t.

In the following section, we will apply the example (i) as well as the

example (i) combined with the example (ii) to an empirical analysis.

Finally, let us consider the observation equation. That is, a fund return

rt is determined by

rt =
n∑

i=1

βitIit + ut, (9)

where Iit, i = 1, · · · , n represent style index returns and the observation

noise (ut)t follows a distribution B of which density function is given by

ψ(u),

(ut)t ∼ distribution B.

The equation (9) corresponds to H(·) in the equations (2) of the state space

model. Here, we note that the fund return rt and style index returns Iit,

i = 1, · · · , n are obtained as observations.

3.2 Estimation Method for Parameters

This subsection explains an estimation method for parameters in models,

which are variances of system noises in our model for an empirical study in

the next section.

We apply the maximum likelihood estimation (MLE) method in pa-

rameter estimation. It is well known that because a likelihood function
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obtained by a Monte Carlo filter is not smooth in the parameters mainly

due to the Monte Carlo noises, optimization methods based on gradients

and numerical differentiations cannot be applied. While a grid search is an

alternative method, it generally takes high computational costs to deter-

mine an adequate parameter space before the search. Although we may use

self-organization method, where unknown parameters regarded as state vari-

ables are time variant, we have difficulty in interpretation of the obtained

parameters.

To avoid problems above, we employ a generalized simulated anneal-

ing (GSA) method, which is efficient for the parameter estimation. In the

method, it is enough to set only the initial parameter distribution and cool-

ing schedule (i.e. characterization of the convergence from the initial pa-

rameter distribution in the optimization). Moreover, by setting the initial

distribution to take a wide parameter space with an appropriate cooling

schedule, we are able to obtain global optima easily and substantially re-

duce computational costs. Hereafter in this subsection, let us explain our

method in detail.

Let a D-dimensional vector θ stand for unknown parameters and l(θ)

the log-likelihood function defined in Appendix 1 for a given model.

In order to maximize this log-likelihood function with respect to param-

eters, simulated annealing is an appropriate method rather than other (de-

terministic) numerical optimizations, because there exist substantial Monte

Carlo noises in the likelihood computed by the Monte Carlo filter.

In particular, we utilize the following generalized simulated annealing

(GSA) method proposed by Tsallis and Stariolo (1996) for estimation of the

parameters in the maximal likelihood. Let us define gqV (∆θs) as a proposal

distribution of ∆θs in a transition, θs+1 := θs + ∆θs. Then, adopting the

equation (21) in Tsallis and Stariolo (1996), we suppose

gqV (∆θs) = tν

0D,
[
T V
qV
(s)
]2/(3−qV )

ν(qV − 1)
ID

 , ν =
2

qV − 1
− 1, (10)
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with

T V
qV
(s) = T V

qV
(1)

2qV −1 − 1

(1 + s)qV −1 − 1
, (11)

where tν(µ,Σ) denotes a (central)D-dimensional t-distribution with location

µ, scale matrix Σ and freedom ν. (0D and ID denote the D-dimensional

zero vector and the D ×D identity matrix, respectively.) T V
qV
(1) is a given

constant.

Also, when l(θs) > l(θs+1), following the equation (5) with some remarks

in p.398 of Tsallis and Stariolo (1996), we set the acceptance rate of the

sample θs+1 drawn from the proposal distribution as follows:

PqA(θs → θs+1) =

[
1 + (qA − 1)

l(θs)− l(θs+1)

TA
qA
(s)

]−1/(qA−1)

+

, (12)

TA
qA
(s) = T V

qV
(s), (13)

where [x]+ := max{x, 0}.

For our empirical analysis in the next section, we select qA = 1.1, qV =

2.5 and T V
qV
(1) = 1.5 by searching the optimal values from the following

numerical tests.

Firstly, in order to determine a constant T V
qV
(1) that is able to provide

an appropriate search interval, let us consider the 99% confidence interval

of g1(∆θ1), an initial proposed distribution for the case of qV = 1 (normal

distribution). Because the tail of probability density function is fatter when

qV > 1, considering the case of qV = 1 is sufficient to obtain an adequate

search interval. Specifically, since the differences between initial and op-

timized parameters rarely become larger than 2 and the 99% quantile of

g1(∆θ1) is 2.01 for T V
1 (1) = 1.5(i.e. T V

qV
(1) with qV = 1 is 1.5), we set

T V
qV
(1) = 1.5 for all qV .

