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Abstract 

 We investigate general collective decision problems related to hidden action and 
hidden information. We assume that each agent has a wide availability of action choices 
at an early stage, which provides significant externality effects on the other agent’s 
valuations in all directions. We characterize the class of all mechanisms that solve the 
hidden action problem, and demonstrate equivalence properties in the ex-post term. 
Importantly, we find that pure Groves mechanisms, defined as the simplest form of 
canonical Groves mechanisms, are the only efficient mechanisms that solve such hidden 
action problems. We argue that the resolution of the hidden action problem automatically 
resolves the hidden information problem. 
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1. Introduction 
 

This study investigates a general class of collective decision problems that includes 

issues of imperfect monitoring (hidden action) as well as incomplete information (hidden 

information), such as principal-agent relationships, partnerships, and general resource 

allocations (including auctions and public good provision), with the assumptions of 

quasi-linearity and risk-neutrality. Multiple agents independently make their action 

choices at an early stage before a state occurs, influencing their valuation functions 

through stochastic state determination. The central planner then determines an allocation 

that is relevant to the welfare of all agents as well as the central planner in a 

state-contingent manner. 

We assume hidden action in that the central planner cannot observe the agents’ 

action choices. The central planner, therefore, designs a state-contingent mechanism, 

according to which the central planner makes side payments to agents, as well as an 

allocation decision, incentivizing the agents to select the action profile that the central 

planner desires. 

We first demonstrate a benchmark model that addresses only the hidden action 

problem. We then incorporate hidden information by assuming that the central planner 

can observe neither the state nor the agents’ action choices, and therefore requires agents 

to announce their private information regarding the state (i.e., their types). The purpose of 

this study is to clarify whether, and how, the central planner overcomes the incentive 

problem in cases of both hidden action and hidden information. 

This study substantially differs from previous research on mechanism design and 

contract theory in that each agent potentially has various aspects of activities such as 

information acquisition, R&D investment, patent control, standardization, M&A, 

rent-seeking, positive/negative campaigns, environmental concern, product 

differentiation, entry/exit decisions, preparation of infrastructure, and headhunting. The 

central planner generally lacks information about the breadth of these potential aspects, 

because of, for example, the separation of ownership and control. Accordingly, the 
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central planner cannot know which aspects of agents’ activities are actually relevant to 

the current problem. In such cases, the central planner must, inevitably, account for all of 

these aspects in mechanism design. 

One example is a dynamic aspect of auctions for allocating business resources such 

as spectrum licenses, where each participant undertakes various profit-seeking activities 

to gain an advantage over rival companies in the upcoming auction event.4 Whether, and 

to what degree, such activities distort the welfare crucially depends on the auction format 

design. 

Specifically, the central planner worries that each agent’s hidden action has 

significant externality effects on the other agents’ valuation functions (i.e., each agent can 

smoothly change the distribution of the state in all directions via a unilateral deviation 

from the desired action profile). This broad potential for externalities, which this study 

terms richness, dramatically restricts the range of possible mechanisms that can 

incentivize agents to make the desired action choices (i.e., in this study’s terminology, it 

restricts the range of possible mechanisms that can induce the desired action profile). 

The main contribution of this study is to characterize mechanisms that can induce 

the desired action profile, even in the presence of such richness. Based on this 

characterization, we present equivalence properties in the ex-post term under the 

constraints of inducibility. That is, the ex-post payments, the ex-post revenue, and the 

ex-post payments are unique up to constants. 

We further clarify the possibility that the central planner achieves an efficient action 

profile and efficient allocations without any trouble in liability. With the assumption of 

private values, we define pure Groves mechanisms as the simplest form of canonical 

Groves mechanisms, in which the central planner gives each agent the welfare of the 

other agents and the central planner and imposes on her a fixed monetary fee. We show 

that a mechanism induces an efficient action profile if and only if it is pure Groves. In 

other words, pure Groves mechanisms are the only efficient mechanisms that solve the 

hidden action problem. 

                                                 
4 See Klemperer (2004) and Milgrom (2004), for example. 
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This theoretical finding has important implications not only in cases of hidden 

action but also in cases of hidden information. Suppose that the central planner cannot 

observe the state, and, therefore, requires agents to announce their private information 

regarding the state. The above-mentioned dynamic auction is an example of this case. 

Importantly, once the central planner designs any mechanism that induces the efficient 

action profile (i.e., solves the hidden action problem), then this mechanism automatically 

solves the hidden information problem, because of its internalization feature. 

The generally accepted view in mechanism design is that in some environments, 

Groves mechanisms5 are the only mechanisms that solve the hidden information problem. 

In contrast to this view, this study shows that pure Groves mechanisms (i.e., the special 

form of Groves mechanisms), are the only mechanisms that solve the hidden action 

problem. Moreover, the resolution of the hidden action problem in this manner generally 

and automatically can solve the hidden information problem. 

 Because the class of pure Groves mechanisms is a proper subclass of Groves 

mechanisms, it might be more difficult for the central planner to earn non-negative 

revenues with hidden action than without hidden action. In fact, the popular Vickrey–

Clarke–Groves (VCG) mechanism, which aligns each agent’s payoff with her marginal 

contribution, generally guarantees non-negative revenues, but it is not pure Groves (i.e., it 

fails to satisfy inducibility). 

To be more precise, we show an impossibility result that with richness, there exists 

no pure Groves mechanism (i.e., no well-behaved mechanism) that satisfies the 

requirements of non-negative revenues and ex-post individual rationality, while the VCG 

mechanism satisfies both. Accordingly, our result suggests that the central planner, who 

wants to defeat richness in order to overcome the hidden action problem, should collect 

information in advance about which aspects of agents’ activities are actually relevant. 

An example without richness is a case of partnerships with finite action spaces, 

where the central planner can successfully tailor the side-payment rule to the detail of 

specifications, making inducibility compatible with non-negative revenues, or even 

                                                 
5 See Vickrey (1961), Clarke (1971), and Groves (1973). 
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budget-balancing (Legros and Matsushima (1991), for example). In contrast, with 

richness, the central planner cannot remove agents’ evasions when she replaces a pure 

Groves mechanism with any complicated mechanism. 

The difficulty in liability depends on the presence of each agent’s externality effect 

on the other agents’ valuation functions. If any agent’s action choice has no externality 

and the central planner recognizes this in advance, then we would obtain the equivalence 

result for interim payoffs, rather than ex-post payoffs. Specifically, to achieve efficiency, 

a wider class of mechanisms than the class of Groves mechanisms (expectation-Groves 

mechanisms) can solve the incentive problems of both hidden action and hidden 

information, without deficits, or even with budget-balancing. 

The remainder of this paper is organized as follows. Section 2 reviews the literature. 

Section 3 presents the benchmark model, where we account for only hidden actions. 

Section 4 incorporates hidden information into the model. Section 5 focuses on the 

achievement of efficiency. Section 6 examines the central planner’s revenues. Section 7 

studies the case of no externality. Section 8 presents an alternative definition of richness 

from the viewpoint of full dimensionality. Section 9 concludes. 

 

2. Related Literature 

 

 This study makes important contributions to the literature regarding the hidden 

action problem as follows. When an agent has a wide variety of action choices, a 

complicated contract design might motivate the agent to deviate from desired behavior. In 

this case, a simply designed contract could function better than a complicated one. For 

example, Holmström and Milgrom (1987) studied principal-agent relationships in a 

dynamic context, where randomly determined outputs are accumulated through time, and 

the agent flexibly adjusts the effort level depending on output-histories. They showed that 

the optimal incentive contract that maximizes the principal’s revenue must be linear with 

respect to the output accumulated at the ending time. Carroll (2014) investigated optimal 

contract design in a static principal-agent relationship, where the principal experiences 
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ambiguity about the range of activities that the agent can undertake. Carroll showed that 

the optimal contract must be linear with respect to the resultant output, provided that the 

principal follows the maxmin expected utility hypothesis. 

 This study examines the hidden action problem by introducing multiple agents, 

general state spaces, general allocation rules, and various criteria such as efficiency, 

instead of revenue optimization. We account deliberately for the wide range of externality 

effects of each agent’s action choice on other agents’ valuation functions by assuming 

richness. However, we do not assume ambiguity or behavioral modes such as maxmin 

utility. We then demonstrate the characterization result for well-behaved incentive 

mechanisms, implying that only a simple form of mechanism design (i.e., pure Groves) 

functions, and we further show equivalence properties in the ex-post term. 