Furthermore, referring to the result for the numerical experiments in

Tsallis and Stariolo (1996), we implement the optimization with four com-

binations of the values for the pair (qA, qV ) drawn from qA = {1.1,−5.0}

and qV = {2.5, 2.7}, in order to find which parameter set is able to provide
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an efficient maximization of the log-likelihood function in each (optimiza-

tion) step. As a result, we confirm that (qA, qV ) = (1.1, 2.5) gives the most

efficient optimization, regardless of the input data.

4 Empirical Analysis

This section explains the results of an empirical analysis using data of three

Japanese mutual funds 2 and style indexes. We select data of three equity

funds and six standard style indexes as follows: Three funds are A: Nissei

TOPIX index fund3 (Feb. 2003 – Sep. 2015), B: Nomura Japanese equity

strategic fund4 (Sep. 2000 – Sep. 2015), C: Active Nippon5 (Nov. 1999

– Sep. 2015), and six standard style indexes consist of Russell-Nomura’s

SV(small-value), SG(small-growth), MV(mid-value), MG(mid-growth), TV(top-

value) and TG(top-growth) 6 . Figures 1,2 and Table 1 show these data and

the correlation matrix respectively. We notice that there exist high correla-

tions among the style indexes.

2These data are downloaded from web pages of ”Morningstar”.
3Nissei Asset Management
4Nomura Asset Management
5Daiwa Asset Management
6These indexes are developed by Financial Engineering & Technology Research Center

of Nomura Securities and Russel Investment. The intellectual property right and any

other rights, in Russell/Nomura Japan Equity Index belong to Nomura Securities Co.,

Ltd. (”Nomura”) and Frank Russell Company (”Russell”). Nomura and Russell do not

guarantee accuracy, completeness, reliability, usefulness, marketability, merchantability or

fitness of the Index, and do not account for business activities or services that any index

user and/or its affiliates undertakes with the use of the Index.
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Figure 1: Fund price (blue: A, red: B, black: C, Dec.2002=100)

14



Time

2004 2006 2008 2010 2012 2014 2016

10
0

20
0

30
0

40
0

Figure 2: Standard Style Indices (blue: SMALL, red: MID, black: TOP,

solid: VALUE, dots: GROWTH, Dec.2002=100)
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Fund A Fund B Fund C TV TG MV MG SV SG

Fund A 1.00 0.99 0.97 0.95 0.96 0.97 0.96 0.93 0.88

Fund B 0.99 1.00 0.97 0.93 0.96 0.96 0.97 0.93 0.90

Fund C 0.97 0.97 1.00 0.90 0.94 0.94 0.96 0.92 0.90

TV 0.95 0.93 0.90 1.00 0.90 0.92 0.86 0.84 0.76

TG 0.96 0.96 0.94 0.90 1.00 0.90 0.93 0.85 0.81

MV 0.97 0.96 0.94 0.92 0.90 1.00 0.93 0.94 0.86

MG 0.96 0.97 0.96 0.86 0.93 0.93 1.00 0.91 0.92

SV 0.93 0.93 0.92 0.84 0.85 0.94 0.91 1.00 0.92

SG 0.88 0.90 0.90 0.76 0.81 0.86 0.92 0.92 1.00

Table 1: Correlation among funds’ returns and returns of standard style

indexes

4.1 Analysis with Standard Style Indexes

A significant feature in this analysis is that since we obtain annual (or semi-

annual) investment reports of the target mutual funds 7, we know annually

or semi-annually, the exact compositions of stocks in the funds and which

style indexes each stock belongs to. Thus, we are able to calculate the true

weights, and check periodically (annually or semi-annually) how close to the

true ones our estimated style weights are. Here, we remark that each time-t

true weight for a style represents the ratio of time-t total values of stocks

classified into the corresponding style relative to the time-t fund value.

Moreover, if each portfolio of the stocks classified into each style repli-

cates the corresponding style very well, then the fund can be regarded as

a portfolio of the standard style indexes, that is the observation equation

(1) is valid, and we are able to evaluate our method based on the equation.