 Any well-behaved efficient mechanism must be pure Groves. In this regard, Athey 

and Segal (2013) showed that with private values, but regardless of whether richness is 

present, pure Groves mechanisms induce efficiency in hidden action. We extend their 

study to show that, with richness, pure Groves mechanisms are the only mechanisms that 

can achieve efficiency in hidden action. 

 The literature regarding the hidden action problem has shown that without richness 

(i.e., when the scope of action spaces is sufficiently limited), we can design efficient 

incentive mechanisms by tailoring the payment rule to detailed specifications. We can 

even make the incentive constraints compatible with either full surplus extraction or 

budget-balancing. See Matsushima (1989), Legros and Matsushima (1991), and Williams 

and Radner (1995), for example. See also Obara (2008), whose model is close to this 

study’s model, but without richness. 

With richness, however, a mechanism’s dependence on detail might encourage each 

agent to deviate, because such dependence inevitably results in a loophole that puts the 

agent in a more advantageous position. The poor functioning that results from 

complication in mechanism design makes it difficult to cope with incentives in hidden 

action as well as non-negativity of revenues. 
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 This study makes important contributions to the literature on the hidden information 

problem. Green and Laffont (1977, 1979) and Holmström (1979) showed that in hidden 

information environments with differentiable valuation functions, smooth 

path-connectedness, and private values, Groves mechanisms are the only efficient 

mechanisms that satisfy incentive compatibility in the dominant strategy. 

 This study reconsiders Groves mechanisms from the viewpoint of hidden action, and 

shows that only pure Groves mechanisms resolve the hidden action problem. While the 

resolution of the hidden action problem automatically resolves the hidden information 

problem, the reverse is not true.6 

 This study also investigates the case in which externality effects are absent, showing 

that expectation-Groves mechanisms, which are more general than Groves and require 

each agent to pay the same amount as Groves in expectation, are the only mechanisms 

that can achieve efficiency. Hatfield, Kojima, and Kominers (2015) is relevant to this 

result, because they showed that when we confine our attention to efficient mechanisms 

that are detail-free (i.e., independent of detailed knowledge about the set of actions that 

the agents can take), the mechanisms must be Groves. We permit a mechanism to not be 

detail-free, and then show that expectation-Groves mechanisms successfully achieve 

efficiency. Importantly, the class of expectation-Groves mechanisms includes the AGV 

mechanism (see Arrow (1979) and D’Aspremont and Gerard-Varet (1979)), which 

satisfies budget-balancing. This result contrasts with that of Hatfield et al. because 

Groves mechanisms generally fail to satisfy budget-balancing. 

 It is worth noting that our results are irrelevant to the fine detail of the state space 

and valuation functions. Consequently, this study articulates the desirability of pure 

Groves mechanisms and expectation-Groves mechanisms, even if the prerequisites of 

Green–Laffont–Holmström fails to hold (e.g., even if type spaces are finite). 

 

                                                 
6 Hausch and Li (1993) and Persico (2000) are related. They demonstrate that first-price and 
second-price auctions provide different incentives in information acquisition that make the other 
agents’ valuation more accurate. We explain that this difference comes from the difference in ex-post 
payoffs between these auction formats. 
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3. Hidden Action 

 

Let us consider a setting with one central planner and n  agents indexed by 

{1, 2,..., }i N n  . As a benchmark model of this study, we investigate an allocation 

problem that consists of the following four stages. 

 

Stage 1: The central planner commits to a mechanism defined as ( , )g x , where 

:g A  and ) :( N
n

i ix x R   . Here,   denotes the finite set of all states and 

A  denotes the set of all allocations. We call g  and x  the allocation rule and the 

payment rule, respectively.7 

 

Stage 2: Each agent i N  selects a hidden action i ib B , where iB  denotes the set of 

all actions for agent i . The cost function for the agent’s action choice is given by 

:i ic B R . We assume that there is a no-effort option 0
i ib B  such that 0( ) 0i ic b  . Let 

i
i N

B B


   and 1( ,..., )nb b b B  . 

 

Stage 3: The state   is randomly drawn according to a conditional probability 

function ( | ) ( )f b   , where b B  is the action profile selected at stage 2, ( )   

denotes the set of all distributions (i.e., lotteries) over states, and ( | )f b  denotes the 

probability that the state   occurs provided that the agents select the action profile b . 

 

                                                 
7 This study assumes that the central planner commits to the mechanism before agents take action. 
Without this assumption, the desired outcomes, such as efficiency, may not be achievable. Consider 
the central planner who commits to a mechanism after the agents’ action choices. In this case, the 
central planner prefers the VCG mechanism because it yields greater revenue than the mechanism that 
this study discusses. The VCG mechanism, however, fails to induce any efficient action profile; by 
anticipating that the central planner will set a VCG mechanism, agents are willing to select inefficient 
actions. 
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Stage 4: The central planner determines the allocation ( )g A   and the side payment 

vector paid to the central planner ( ) ( ( )) n
i i Nx x R    , where   is the state that 

occurs at stage 3. The resultant payoff of each agent i N  is given by 

(1)   ( ( ), ) ( ) ( )i i i iv g x c b    , 

where we assume that each agent's payoff function is quasi-linear and risk-neutral, and 

the cost of the agent’s action choice is additively separable. 

 

Figure 1 describes the timeline of the benchmark model. This section intensively 

studies the incentives in hidden action at stage 2. 

 

 

Figure 1: Timeline with Hidden Action 

 

Definition 1 (Inducibility): A mechanism ( , )g x  is said to induce an action profile 

b B  if b  is a Nash equilibrium in the game implied by the mechanism ( , )g x , i.e., 

for every i N , 

(2)   [ ( ( ), ) ( ) | ] ( )i i i iE v g x b c b     

[ ( ( ), ) ( ) | , ] ( )i i i i i iE v g x b b c b        for all i ib B , 

where [ | ]E b  denotes the expectation operator conditional on b , i.e., for every 

function : R  , 

   [ ( ) | ] ( ) ( | )E b f b


    


  . 
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Lemma 1: Consider an arbitrary combination of an action profile and an allocation rule 

( , )b g . There exists a payment rule x  such that ( , )g x  induces b  if and only if there 

exists a function ( ) : n
i i Nw w R    such that 

(3)   [ ( ) | ] ( ) [ ( ) | , ] ( )i i i i i i i iE w b c b E w b b c b       for all i N  and i ib B . 

 

Proof: Consider an arbitrary ( , ( , ))b g x . We specify w  by 

   ( ) ( ( ), ) ( )i i iw v g x      for all i N  and  . 

It is clear from Definition 1 that ( , )g x  induces b  if and only if (3) holds. 

Q.E.D. 

 

 Let int ( ) ( )      denote the set of all full-support distributions over states. We 

introduce a condition on an action profile b B , namely richness, as follows. 

 

Definition 2 (Richness): An action profile b B  is said to be rich if for every i N  

and ( )   , there exist 0   and a path on iB , ( , ) :[ , ]i iB      , such that 

   ( ,0)i ib   , 

(4)   
0

( | ( , ), ) ( | )
lim ( ) ( | )i if b f b

f b


   






  
    , 

and ( ( , ))i ic     is differentiable in   at 0  .8 

 

Richness implies that each agent i N  has a variety of action choices around ib  

that can smoothly and locally change the distribution over states in all directions from 

( | )f b  at a differentiable cost.9 

                                                 
8 This study assumes that the state space is finite. We, however, can eliminate this assumption without 
substantial changes. Instead of the finite state space, we can assume that the state space is a subset of a 
multi-dimensional Euclidian space and the distribution over states is continuous. In fact, we can obtain 
the uniqueness results such as Lemmas 2 and 3 almost everywhere. 
9 Section 8 will replace Definition 2 with an alternative that concerns only finitely many directions. 
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Under the richness, if ( , )g x  induces b , i.e., b  is a Nash equilibrium in the game 

implied by ( , )g x , the following first order condition holds for every i N  and 

( )   : 

 
0

[ ( ( ), ) ( ) | ( , ), ] ( ( , )) 0i i i i i iE v g x b c


        
 




  


. 

Furthermore, the richness assures that each agent can change the expected value of any 

non-constant payment rules by making a unilateral deviation. Consider an arbitrary 

non-constant function : R  . Note that there exists   such that 

( ) [ ( ) | ]E b    . Let   denote the degenerate distribution where ( ) 1   . Taking 

( , ) : [ , ]i iB       as defined in Definition 2, we have 

   
0

[ ( ) | ( , ), ]i iE b



    







 0

( | ( , ), ) ( | )
( ) lim i if b f b




   







  
   

   ( ){ ( ) ( | )} ( ) [ ( ) | ] 0f b E b



        


     . 

Hence, each agent can make a unilateral deviation to take advantage of non-constant  . 

In the single-agent case, where we regard the set of all actions of agent 1 as the set 

of all full-support distributions over states, i.e., 1 int ( )B    , the well-known 

directional differentiability for arbitrary directions will be a tractable sufficient condition 

for the richness.1011 

 

Proposition 1: In the single-agent case, an action 1 int ( )B      is rich if for every 

( )   , the agent’s cost function 1 : in )t (c R    has the directional derivative 

along    : 

                                                 
10 The existence of directional derivatives of 1c  at   for all directions is implied by the total 

differentiability of 1c  at  . 
11  When   is a continuum, the directional differentiability is generalized to the Gâteaux 
differentiability. 
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1
1 0

((1 ) ) ( )
( ) lim

c c
c 

   


  
  . 

 

Proof: For every ( )   , specify 1( , ) :[ , ] iB        by 

1( , ) (1 )          for all [ , ]    , 

where 0   is selected sufficiently small so that 1 1( , ) int ( ) B        holds for all 

[ , ]     (since   is a full-support distribution, such 0   always exists). Then, it 

follows from  

   1 1 1 1 1
10 0

, ) ) ((1 ) ) )
lim lim ( )

( ( ) ( (c cc
c

c
   

        
   

 


  
    

that the directional differentiability of 1c  along     assures the differentiability of 

1 1( ( , ))c     in   at 0  . Hence,   is rich. 

Q.E.D. 

 

 Note that the converse of Proposition 1 does not hold, because the directional 

differentiability does not account for the differentials along curves whose tangent at ib  

satisfies (4). Note also that it follows from Proposition 1 that in this single-agent case, if 

1c  is directionally differentiable everywhere on 1B , then every action 1 1b B  is rich. 

 We further consider the following class of multi-agent problems. For every i N , 

specify 

   2int ( )i iB B    , 

where we denote 1 2 2( , ) int ( )i ii ib b b B     . Each agent i N  makes a 

recommendation about the state distribution as the first component of her action, 

1 int ( )ib    , and lobbies her recommendation as the second component of her action, 

2 2
iib B . Denote 1 1( )i i Nb b   and 2 2( )i i Nb b  . Define 

   2 1( | ) ( ) ( )i i
i N

f b b b


   , 
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where 2( ) (0,1)i b   and 2( ) 1ii N
b


 . The state distribution is determined as the 

compromise among the agents’ recommendations, i.e., the average of their 

recommendations 1b  weighted by each agent’s influence 2( ( ))i i Nb  , which is the 

consequent of the agents’ lobbying activities. We assume that for every i N  and 

i ib B , 2( , )iic b  is directionally differentiable. 

 In the same manner as Proposition 1, we can prove that every action profile b B  

is rich in this case. Regardless of the action profile b B , each agent i N  can 

smoothly and locally change the distribution in all directions from |( )f b  by 

manipulating her recommendation (the first component) 1 int ( )ib    . Note that the 

class of problems discussed here includes substantially general multi-agent problems. In 

fact, it does not require any restriction on the lobbying action spaces 2( )i i NB  , the 

influence functions ( )i i N  , and the cost functions ( )i i Nc  , besides the directional 

differentiability of 2( ( )),i i i Nbc  . 

 The following lemma implies that with richness, the function w  that satisfies (3) is 

unique up to constants. 

 

Lemma 2: Suppose that an action profile b  is rich, and a function w satisfies (3). For 

every function ( ) : n
i i Nw w R   , w  satisfies the properties implied by (3), i.e., for 

every i N , 

[ ( ) | ] ( ) [ ( ) | , ] ( )i i i i i i i iE w b c b E w b b c b        for all i ib B , 

if and only if there exists a vector ( ) n
i i Nz z R   such that 

( ) ( )i i iw w z    for all i N  and  . 

 

Proof: The proof of the sufficiency is straightforward. We present the proof of the 

necessity as follows. Take an arbitrary w  which satisfy (3) and consider an arbitrary 

agent i N . Take an arbitrary iw  such that i iw w    is a non-constant function. 
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Then, there exists   such that ( ) [ ( ) | ]E b    . Let   denote the degenerate 

distribution where ( ) 1   . Due to richness, there exist 0   and 

( , ) : [ , ]i iB       such that 

  
0

( | ( , ), ) ( | )
lim ( ) ( | )i if b f b

f b






   






  
    . 

Since w  satisfies (3), the first order condition along , )(i
    must hold, i.e., 

(5)    
0

[ ( ) | ( , ), ] ( ( , )) 0i i i i iE w b c 



      
 




 


. 

On the other hand, 

    
0

[ ( ) | ( , ), ] ( ( , ))i i i i iE w b c 



      
 







  

    
0

[ ( ) ( ) | ( , ), ] ( ( , ))i i i i iE w b c 



        
 




  


 

    
0

[ ( ) | ( , ), ]i iE b



    
 







( ) [ ( ) | ] 0E b      . 

Hence, if i iw w    is non-constant, agent i  has incentive to increase   along 

, )(i
    from 0  . Accordingly, whenever w  and w  satisfy (3), i iw w    is 

constant, i.e., there exists nz R  such that ( ) ( )w w z    for all  . 

Q.E.D. 

 

 Based on Lemmas 1 and 2, we show the following theorem, which states that the 

payment rule that guarantees inducibility is unique up to constants. 

 

Theorem 1: Consider an arbitrary combination of an action profile and a mechanism 

( , ( , ))b g x . Suppose that b  is rich and ( , )g x  induces b . Accordingly, for every 

payment rule x , the associated mechanism ( , )g x  induces b  if and only if there exists 

a vector nz R  such that 
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( ) ( )x x z    for all  . 

 

Proof: The proof of the sufficiency is straightforward. We present the proof of the 

necessity as follows. Suppose that ( , )g x  induces b . According to the proof of Lemma 

1, we specify w  by 

(6)   ( ) ( ( ), ) ( )i i iw v g x      for all i N  and  . 

Suppose also that ( , )g x  induces b . Similarly, we specify w  by 

(7)   ( ) ( ( ), ) ( )i i iw v g x       for all i N  and  . 

Lemma 2 implies that there exists nz R  such that ( ) ( )w w z    for all  . 

By subtracting (6) from (7), we have 

( ) ( )x x z    for all  . 

Q.E.D. 

 

 Theorem 1 implies the following equivalence properties in the ex-post term. 

Consider an arbitrary combination of an action profile and an allocation rule ( , )b g . 

Consider two arbitrary payment rules x  and x  such that both ( , )g x  and ( , )g x  

induce b . Let iU R  and iU R  denote the respective ex-ante expected payoff for 

each agent i N : 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b     , 

and 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b      . 

Accordingly, Theorem 1 exhibits that the ex-post payment for each agent i  is unique up 

to constants in that 

( ) ( )i i i ix x U U      for all  , 

the ex-post revenue for the central planner is unique up to constants in that 

( ) ( ) ( )i i i i
i N i N i N

x x U U 
  

       for all  , 
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and the ex-post payoff for each agent i  is unique up to constants in that 

( ( ), ) ( ) ( ) { ( ( ), ) ( ) ( )}i i i i i i i i i iv g x c b v g x c b U U               

for all  . 

 

4. Hidden Information 

 

 Let us specify an information structure where the state   is decomposed as 

    0 1( , ,..., )n    . 

Here, we call 0  a public signal and i  a type for each agent i N . Let 0  denote 

the set of all public signals and i  denote the set of all types for each agent i N . Let 

{0} ii N
   


. 

 We assume that the public signal 0 0   becomes observable to all agents as well 

as the central planner just before the central planner determines an allocation and side 

payments, and it is, therefore, contractible. The central planner, however, cannot observe 

the profile of all agents’ types, which is denoted by 0 0( )i i N i
i N

    
     . Each 

agent i N  can observe her type i i  , but cannot observe the profile of the other 

agents’ types, denoted by {0}\{ } {0}\{ }
( )i j j N i i jj N i

    
     

. 