Hereafter, we first implement the analysis under the assumption that the

equation (1) holds and come back to the issue whether the assumption is

7We have obtained the data in the reports relevant to our analysis from Nomura Re-

search Institute.
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appropriate.

Next, let us explain our model for this analysis, which is a model with

jump system noise. Firstly, regarding the system model in this analysis, we

combine two models introduced as the examples (i) and (ii) in the previous

section. In particular, we assume that

Y ′
it = fi(Yt−∆t, βt−∆t, t) + vit = log(βi,t−∆t) + vit, (14)

Yit =
eY

′
it∑n

i=1 e
Y ′
it

+ wit, i = 1, · · · , n, (15)

where each system noise vit, wit follows vit ∼ N(0, σ2i )

wit =
∑N

j=1 xj , N ∼ Pois(λ), xj ∼ N(0, c2).
(16)

Here, λ is fixed as 0.06 in order to avoid an identification problem, and we

confirm that the selection of λ does not affect the results of estimating the

weights.

This system model describes that each Y ′
i is generated around βi in the

previous period by adding a system noise. Then, we normalize Y ′
t and add

a jump noise. Moreover, we generate

β
(j)
t ≡ (β1t, · · · , βj−1t, βj+1t, · · · , βnt),

which follows a conditional distribution expressed as the equations (8) and

(15) by using rejection method to select samples satisfying the condition (7).

Here, the rejection method is a statistical method: it takes the sample

which satisfies the conditions, while discarding one that does not satisfy

those conditions until a sufficient number of samples are obtained.

We also assume that the observation noise follows a i.i.d.(independent

identically distributed) normal distribution in the equation (9), and estimate

state variables by Monte Carlo filtering. We utilize the generalized simulated

annealing (GSA) method introduced in the previous section for estimating

parameters by maximization of a likelihood of this model.
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One of the reasons to take this model is that it is a natural extension

of a random walk, which is neutral in model selection in a sense that it

has no bias for the changes in the weights from the current period to the

next period as long as the constraints are satisfied. That is, the weights

in the next period is modeled around those in the current period with a

noise including jumps, which is expected to capture sudden changes in the

weights.

Firstly, we report the estimated parameters in Table 2. We notice that

there are some difference in estimated standard deviations of system noises

between our model (which we call the jump model, hereafter) and the non-

jump model (wit ≡ 0 in (15)). Because the estimated standard deviations of

the jump term, c are relatively large, the jump model seems to be effective

for all three funds.

(a) Jump Model

TV TG MV MG SV SG Jump

Fund σ1 σ2 σ3 σ4 σ5 σ6 c

A 0.107 0.020 0.056 0.109 0.043 0.314 0.936

B 0.064 0.020 0.191 0.075 0.234 0.027 0.996

C 0.217 0.512 0.055 0.050 1.341 0.111 0.776

(b) Non-jump Model (wit ≡ 0 in (15))

TV TG MV MG SV SG Jump

Fund σ1 σ2 σ3 σ4 σ5 σ6 c

A 0.028 0.002 0.137 0.192 0.010 0.083 -

B 0.068 0.052 0.079 0.130 0.282 0.425 -

C 0.322 0.230 0.110 0.154 1.387 0.131 -

Table 2: Estimated standard deviation of system noises
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We also show the convergence of our generalized simulated annealing (GSA)

for the case of Fund B in Figure 3 and 4. Those figures show that the

convergence is completed and the speed is very fast, which demonstrates

the validity of our new estimation method. We obtain similar results for

Funds A and C and hence, omit to show the results.
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Figure 3: Convergence of Generalized Simulated Annealing for Fund B (1-

100)
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Figure 4: Convergence of Generalized Simulated Annealing for Fund B (101-

1000)

Next, Figure 5-7 show the results for the smoothing estimated weights

of the indexes with the true weights for each fund. In the results of our state

space models, we use a fixed-lag smoother8 proposed by Kitagawa and Sato

8We set the lag to be 10.
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(2001). For comparative purpose, we also implement a non-jump model (i.e.

wit ≡ 0 in (15)) as well as a window regression. 9

Comparing the estimated weights with the true ones in each graph, we

can observe that the estimates by the Monte Carlo filter are better than

those by the window regression.