 Because of the above-mentioned hidden information structure, we replace stages 3 

and 4 with the following stages (i.e., stages 3’ and 4’, respectively). Importantly, the 

central planner requires each agent to reveal her type, which the central planner cannot 

directly observe.12 

 

                                                 
12 Because the central planner induces a pure action profile, we can safely focus on revelation 
mechanisms where each agent only reports her type. If the central planner attempts to induce a mixed 
action profile, we need to consider mechanisms where each agent reports not only her own type but 
also her selection of pure action. See Obara (2008). For further discussions, see Footnote 17. 
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Stage 3’: The state 0 1( , , , )n      is randomly drawn according to the 

conditional probability function ( | ) ( )f b   , where b B  is the action profile 

selected at stage 2. Each agent i N  observes his type ii  , but cannot observe 

i i   at this stage. 

 

Stage 4’: Each agent i N  announces i i   about her type. Afterward, all agents, 

as well as the central planner, observe the public signal 0 0  . According to the 

profile of the agents’ announcements 0 0( )i i N       and the observed public signal 

0 0  , the central planner determines the allocation 0 0( , )g A    and the side 

payment vector 0 0( , ) nx R   . The resultant payoff of each agent i  is given by 

0 0 0 0( ( ), ) ( (, , ))i i i iv g x c b       . 

 

 

Figure 2: Timeline with Hidden Action and Hidden Information 

  

 Figure 2 describes the timeline of the model with hidden action and hidden 

information. We consider the agents’ incentives in hidden information by introducing the 

concept of ex-post incentive compatibility. 
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Definition 3 (Ex-Post Incentive Compatibility): A mechanism ( , )g x  is said to be 

ex-post incentive compatible (hereafter EPIC) if truth-telling is an ex-post equilibrium; 

for every i N  and  , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i iv g x v g x             for all i i  .13 

 

 EPIC is independent of the action profile, because of the additive separability of the 

cost of actions. We further introduce a weaker notion, namely Bayesian Implementability, 

as follows. 

 

Definition 4 (Bayesian Implementability): A combination of an action profile and a 

mechanism ( ,( , ))b g x  is said to be Bayesian implementable (hereafter BI) if the 

selection of the action profile b  at stage 2 and the truthful revelation at stage 4’ results 

in a perfect Bayesian equilibrium; for every i N , every i ib B , and every function 

:i i i   , 

   [ ( ( ), ) ( ) | ] ( )i i i iE v g x b c b     

   [ ( ( ( , ), ) ( ( , ) | , ] ( )) )i i i i i i i i i i i i iE v g x b b c b             . 

 

 BI includes the inducibility of b  in order to account for the possibility of 

contingent deviations; BI requires ( ,( , ))b g x  to exclude the possibility that each agent 

i  benefits by deviating from both the action choice ib  at stage 2 and the truthful 

revelation at stage 4’. 

 The following theorem states that if there is a mechanism that induces an action 

profile b  but fails to be incentive compatible, then it is generally impossible to discover 

mechanisms that satisfy both inducibility and incentive compatibility. 

 

                                                 
13 Because of additive separability, the incentive compatibility is irrelevant to the shape of the cost 
functions. 
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Theorem 2: Consider an arbitrary combination of an allocation rule and an action 

profile ( , )b g , where we assume that b  is rich. 

1. Suppose that there exists a payment rule x  such that ( , )g x  induces b  and 

satisfies EPIC. For every payment rule x , whenever ( , )g x  induces b , it 

satisfies EPIC.  

2. Suppose that there exists a payment rule x  such that ( ,( , ))b g x  satisfies BI. For 

every payment rule x , whenever ( , )g x  induces b , ( ,( , ))b g x  satisfies BI. 

 

Proof: Suppose that both ( , )g x  and ( , )g x  induce b . From Theorem 1, there exists 

nz R  such that 

( ) ( )x x z    for all  , 

which implies that ( , )g x  satisfies EPIC if and only if ( , )g x  satisfies EPIC. We can 

similarly prove that ( , ( , ))b g x  satisfies BI if and only if ( , ( , ))b g x  satisfies BI. 

Q.E.D. 

 

 Theorem 2 implies that the following two statements are equivalent. 

(i) There exists a mechanism that satisfies inducibility but fails to satisfy incentive 

compatibility. 

(ii) There exists no mechanism that satisfies both inducibility and incentive 

compatibility. 

 

5. Efficiency 

 

 We denote by 0 :v A R  the valuation function for the central planner. This 

section and the next intensively study allocation rules and action profiles that are efficient 

(i.e., maximize the welfare that includes the central planner’s welfare as well as the 

agents’ welfare); an allocation rule g  is said to be efficient if 
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{0} {0}

( ( ), ) ( , )i i
i N i N

v g v a  
 

 
 

 for all a A  and  . 

A combination of an action profile and an allocation rule ( , )b g  is said to be efficient if 

g  is efficient and the selection of b  maximizes the expected welfare: 

   
{0} {0}

[ ( ( ), ) | ] ( )i i i
i N i N

E v g b c b 
 

 
 

 

   
{0} {0}

[ ( ( ), ) | ] ( )i i i
i N i N

E v g b c b 
 

  
 

   for all b B . 

A payment rule x  is said to be Groves if there exists :i iy R   for each i N  

such that 

   
{0}\{ }

( ) ( ( ), ) ( )i j i
j N i

ix v g y   


  


 for all i N  and  . 

According to a Groves payment rule, the central planner gives each agent i N  the 

monetary amount that is equivalent to the other agents’ welfare plus the central planner’s 

welfare (i.e., 
{0}\{ }

( ( ), )j
j N i

v g  




), and imposes on the agent the monetary payment 

( )i iy   that is independent of i . 

 A payment rule x  is said to be pure Groves if it is Groves and ( )iy   is constant 

for each i N ; there exists a vector ( ) n
i i Nz z R   such that 

   
{0}\{ }

( ) ( ( ), )i j i
j N i

x v g z  


  


 for all i N  and  . 

Pure Grove payment rules are special cases of Grove payment rules where the central 

planner imposes a fixed amount iz  on each agent i  as a non-incentive term. 

 The following theorem states that an efficient mechanism induces an efficient action 

profile if and only if the payment rule is pure Groves. Accordingly, under efficiency and 

inducibility, without loss of generality, we can focus on pure Groves mechanisms (i.e., 

combinations of an efficient allocation rule and a pure Groves payment rule).14 

 

                                                 
14 This study makes a slight extension of the canonical definition of a Groves mechanism, by 
accounting for the valuations of the central planner. 
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Theorem 3: Suppose that ( , )b g  is efficient. For every payment rule x , ( , )g x   

induces b  if x  is pure Groves. Suppose that b  is rich and ( , )b g  is efficient. For 

every payment rule x , ( , )g x  induces b  if and only if x  is pure Groves. 

 

Proof: If ( , )b g  is efficient, for every i N  and i ib B , 

[ ( ( ), ) ( ) | ] [ ( ( ), ) ( ) | , ]i i i i i iE v g x b E v g x b b          

{0} {0}

[ ( ( ), ) | ] [ ( ( ), ) | , ]j j i i
j N j N

E v g b E v g b b    
 

  
 

0 , 

which implies the inducibility of b . If b  is rich, it is clear from Theorem 2 and the 

definition of the pure Groves payment rule that any payment rule that guarantees 

inducibility must be pure Groves. 

Q.E.D. 

 

 Note that we can construct any pure Groves mechanism without detailed knowledge 

of ( , , )f B c . Even if the central planner is allowed to utilize such knowledge, the central 

planner’s best choice would be pure Groves. 

 The following theorem demonstrates a necessary and sufficient condition for the 

satisfaction of both inducibility and incentive compatibility on the assumption of 

efficiency and richness. 

 

Theorem 4: Suppose that b  is rich and ( , )b g  is efficient. There exists a payment rule 

x  such that ( , )g x  induces b  and satisfies EPIC if and only if for every i N , 

 , and i i  , 

(8)   
{0}

( ( ), )j
j N

v g  


 {0}\{ }

( ( , ), ) ( ( , ), , )i i i j i i i i
j N i

v g v g        


  


   . 

There exists a payment rule x  such that ( ,( , ))b g x  satisfies BI if and only if for every 

i N , i ib B , and :i i i   , 
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(9)   
{0}

[ ( ( ), ) | ] ( )j i i
j N

E v g b c b 





)[ ( ( ( , ), )i i i iE v g      

   
{0}\{ }

( ( ( , ),) )( , ) | , ] ( )j i i i i i i i i i i
j N i

v g b b c b       


  


. 

 

Proof: Consider the proof for the case of EPIC. From Theorem 3, this proof only requires 

us to clarify a necessary and sufficient condition for a pure Grove payment rule to 

guarantee EPIC. Let x  denote the pure Groves payment rule given by 

   
{0}\{ }

( ) ( ( ), )i j
j N i

x v g  


  


 for all i N  and  . 

Accordingly, ( , )g x  satisfies EPIC if and only if for every i N ,  , and i i  , 

   
{0}

( ( ), ) ( ) ( ( ), )j i j
j N

v g x v g    


  


 

{0}\{ }

( ( , ), ) ( ( , ), , )i i i j i i i i
j N i

v g v g        


  


    

( ( , ), ) ( , )i i i i iv g x       , 

which is equivalent to (8). We can prove the case of BI in a similar manner. 

Q.E.D. 

 

 Note that (8) is a necessary and sufficient condition for a Groves mechanism to 

satisfy EPIC. However, if each agent’s payoff function has interdependent values, any 

Groves mechanism does not satisfy EPIC, and, therefore, (8) generally fails.15 Based on 

this outcome, we shall focus on the case of private values, where for every i N , the 

valuation ( , )iv a   is independent of the profile of the other agents’ types 

\{ }0 0 \{ }( )j j N i j ii i N j        , and 0( , )v a   is independent of 0 . With private 

values, any Groves mechanism satisfies (8) (i.e., EPIC). With private values, we write 
                                                 
15 Maskin (1992), Dasgupta and Maskin (2000), and Bergemann and Välimäki (2002) proposed the 
generalized VCG mechanism and showed that it satisfies EPIC for some environments, even with 
interdependent values. The generalized VCG mechanism, however, fails to induce an efficient action 
profile, because it is not pure Groves. Mezzetti (2004), however, showed that if the realized valuation 

) )( ,(iv g    is observable as an ex-post public signal and is contractible, we can achieve efficiency 

with EPIC even with interdependent values. See Noda (2016) for more general ex-post signals. 
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0( , , )i iv a    instead of ( , )iv a   for each i N , and 0 0( , )v a   instead of 0 ( , )v a  .16 

With private values, EPIC is equivalent to incentive compatibility in a dominant strategy 

(thereafter DIC), where for every i N ,  , and i i  , 

   0 0( ( ), , ) ( ) ( ( , ), , ) ( , )i i i i i i i i i iv g x v g x              . 

 

Theorem 5: Suppose that ( , )b g  is efficient. With private values, for every payment rule 

x , ( , )g x  induces b  and satisfies DIC if x  is pure Groves. Suppose that b  is rich 

and ( , )b g  is efficient. With private values, for every payment rule x , ( , )g x  induces 

b  and satisfies DIC if and only if x  is pure Groves. 

 

Proof: From efficiency, on the assumption of private values, inequalities (8) always hold. 

Because, with richness, inequalities (8) are necessary and sufficient for a Groves 

mechanism to satisfy DIC, Theorems 3 and 4 imply the latter part of Theorem 5. 

Q.E.D. 

 

 With private values, any DIC mechanism that satisfies inducibility and efficiency 

must be pure Groves, although any Groves mechanism generally satisfies DIC and 

efficiency. For example, consider the VCG mechanism ( , )g x , which is defined as an 

efficient (Groves) mechanism specified by 

   0
\{ }

0
{0} {0}

( ) ( ( ), , ) min ( ( , ), , )
i i

i i j i i i j
j N i j N

x v g v g


      
 

   
 

 

   for all i N  and  . 

Clearly, the VCG mechanism is not pure Groves; thus, it fails to satisfy the inducibility of 

efficient action profile.17 

                                                 
16 We permit the valuations to depend on the public signal 0 . For convenience, we sometimes write 

0 0 0( , , )v a    instead of 0 0( , )v a  . 
17 Obara (2008) showed that, when the action space is finite, full surplus extraction is achievable in 
approximation, under a weaker condition than exact full surplus extraction. By carefully mixing 
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6. Revenues and Deficits 

 

 By assuming private values, this section determines whether the central planner can 

achieve efficiency even without deficits. We define the central planner’s ex-post revenue 

by 

(10)   00 ( ( ), ) ( )i
i N

v g x  


 ,18 

and the expected revenue in the ex-ante term by 

   0 0[ ( ( ), ) ( ) | ]i
i N

E v g x b  


 . 

We introduce three concepts of individual rationality as follows. The timings of exit 

opportunities are depicted in Figure 2. 

 

Definition 5 (Ex-Ante Individual Rationality): A combination of an action profile and a 

mechanism ( ,( , ))b g x  is said to satisfy ex-ante individual rationality (hereafter EAIR) if 

   0[ ( ( ), , ) ( ) | ] ( ) 0i i i i iE v g x b c b       for all i N . 

 

Definition 6 (Interim Individual Rationality): A combination of an action profile and a 

mechanism ( ,( , ))b g x  is said to satisfy interim individual rationality (hereafter IIR) if 

   0[ ( ( ), ,, ) ( ) ,|, ] 0
i i i i i i ii iE v g x b       

      

for all i N  and i i  , 

where  

   ,[ ( | , ]) , ) ( | )( ,
i

i i

i i i i i i i ifE b b


        


 

   


    

                                                                                                                                                 
agents’ actions, Obara generated a correlation between ( , )i ib   and ( , )i ib   , and then applied the 

technique of Cremer and McLean (1985, 1988). Obara’s argument, however, required extremely large 
side payments and very detailed knowledge about model specifications. 
18 Note that the central planner’s revenue includes not only payments from agents, but also the 
valuation of the central planner. In the single agent case, where the allocation space is degenerate, the 
value of (10) corresponds to the principal’s payoff in a standard principal-agent model with 
risk-neutrality. 



25 
 

denotes the expectation of a function ( ) :,i i R      conditional on ( , )ib  . 

 

Definition 7 (Ex-Post Individual Rationality): A mechanism ( , )g x  is said to satisfy 

ex-post individual rationality (hereafter EPIR) if 

   0( ( ), , ) ( ) 0i i iv g x      for all i N  and  . 

 

EPIR automatically implies IIR. IIR, however, does not necessarily imply EAIR, 

because the cost for the action choice at stage 2 is a sunk cost. The following proposition 

shows that EPIR implies EAIR. 

 

Proposition 2: Suppose that ( , )g x  induces b . Whenever ( , )g x  satisfies EPIR, 

( ,( , ))b g x  satisfies EAIR. 

 

Proof: Because 0( ) 0i ic b  , it follows from EPIR and inducibility that 

   0[ ( ( ), , ) ( ) | ] ( )i i i i iE v g x b c b      

0 0
0[ ( ( ), , ) ( ) | , ] ( )i i i i i i iE v g x b b c b       0 , 

which implies EAIR. 

Q.E.D. 

 

 EPIR is the strongest requirement for voluntary participation among the above three 

concepts. The purpose of this section is to show that EPIR is not compatible with the 

non-negativity of revenue in expectation. 

 The following proposition calculates the maximal expected revenues (i.e., the least 

upper bounds of the central planner’s expected revenues). 

 



26 
 

Proposition 3: Suppose that ( , )b g  is efficient, b  is rich, and the private value 

assumption is satisfied. Then, the maximal expected revenue from the mechanism ( , )g x  

that induces b  and satisfies EPIR is given by 

(11)  0
{0}

,min ( ( ), )EPIR
j j

j N

R n v g


  




 


0
{0}

( 1) ( ( ), , )j j
j N

n E v g b  


 
   

  



. 

The maximal expected revenue from the mechanism ( , )g x  that induces b  and satisfies 

IIR is given by 

(12)   0
{0}

min ( ( ), ,, , )
i

i i

IIR
j i i j i

i N j N

R E v g b
    

 
 

 
  

  
 


 

   0
{0}

( 1) ( ( ), , )j j
j N

n E v g b  


 
   

  



. 

The maximal expected revenue from the mechanism ( , )g x  that induces b  and satisfies 

EAIR is given by 

(13)   0
{0}

( ( ), , ) ( )j j
EAIR

j N j N
j jR E v g b c b  

 

 
  

  
 


. 