(a) True weights (b) MC filter with Jump Model
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(c) Window regression (d) MC filter with Non-Jump model
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Figure 5: Smoothing results for Fund A

9We use window-regression with past 24 months. Results are shown only from the

second year because the estimated weights by a window regression are not obtained for

the initial period.
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(a) True weights (b) MC filter with Jump Model
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(c) Window regression (d) MC filter with Non-Jump model
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Figure 6: Smoothing results for Fund B

22



(a) True weights (b) MC filter with Jump Model
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(c) Window regression (d) MC filter with Non-Jump model
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Figure 7: Smoothing results for Fund C

We also calculate Mean Absolute Error (MAE) defined below for a quan-

titative comparison of the estimated weights βit.

MAE :=
1

NT0

6∑
i=1

∑
t∈T0

|βestimate
it − βtrueit |,

where T0 is the set of observed periods of the true weights and NT0 is the

total number of t in the set. MAE shows the absolute difference between the

true weights and the estimated weights per a time period, and it is expected

that MAE becomes smaller for the better estimation. Tables 3-5 show the

results, which indicate our method with jump model works better than the

window regression.
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TV TG MV MG SV SG MAE

MC Filter for jump model 0.014 0.010 0.009 0.017 0.022 0.017 0.090

MC Filter for non-jump model 0.014 0.012 0.017 0.029 0.030 0.012 0.115

Window regression 0.013 0.016 0.015 0.024 0.021 0.015 0.105

Table 3: Mean absolute error of estimated weights for Fund A

TV: top value, TG: top growth, MV: mid value, MG: mid growth, SV: small

value, SG: small growth.

Non-Jump model: the model without jump-noise in (15).

TV TG MV MG SV SG MAE

MC Filter for jump model 0.063 0.058 0.059 0.079 0.059 0.023 0.343

MC Filter for non-jump model 0.043 0.050 0.071 0.097 0.049 0.023 0.334

Window regression 0.084 0.088 0.094 0.098 0.074 0.049 0.487

Table 4: Mean absolute error of estimated weights for Fund B

TV TG MV MG SV SG MAE

MC Filter for jump model 0.082 0.080 0.057 0.163 0.068 0.053 0.504

MC Filter for non-jump model 0.103 0.090 0.075 0.178 0.094 0.063 0.603

Window regression 0.100 0.098 0.068 0.187 0.073 0.081 0.608

Table 5: Mean absolute error of estimated weights for Fund C
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Next, we report the AICs for our jump model and non-jump model in

Table 6. The jump model gives better AIC for Fund C, while the non-jump

model does better for Fund A and B. Particularly, for Fund A, MAEs are

small and similar by these three methods, because this fund is an index fund

and its weights do not change largely. On the other hand, since Fund B and

C are active fund and their weights change largely, our methods become

effective.

Fund A Fund B Fund C

Jump model -1466.81 -1260.952 -1049.056

Non-jump model -1472.604 -1264.408 -1048.512

Table 6: AIC for jump model and non-jump model (Model without jump-

noise in (15))

However, there is still significant difference between the true weights

and estimated weights in Fund C. Then, in order to examine the reason we

simulate the returns by using the true weights with standard style indexes

and compare them with actual returns of Funds A, B and C. The correlations

between them for Funds A and B are 0.999 (R2 is 0.998.) and 0.992 (R2

is 0.984.), respectively. Figure 8 shows Fund A, B and C prices relative to

the initial price of each observation respectively. Because fund’s actual and

simulated returns are highly correlated for Fund A and Fund B, simulated

prices are close to actual prices. On the other hand, the correlation for Fund

C is 0.978 (R2 is 0.957.) although it is expected to be close to one. Then, in

Figure 8, we observe more differences between actual prices and simulated

prices in Fund C than those in Fund A and B.
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Figure 8: Fund prices simulated with actual and simulated returns

In addition, we have observed from Table 3-5 that the MAEs for Funds A
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and B which exhibit high correlations are much smaller than the MAEs for

Fund C. Judging from these results, we may conclude that the assumption

that the fund can be approximated by a portfolio of the standard six style

indexes is appropriate for Funds A and B, while it is less appropriate for

Fund C. The next subsection will investigate this point further.

4.2 Analysis with New Style Indexes

In order to improve style estimates especially for Fund C, we create fund-

specific style index returns, denoted by I
(fund)
i,t of style i ∈ {TV,TG,MV,MG,SV,SG}

at observation time t. Moreover, let us define F (fund)
a(t) as the set of stocks

invested by ”(fund)” at a(t), where each stock is labeled by different j ∈ N

(the set of natural numbers) in the set F (fund)
a(t) , and a(t) is the latest time

point when the fund’s report is released before time t, that is

a(t) = max
k

{ak} such that ak < t.

Here, {ak} denotes a set of time points when the fund’s investment reports

are released annually or semi-annually. We also define G(i)
b(t) as the set of

stocks classified into style i at b(t), where b(t) is the latest time point when

the style classification table10 is released before time t, that is

b(t) = max
k

{bk} such that bk < t.

{bk} denotes a set of time points when the style classification reports are

released annually. Then, we can express the subset of stocks held by ”(fund)”

and classified into style i as follows:

J (fund,i)
t = {j|j ∈ F (fund)

a(t) ∩ G(i)
b(t)}.

Now, our new index return I
(fund)
i,t of style i at time t for ”(fund)” is

defined as an weighted average of these stocks’ returns, where the stock j’s

weight are assumed to be determined by the j’s weights in the fund at time

10This table is released by Financial Engineering & Technology Research Center of

Nomura Securities in every November.
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a(t), denoted as w
(fund)
j,a(t) (j ∈ F (fund)

a(t) ,
∑

j w
(fund)
j,a(t) = 1). We note that those

weights are also obtained in the fund’s investment reports.

Thus, we define a new fund-specific style index i’s return I
(fund)
i,t as

I
(fund)
i,t =

∑
j∈J (fund,i)

t

w
(fund)
j,a(t) rj,t∑

j∈J (fund,i)
t

w
(fund)
j,a(t)

,

where rj,t denotes stock j’s total return at time t.

Next, we calculate such new index returns for Funds B and C, which are

denoted by I
(FundB)
i,t and I

(FundC)
i,t , i ∈ {TV,TG,MV, MG,SV,SG}, respec-

tively. Then, the absolute differences between actual and simulated returns

are shown in Figure 9. These figures show that the differences are smaller

than those simulated from the standard six style indexes used in the previ-

ous subsection. Also, the correlations between actual and simulated returns

become higher as 0.996 (R2 is 0.993) for Fund B and 0.981 (R2 is 0.963) for

Fund C.
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Figure 9: Absolute difference between actual and simulated returns

Moreover, we present the funds’ prices calculated from actual and sim-

ulated returns in Figure 10. This figure shows that the simulated prices

with the new index returns I
(FundB)
i,t are a bit higher than the actual ones

for Fund B, mainly due to changes in the weights between two consecutive

timings when the fund’s investment reports are released, or/and the fund

management fees and transaction costs paid from the fund’s asset. Figure

10 also demonstrates that simulated Fund C prices with the new index re-

turns I
(FundC)
i,t get closer to actual prices, which implies that our new indexes

successfully explain the Fund C’s returns.
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Figure 10: Fund prices simulated with actual and simulated returns using

standard and new index

Next, we re-estimate style weights and re-calculate MAEs and AICs

using these indexes as explanation variables. The estimates for the style

weights are shown in Figure 11 and 12 for Fund B and Fund C, respectively.

Table 7 and 8 show MAEs for Funds B and C, respectively.

It is observed in Figure 11 and 12 that we can identify the weights among

growth and value styles of small and middle caps (i.e. SG,SV,MG,MV in

the figures), much better than in the previous section using the standard

style indexes. In particular, over-estimating results for the weight of middle

growth are resolved for both of Fund B and Fund C, because the new indexes
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do not reflect price changes of the stocks that are not held by the fund. As

a result, the correlation between middle value index and middle growth

index becomes smaller. For example, the correlation between I
(FundC)
MV,t and

I
(FundC)
MG,t is 0.686 which is lower than that for the standard indexes, 0.81911.

This implies that we are able to avoid bias caused by multi co-linearity

among explanation variables.

In Table 7 and 8, we can observe that MAEs become smaller than the

ones when we use the standard style indexes in the previous subsection.

Moreover, we emphasize that the MC filter method provides the better re-

sults than the window regression, particularly, MC filter with jumps gives

the best. Also, AICs are presented in Table 9, where the better results are

obtained by applying our new indexes.