The maximal expected revenue from the mechanism ( , )g x  that induces b  and satisfies 

IIR and EAIR is given by 

(14)  ,EAIR IIRR 0 0 0( ( ), ) min ( ( ), , ) ,( )ii i i
i N

E v g b v g b cE b    


          

  0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i

j N

v g bE
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


   
  



. 

 

Proof: See the Appendix. 

 

 Clearly, EAIRR  is equal to the maximized expected social welfare. From the relative 

strength of incentive compatibility constraints, it is also clear that 

   ,EPIR IIR EAIR IIRR R R   and ,IIR EAIR EAIRR R . 



27 
 

However, which is greater between IIRR  and EAIRR  depends on specifications. 

 The following proposition indicates that with the constraints of EPIR, it is generally 

difficult for the central planner to achieve efficiency without deficits. 

 

Proposition 4: Suppose that ( , )b g  is efficient, b  is rich, and the private value 

assumption is satisfied. Suppose also that ( ) 0ii iN
c b


  and there exists a null state 

0( ,..., )n     in the sense that 

   0 0( , ) 0v a    for all a A , 

and for every i N , 

   0( , , ) 0i iv a     for all a A  and 0 0  . 

With EPIR, the central planner has a deficit in expectation: 0EPIRR  . 

 

Proof: See the Appendix. 

 

 If 0EAIRR  , the conclusion is immediate from EPIR EAIRR R . Suppose 0EAIRR  . 

It follows from ( ) 0ii iN
c b


  that the second term of EPIRR  in (11) is negative. Due 

to the presence of the null state, the first term of EPIRR  in (11) is non-positive. 

Accordingly, EPIRR  is negative. 

 With private values, the VCG mechanism generally satisfies EPIR (and DIC) and 

guarantees that the central planner will earn a non-negative ex-post revenue at all times. 

In contrast, once we require inducibility, the VCG mechanism does not function, and the 

central planner fails to earn non-negative revenue, even with an ex-ante expectation. 

 By replacing EPIR with weaker constraints, such as IIR and EAIR, and adding some 

restrictions, it becomes much easier for the central planner to achieve efficiency without 

deficits. The following proposition states that the maximal expected revenue of the 

central planner is irrelevant to whether inducibility is required. 
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Proposition 5: Suppose that ( , )b g  is efficient, b  is rich, and the private value 

assumption is satisfied. Suppose also that we have: 

Conditional Independence: For every b B  and  , 

   
{0}

( | ) ( | )i i
i N

f b f b 


 


  , 

where ( | )i if b   denotes the probability of i  occurring when the agents select the 

action profile b . The expected revenue achieved by any Groves mechanism that satisfies 

IIR and EAIR is less than or equal to ,IIR EAIRR . Furthermore, there exists a pure Groves 

mechanism that satisfies IIR and EAIR and achieves ,IIR EAIRR . 

 

Proof: See the Appendix. 

 

We might expect that the central planner can receive larger expected revenue than 

,IIR EAIRR  once we remove the requirement of inducibility. However, with conditional 

independence, no Grove mechanism is able to make the expected revenue greater than 

,IIR EAIRR . This implies that ,IIR EAIRR  is the upper bound of expected revenue regardless of 

whether we require inducibility. 

 Proposition 5 is related to the observation from risk-sharing in a classical 

principal-agent model. When the principal is risk-averse but the agent is risk-neutral, the 

principal’s best choice is to sell the company to the agent by giving the entire outcome 

(externalities to the principal) in exchange for a fixed constant fee.19 By regarding pure 

Groves mechanisms as an extension of such selling-out contracts, Proposition 5 indicates 

that with richness, selling the company is the best choice even if the principal is 

risk-neutral. 

 It is well-accepted that efficiency is achievable by a Groves mechanism without 

running expected deficits if we do not require inducibility. With conditional 

                                                 
19 See Harris and Raviv (1979), for example. 
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independence and some moderate restrictions, we can guarantee the non-negativity of 

,IIR EAIRR  as follows. 

 

Proposition 6: Assume the suppositions in Proposition 4, conditional independence, and 

the following conditions. 

Non-Negative Valuation: For every {0}i N   and  , 

   0( ( ), , ) 0iiv g     . 

Non-Negative Expected Payoff: For every i N , 

(15)   0[ ( ( ), , ) | ] ( ) 0i j i iE v g b c b     . 

With IIR and EAIR, the central planner has non-negative expected revenue: , 0IIR EAIRR  . 

 

Proof: See the Appendix. 

 

 Non-negative valuation excludes the case of bilateral bargaining addressed by 

Myerson and Satterthwaite (1983), where it is impossible for the central planner to 

achieve efficiency without deficits. Non-negative expected payoff excludes the case of 

opportunism in the hold-up problem, where the sunk cost ( )i ic b  is so significant that it 

violates inequality (15). By eliminating these cases, and replacing EPIR with IIR and 

EAIR, we can derive the possibility result in liability implied by Proposition 6. 

 

7. No Externality 

 

 So far, we have assumed richness, i.e., that each agent’s action choice provides a 

significant externality effect on the other agents’ types and the public signal. This section 

assumes that no such externality exists. 

Specifically, this section assumes independence of the information structure, 

requiring conditional independence and requiring that each agent i ’s action choice 
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i ib B  only influences the marginal distribution of the agent’s type i ; for every 

  and b B , 

   0 0( ( ) ( | )| ) i i i
i N

f fb f b  


  . 

Here, ( | )i if b  denotes the distribution of each agent i ’s type i  that is assumed to 

depend only on ib , and 0 ( )f   denotes the distribution of the public signal 0  that is 

assumed to be independent of the action profile b B . When we have such 

independence, agent i ’s action space is equivalent to the set of available marginal 

distributions on agent i ’s type. Accordingly, this restriction expresses no externality. 

With independence, for every : R   and :i i R   , we can simply write 

[ ( , ) | ]
i i i iE b  

    and [ ( ) | ]i i iE b   instead of ,[ ( ) | , ]
i ii iE b   

   and 

[ ( ) | ]i iE b  , respectively. 

 On the action profile b , we introduce a condition of private richness, the 

no-externality version of richness, as follows. 

 

Definition 8 (Private Richness): An action profile b B  is said to be privately rich if 

we have the independence of the information structure, and for every i N  and 

( )i i   , there exist 0   and a path on iB , ( , ) :[ , ]i i iB      , such that 

   ( ,0)i i ib   , 

(16)   
0

( | ( , )) ( | )
lim ( ) ( | )i i i i i

i i i

f f b
f b



   


  
    , 

and ( ( , ))i i ic     is differentiable in   at 0  . 

 

 Private richness implies that each agent i N  has a wide variety of action choices 

that can smoothly and locally change the distribution of the agent’s type i  (not of the 

entire state  ) in all directions from ( | )i if b . Since the action choice problem of each 

agent is separated by the independence of the information structure, Proposition 1 
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guarantees that an action profile a A  satisfies private richness if the cost function for 

each agent i N , ic , has directional derivatives at b . 

 Private richness is a much weaker restriction than the original version of richness. 

Accordingly, we can expect a much wider class of payment rules than pure Groves to 

satisfy inducibility. The main purpose of this section is to characterize payment rules that 

guarantee inducibility under private richness. 

 

Lemma 3: Suppose that an action profile b  is privately rich, and a function w  

satisfies (3). For every function ( ) : n
i i Nw w R    , w  satisfies the properties 

implied by (3), i.e., for every i N , 

[ ( ) | ] ( ) [ ( ) | , ] ( )i i i i i i i iE w b c b E w b b c b        for all i ib B , 

if and only if [ ( ) ( , ) | ],
i i i i i i i iE w w b    

      is independent of i i  . 

 

Proof: The proof of this lemma parallels that of Lemma 2. See the Appendix. 

 

Proposition 7: Consider an arbitrary combination of an action profile and a mechanism 

( , ( , ))b g x . Suppose that b  is privately rich and ( , )g x  induces b . For every payment 

rule x , the associated mechanism ( , )g x  induces b  if and only if 

[ ( ) ( ) | ], ,
i i i i i i i iE x x b    

      is independent of i i  . 

 

Proof: The proof of this proposition parallels that of Theorem 1. See the Appendix. 

 

Fix an arbitrary combination of an action profile and an allocation rule ( , )b g . 

Consider two arbitrary payment rules x  and x  such that both ( , )g x  and ( , )g x  

induce b . Let iU R  and iU R  denote the respective ex-ante expected payoff for 

each agent i N : 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b     , 
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and 

[ ( ( ), ) ( ) | ] ( )i i i i iU E v g x b c b      . 