In sum, we have found that existing standard six indexes are not nec-

essarily appropriate in the style analysis for some mutual funds, especially

for Fund C in our example. Even for such funds, we are able to create more

adequate ones based on the funds’ investment reports, and confirm that our

method with jump system noises is very effective in estimation of the style

weights based on the new indexes.

11These results are estimated using the observations for Fund C from Nov. 1999 to Sep.

2015
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(a) True weights (b) MC filter with Jump Model
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(c) Window regression (d) MC filter with Non-Jump model

0.00

0.25

0.50

0.75

1.00

2004 2006 2008 2010 2012 2014
Year

W
ei

gh
t

variable

SG

SV

MG

MV

TG

TV

0.00

0.25

0.50

0.75

1.00

2004 2006 2008 2010 2012 2014
Year

W
ei

gh
t

variable

SG

SV

MG

MV

TG

TV

(Model with wit ≡ 0 in (15))

Figure 11: Smoothing results for Fund B using new indexes
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(a) True weights (b) MC filter with Jump Model
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(c) Window regression (d) MC filter with Non-Jump model
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Figure 12: Smoothing results for Fund C using new indexes

TV TG MV MG SV SG MAE

MC Filter for jump model 0.040 0.043 0.026 0.040 0.028 0.012 0.189

MC Filter for non-jump model 0.026 0.041 0.036 0.046 0.031 0.022 0.203

Window regression 0.046 0.044 0.040 0.045 0.051 0.024 0.251

Table 7: Mean absolute error of estimated weights for Fund B using new

indexes

33



TV TG MV MG SV SG MAE

MC Filter for jump model 0.049 0.103 0.057 0.059 0.035 0.031 0.333

MC Filter for non-jump model 0.055 0.106 0.075 0.074 0.040 0.040 0.390

Window regression 0.085 0.139 0.086 0.071 0.062 0.049 0.493

Table 8: Mean absolute error of estimated weights for Fund C using new

indexes

Fund B Fund C

Jump model -1332.418 -1120.234

Non-jump model -1337.774 -1111.236

Table 9: AIC for jump model and non-jump model : re-estimation on Funds

B and Fund C using new indexes

Finally, it is noted that despite the similarity of price time series of

these three funds shown in Figure 1, our method successfully detects the

differences of styles among these funds, which may show a potential of our

method to make a new discovery in style analysis of mutual funds.

5 Conclusion

We have developed a new method for estimating style weights of mutual

funds in a general state space framework with particle filtering, particularly

Monte Carlo filter. Moreover, we have successfully applied generalized sim-

ulated annealing (GSA) to estimation of the model parameters. To the best

of our knowledge, it is a novel estimation method in particle filtering for a

statistical application in finance.

We have also implemented empirical analysis by using the data of three

Japanese mutual funds and six standard style indexes to confirm advantage

of our approach over a window regression, which is frequently applied in
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practice. Further, we have examined annual or semiannual investment re-

ports for the mutual funds in detail, and found that the standard indexes

are not necessarily adequate in style analysis, especially for Fund C in our

examples.

Even for such funds, we have created fund-specific style indexes to obtain

more accurate estimates of the weights. Then, a numerical experiment has

demonstrated that our method with jump system noises works much better

than the window regression. Developing new investment strategies based on

effective use of the present result will be one of our next research topics.

Appendix 1: Algorithm for Monte Carlo Filter

This appendix describes the outline of a standard algorithm of Monte

Carlo filter based on Kitagawa(1996).

First, we summarize the notations: p(Xt|Zt−∆t), called “one step ahead

prediction” denotes the conditional density function of a state vector Xt

given an observation vector Zt−∆t where ∆t is the interval of time series

data. p(Xt|Zt), called “filter” denotes the conditional density function of

Xt given Zt. {p[1]t , · · · , p
[m]
t } and {ξ[1]t , · · · , ξ[m]

t } represent the vectors of the

realization of m trials of Monte Carlo simulations from p(Xt|Zt−∆t) and

p(Xt|Zt), respectively. Then, if we set {ξ[1]0 , · · · , ξ[m]
0 } as the realization of

Monte Carlo from p0(X), the density function of the initial state vector X0,

an algorithm of Monte Carlo filter is as follows.

[Summary of Algorithm for Monte Carlo filter]

1. Generate the initial state vector {ξ[1]0 , · · · , ξ[m]
0 }.

2. Apply the following steps (a)∼(d) to each time t = 0,∆t, 2∆t, · · · , (T∗−

∆t), T∗ where T∗ denotes the final time point of the data.

• (a) Generate the system noise v
[k]
t , k = 1, · · · ,m according to the
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density function q(v).

• (b) Compute for each k = 1, · · · ,m

p
[k]
t = F (ξ

[k]
t−∆t, v

[k]
t ) (the system model in (2))

or

p
[k]
t ∼ F|ξ[k]t−∆t (the system model in (3)).

• (c) Evaluate the density function of ψ(u) at u = Zt − H(p
[k]
t ),

k = 1, · · · ,m and define those as α
[k]
t , k = 1, · · · ,m.

• (d) Resample {ξ[1]t , · · · , ξ[m]
t } from {p[1]t , · · · , p

[m]
t }. More precisely,

resample each ξ
[k]
t , k = 1, · · · ,m from {p[1]t , · · · , p

[m]
t } with the

probability given by:

Prob.(ξ
[k]
t = p

[i]
t |Zt) =

α
[i]
t∑m

k=1 α
[k]
t

, k = 1, · · · ,m, i = 1, · · · ,m.

The estimation of unknown parameters is based on the maximum likelihood

method. If θ denotes the vector representing whole unknown parameters,

the likelihood L(θ) is given by:

L(θ) = g(Z∆t, · · · , ZT∗ |θ) = Π
T∗
∆t
i=1gi(Zi∆t|Z∆t, · · · , Z(i−1)∆t, θ);

g1(Z∆t|Z0) = p0(Z∆t),

where g(Z∆t, · · · , ZT∗ |θ) and gi(Zi∆t|Z∆t, · · · , Z(i−1)∆t, θ) denote the joint

density function of Z∆t, · · · , ZT∗ with parameter vector θ and the conditional

density function of Zi∆t given Z∆t, · · · , Z(i−1)∆t with θ, respectively. The

log-likelihood l(θ) is computed approximately within the framework of the

Monte Carlo filter by:

l(θ) =

T∗
∆t∑
i=1

(
log

m∑
k=1

α
[k]
i∆t

)
− T∗

∆t
logm.

Then, maximize l(θ) with respect to θ to obtain the maximum likelihood

estimator θ̂. For optimization, Generalized Simulated Annealing method

is applied. Finally, we utilize AIC(Akaike Information Criterion, Akaike
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(1973)) as a criterion to select a model if there are several candidates where

AIC is defined by:

AIC = −2l(θ̂) + 2(the number of parameters).

That is, the model with the smaller AIC can be regarded as the better

model.

Appendix 2: Detailed Algorithm in Empirical Analysis

We apply the general algorithm described in Appendix 1 to our empirical

analysis as follows:

• First, select j ∈ {1, · · · , n} with probability 1
n for each sample k =

1, · · · ,m in 2.(b) of Appendix 1. where n denotes the number of style

indexes.

• Next, generate p
[k]
it ,k = 1, · · · ,m, the realizations of Yit, i ̸= j from the

equation (6). We note that a state vector Xt consists of Yt and βt in

this case.

• Third, generate p
[k]
it ,k = 1, · · · ,m, the realizations of βit, i ̸= j from

the conditional distribution G(y(j)) given in the equation (8) by using

the rejection method to select samples satisfying the condition (7):

A
(j)
t = {0 ≤ Y1t, · · · , 0 ≤ Yj−1t, 0 ≤ Yj+1t, · · · , 0 ≤ Ynt,

∑
i ̸=j

Yit ≤ 1}.

Here the rejection method is a statistical method; it takes the sample

that satisfies the conditions while discarding one that does not satisfy

those conditions until a sufficient number of samples are obtained.

• Finally, ξ
[k]
it ,k = 1, · · · ,m that represent the filters of Yit, i ̸= j and βit,

i ̸= j are determined by the filtering method described in 2.(c) and

(d) of Appendix 1. Note that ξ
[k]
jt , the filters of βjt is determined by

the constraint as:

βjt = 1−
∑
i ̸=j

βit.
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