Proposition 7 implies that the interim (rather than ex-post) payment for each agent i  is 

unique up to constants, in that 

 [ ( ) | ] [ ( ) | ], ,
i ii i i i i i i i i iE x b E x b U U    

         for all i i  . 

 

Proposition 8: Consider an arbitrary combination of an allocation rule and an action 

profile ( , )b g , where b  is privately rich. If there exists a payment rule x  such that 

( ,( , ))b g x  satisfies BI, then, for every payment rule x , whenever ( , )g x  induces b , 

( ,( , ))b g x  satisfies BI. 

 

Proof: The proof of this proposition parallels that of Theorem 2. See the Appendix. 

 

 Let us consider an arbitrary combination of action profile and allocation rule ( , )b g  

that are efficient. A payment rule x  is said to be expectation-Groves if for each i N , 

there exist :ir R  such that for every i N , 

   
{0}\{ }

( () )( ( ), )i j i
j N i

x v g r   


  


 for all  , 

and [ ( , ) | ]
i i iiiE r b 

    is independent of i i  . Note that, with efficiency, any 

expectation-Groves payment rule guarantees inducibility. Note that any Groves payment 

rule is expectation-Groves. Whenever x  is expectation-Groves, then any payment rule 

x  is expectation-Groves if and only if [ ( ) ( ) | ], ,
i i i i i i i iE x x b    

      is independent 

of i i  . 

 

Proposition 9: Suppose that ( , )b g  is efficient. With independence, ( , )g x  induces b  

if x  is expectation-Groves. Suppose that b  is privately rich and ( , )b g  is efficient. 

With independence, ( , )g x  induces b  if and only if x  is expectation-Groves. 
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Proof: See the Appendix. 

 

 The replacement of richness with private richness dramatically reduces the difficulty 

of achieving efficiency without deficits. In fact, the VCG payment rule is not pure Groves, 

but is expectation-Groves and satisfies EPIC. With private values, it generally guarantees 

the non-negativity of the ex-post payment from each agent to the central planner. 

With private values, the mechanism ( , )g x  explored by Arrow (1979) and 

D’Aspremont and Gerard-Varet (1979) (i.e., the AGV mechanism) is expectation-Groves, 

where ( )ir   (
{0}\{ }

) ), )( ( (i jj N i
x v g  


  

) is specified as 

(17)   
{0}\{ } {0}\{ }

) ), ) [( ( ( ( ( , ), ) | ]
ii j j j i i j i

j N i j N i

Er bv g v g     
  

 

  
 

   

   
\{ } {0}\{ }

( (
1

[ ), ) | ]
1

,
j j h j

j N i h N j
h jE bv g

n    
  

 


  



  . 

This mechanism clearly satisfies budget-balancing: 

   ( ) 0i
i N

x 


  for all  . 

Accordingly, with independence, the central planner can achieve efficiency under the 

constraints of BI and budget-balancing. 

 Hatfield, Kojima, and Kominers (2015) studied a relevant problem by focusing on 

mechanisms that are detail-free (i.e., independent of specifications such as action spaces 

and cost functions). They showed that efficient and inducible mechanisms must be 

Groves. In contrast, we permit mechanisms to not be detail-free, and then show that 

expectation-Groves mechanisms, which includes Groves as a proper subclass, are 

necessary and sufficient.20 

 

8. Alternative Definition of Richness: Full Dimensionality 
                                                 
20 Note that the construction of an expectation-Groves mechanism does not depend much on fine 
details of the specification of ( , , )f B c . In fact, the only knowledge needed for this construction is 

the shape of |( )f b  at the efficient action profile b . 
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 So far, we have defined richness as a condition implying that each agent can change 

the distribution in all directions by selecting pure actions. This section introduces an 

alternative definition of richness, in which each agent can change the distribution in 

finitely many directions by selecting pure actions. 

 Denote dim( ( )) | | 1K       . Taking advantage of the finiteness of the state 

space, we assume the following condition as an alternative to richness: For each i N , 

there exist 0  , 1{ }k K
k  , and 1{ : [ }, ]k K

i i kB     such that the K  vectors 

1{ ( () | })k K
kbf    are linearly independent, and for every {1,..., }k K , 

   (0)k
i ib  , 

   
0

( | ( ), ) ( | )
lim ( ) ( | )

k
ki i
i

f b f b
f b



  






  
    , 

and ( ( ))k
i ic    is differentiable in   at 0  . In contrast to the original definition of 

richness, we only assume that each agent can change the distribution in finitely many 

directions, i.e., 1{ ( () | })k K
kbf   , by selecting pure actions. However, according to the 

linear independence of 1{ ( () | })k K
kbf   , it follows that for every ( )   , there 

exists a mixed action for agent i N , by selecting which this agent can change the 

distribution in the direction of ( () | )f b   at a differentiable cost. Hence, with the 

alternative richness, each agent can change the distribution in all directions by selecting 

not pure but mixed actions. 

 This finding has important implications. Even if we replace the original definition of 

richness with the above-mentioned alternative, we can prove all results of this study due 

to richness. For the satisfaction of the alternative richness, we do not require each agent 

to have a huge breadth of action space. All we have to do for the satisfaction of the 

alternative richness is to clarify whether each agent can change the distribution by 

selecting pure actions in finitely many directions. 

 In the same manner as the above argument, we can also replace the definition of 

private richness with an alternative concerning only finitely many directions. 
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9. Conclusion 

 

 We have studied the general collective decision problem with quasi-linearity and 

risk-neutrality that includes aspects of both hidden action and hidden information. We 

have assumed that each agent has a wide availability of activities before the state occurs, 

and that such activities have a significant externality effect on other agents’ valuations. 

We have shown that the class of mechanisms that successfully induce the desired action 

profile in hidden action is restrictive in the following manner. 

First, the payment rule that satisfies inducibility, if such a rule exists, is unique up to 

constants. We, therefore, obtained the equivalence properties in the ex-post term with 

respect to payoff, payment, and revenue. We have also shown that, if there is a 

mechanism that induces the desired action profile in hidden action but fails to satisfy 

incentive compatibility in hidden information, then we cannot discover a mechanism that 

satisfies both inducibility and incentive compatibility. 

 Second, focusing on the achievement of efficiency, we have shown that the 

mechanisms that satisfy both inducibility and incentive compatibility must be pure 

Groves (which is the simplest form of the Groves mechanism). Accordingly, it is difficult 

to satisfy both inducibility and incentive compatibility in the interdependent value case, 

while it is generally possible in the private value case. Even in the private value case, 

though, the central planner has to struggle to avoid deficits. 

 The above-mentioned difficulties are caused by the central planner’s perception that 

each agent has, potentially, a wide availability of activities with externality effects. 

Accordingly, to calm these difficulties, the central planner should collect information in 

advance about which aspects of activities are actually relevant to the problem posed. 

 This paper has assumed richness as describing an extreme range of externalities. The 

substances of this paper’s results, however, are unchanged, even if we weaken the 

richness assumption. 

 In future research, it would be important to investigate the collective decision 

problem by replacing richness with a much milder condition. We have shown that, with 
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richness (or its alternative), the incentive constraint in hidden action alone determines the 

shape of well-behaved mechanisms, without mentioning hidden information. Without 

richness, we can expect incentive constraints in hidden information to supplement the 

indeterminacy of the shape of the mechanism. However, careful research of the 

unification of hidden action and hidden information in this line are beyond the scope of 

this paper. 
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Appendix 

 

Proof of Proposition 3: From Theorem 3, we can focus on pure Groves payment rules, 

where the constraint for EPIR is equivalent to 

(A1)   0
{0}

min ( ( ), , )j j i
j N

v g z


  







 for all i N . 
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We can maximize the expected revenue by letting iz  satisfy (A1) with equality for each 

i N . Accordingly, the central planner can receive from each agent i  the expected 

value given by 

   0 0
{0} {0}\{ }

min ( ( ), ) ( ( ), ), ,j j j j
j N j N i

v g E v g b


     


 

 
  

  
 
 

, 

which implies (11), where we add 0 0[ ( ( ), ) | ]E v g b  . 

 Similarly, the constraint for IIR is equivalent to 

(A2)  0
{0}

min ,( ( ), , ) ,
i

i i
j i i j i i

j N

v g b zE
    

 


 
 

  



 for all i N  and i i  . 

We can maximize the expected revenue by letting iz  satisfy (A2) with equality for each 

i N . Accordingly, the central planner can receive from each agent i  the expected 

value given by 

  0
{0}

min ( ( ), , ), ,
i

i i
j i i j i

j N

E v g b
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


 
  

  



, 

which implies (12), where we add 0 0[ ( ( ), ) | ]E v g b  . 

 The constraint for EAIR is equivalent to 

(A3)   0
{0}

( ( ), , ) ( )j j i i i
j N

E v g b c b z  


 
  

  



 for all i N . 

We can maximize the expected revenue by letting iz  satisfy (A3) with equality for each 

i N . Accordingly, the central planner can receive from each agent i  the expected 

value given by 

   0
{0}

( ( ), , ) ( )j j i i
j N

v g b c bE   


 
 

  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


 
  

  



 

   0( ( ), , ) ( )ii i iv g bE c b      , 

which implies (13), where we add 0 0[ ( ( ), ) | ]E v g b  . 

 The constraint for IIR and EAIR is equivalent to 
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(A4)   0
{0}

min ( ( ), , ) ( ),j j i i
j N

E v g b c b  


    
   



 

   0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i i

j N

v g b zE
    

 


   
  



. 

We can maximize the expected revenue by letting iz  satisfy (A4) with equality for each 

i N . Accordingly, the central planner can receive from each agent i  the expected 

value given by 

   0min ( ( ), , ) ( ),i i iiv g b cE b       

  0
{0}

( ( ), , ) ,min ,
i

i i
j i i j i

j N

v g bE
    

 


 
 
  



0
{0}\{ }

( ( ), , )j j
j N i

E v g b  


   
  



, 

which implies (14), where we add 0 0[ ( ( ), ) | ]E v g b  . 

Q.E.D. 

 

Proof of Proposition 4: If 0EAIRR  , the conclusion would be immediate from the fact 

that EPIR EAIRR R . Suppose 0EAIRR  . Because for 0 1( , , ), n   , 

0{0}
( , , ) 0iii N

v a  


 
 holds for all a A , we have 

   0
{0}

min ( ( ), , ) 0
i

i i
N

v g


  







. 

It follows from 0EAIRR   and ( ) 0i ii N
c b


  that we have 

   0
{0}

( ( ), , ) ( ) 0i i i i
i N i N

E v g b c b  
 

 
  

  
 


. 

From these observations, 

   0
{0} {0}

min ( ( ), ) ( 1) ( ( ), , ) 0EPIR
j

j N
j j j

j N

R n v g n E v g b

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

 

 
   

 



 
 

. 

Q.E.D. 
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Proof of Proposition 5: We have shown that there is a pure Groves mechanism that 

achieves ,IIR EAIRR . With efficiency, conditional independence, and private values, let us 

consider an arbitrary Groves mechanism ( , )g x , where for each i N , there exists 

:i iy R   such that 

   0
{0}\{ }

( ( ( , )) ), ( )i j j i i
j N i

vx g y    


  


 for all  . 

EAIR implies 

   0
{0}

( ( ( , ) ), () )i j i
Nj

i j iE y b E v g b c b   


 
    



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


, 

while IIR requires 

   0
{0}

) )( , ( ( , , ), ,
ii i j i i j

N
i i

j

E y b E v g b     
 



 
    

 






  

for all i i  , 

or, equivalently, 

   0
{0}

) min ),( ( ( , , ) ,
i

i i
i i j i i j

N
i

j

E y b E v g b
    

 


 
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 






. 

Here, we utilized )( ( ,)i i i i iE y b E y b           because of conditional independence. 

Accordingly, we have 

   0
{0}

( ( ( , )) ( ),min ),i i j
j

j i i
N

E y b E v g b c b   

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   
  



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
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{0}

min ),( ( , , ) ,
i

i i
j i

Nj
i ijE v g b
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 



 
 
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


, 

which implies 

   ,
0 0[ ( ( ), ) ( ) | ] IIR EAIR

i
i N

E v g x b R  


  . 

Q.E.D. 
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Proof of Proposition 6: From conditional independence, non-negative valuations, and 

null state, it follows that for every i N  and i i  , 

  
0 0

{0} {0}

,( ( ), ) max ( , ), ,
i ij i i j j j

a N
j N j N

E v g b E v a b      
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 
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   
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 
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0

{0}\{ }
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i j j

a N
j N i
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 



 
  
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
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  0 0
{0}\{ }

( ( , ), , ) ( ( , ), ),
i i i i i j i i j

j N i

E v v gg b        
  



 
  
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





, 

which implies 

  0 0
{0} {0}\{ }

min ( ( ), ) max, ,( , ),
i i

i i
j i i j j j

a A
j N j N i

E v g b E v a b 
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  
 

   
   

      
 
 

, 

that is, 

  0 0
{0} {0}\{ }

( ( ), ) [ ( ( ), )min , , , | ] 0
i

i i
j i i j j j

j N j N i

v g b E v g bE
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 
 

 
  

  
 
 

. 

From the assumption of non-negative expected payoffs, we have 

   0( ( ), ), ( ) 0i ii iE v g b c b      . 

From these observations, for every i N , 

    0min ( ),( ) (), , ii iiE v g b c b       

0 0
{0} {0}\{ }

min ,( ( ), , ) [ ( ( ), ) | ],
i

i i
j i i j j j

j N j N i

v g b E g bE v
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 
 

    
    
 
 

 0 . 

which, along with non-negative valuations, implies , 0IIR EAIRR  . 

Q.E.D. 

 

Proof of Lemma 3: The proof of the sufficiency is straightforward. We present the proof 

of the necessity as follows. Take an arbitrary w  which satisfy (3) and consider an 

arbitrary agent i N . Take an arbitrary iw  such that 
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( ) ( , ) ( , ) | ][
ii i i i i i i i ibE w w     

      is a non-constant function. Then, there exists 

i i   such that ( ) [ ( ) | ]i i i i iE b    . Let )(i
i i
    denote the degenerate 

distribution where ( ) 1i
i i
   . Due to private richness, there exist 0   and 

( , ) : [ , ]i
i i iB       such that 

  
0

( | ( , )) ( | )
lim ( ) ( | )

i

ii i i i i
i i i

f f b
f b






 





  
    . 

Since w  satisfies (3), the first order condition along )( ,i
i i

    must hold, i.e., 

    
0

[ ( ) | ] ( , ) ( ( , )) 0i i

i i i i i i i i iE E w b c 
 



    


 
 



     
. 

On the other hand, 
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 


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i i i iE 



    
 




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Hence, if ( ) ( , ) ( , ) | ][
ii i i i i i i i ibE w w     

      is non-constant, agent i  has an 

incentive to increase   along , )(i
    from 0  . Accordingly, whenever w  and 

w  satisfy (3), then ( , ) ( , ) | ][
i i i i i i i iE w w b    

      is independent of i . 

Q.E.D. 

 

Proof of Proposition 7: The proof of sufficiency is straightforward. Let us show the 

proof of necessity as follows. Suppose that ( , )g x  induces b . According to the proof of 

Lemma 1, we specify w  by 

   ( ) ( ( ), ) ( )i i iw v g x      for all i N  and  . 

Suppose also that ( , )g x  induces b . Similarly, we specify w  by 



44 
 

   ( ) ( ( ), ) ( )i i iw v g x       for all i N  and  . 

Lemma 3 implies that [ ( ) ( ) | ], ,
i i i i i i i iE w w b    

      is independent of i i   (i.e., 

[ ( ) ( ) | ], ,
i i i i i i i iE x x b    

      is independent of i i  ). 

Q.E.D. 

 

Proof of Proposition 8: Suppose that ( , )g x  and ( , )g x  induce b . From Proposition 7, 

[ ( ) ( ) | ], ,
i i i i i i i iE x x b    

      is independent of i i  . This automatically implies 

that ( ,( , ))b g x  satisfies BI if and only if ( ,( , ))b g x  satisfies BI.  

Q.E.D. 

 

Proof of Proposition 9: Sufficiency is straightforward from the fact that 

[ ( , ) | ]
i i i iiE r b 

    is independent of i  and ib . For necessity, note that whenever 

( , )b g  is efficient and x  is pure Groves, then ( , )g x  induces b . Because pure Groves 

is expectation-Groves, it follows from Proposition 7 that ( , )g x  induces b  if and only 

if x  is expectation-Groves. 

Q.E.D. 


