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Abstract

This article proposes a new approximation scheme for quadratic-growth BSDEs in a
Markovian setting by connecting a series of semi-analytic asymptotic expansions applied
to short-time intervals. Although there remains a condition which needs to be checked
a posteriori, one can avoid altogether time-consuming Monte Carlo simulation and other
numerical integrations for estimating conditional expectations at each space-time node.
Numerical examples of quadratic-growth as well as Lipschitz BSDEs suggest that the
scheme works well even for large quadratic coefficients, and a fortiori for large Lipschitz
constants.
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1 Introduction

The research on backward stochastic differential equations (BSDEs) was initiated by Bismut
(1973) [8] for a linear case and followed by Pardoux & Peng (1990) [42] for general non-linear
setups. Since then, BSDEs have attracted strong interests among researchers and now large
amount of literature is available. See for example, El Karoui et al. (1997) [25], El Karoui
& Mazliak (eds.) (1997) [24], Ma & Yong (2000) [38], Yong & Zhou (1999) [45], Cvitanić
& Zhang (2013) [20] and Delong (2013) [21] for excellent reviews and various applications,
and also Pardoux & Rascanu (2014) [43] for a recent thorough textbook for BSDEs in the
diffusion setup. In particular, since the financial crisis in 2009, the importance of BSDEs in
the financial industry has grown significantly. This is because that the BSDEs have found to
be indispensable to understand various valuation adjustments collectively referred to XVAs
as well as the optimal risk control under the new regulations. For market developments
and related issues, see Brigo, Morini & Pallavicini (2013) [14], Bianchetti & Morini (eds.)
(2013) [7] and Crépey & Bielecki (2014) [17].

In the past decade, there has been also significant progress of numerical computation
methods for BSDEs. In particular, based on the so-called L2-regularity of the control vari-
ables established by Zhang (2001, 2004) [51, 50], now standard backward Monte Carlo schemes
for Lipschitz BSDEs have been developed by Bouchard & Touzi (2004) [11], Gobet, Lemor
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& Warin (2005) [31]. One can find many variants and extensions such as Bouchard & Elie
(2008) [10] for BSDEs with jumps, Bouchard & Chassagneux (2008) [9] for reflected BSDEs,
and Chassagneux & Richou (2016) [16] for a system of reflected BSDEs arising from optimal
switching problems. Bender & Denk (2007) [4] proposed a forward scheme free from the lin-
early growing regression errors existing in the backward schemes; Bender & Steiner (2012) [5]
suggested a possible improvement of the scheme [31] by using martingale basis functions for
regressions; Crisan & Monolarakis (2014) [19] developed a second-order discretization using
the cubature method. A different scheme based on the optimal quantization was proposed by
Bally & Pagès (2003) [6]. See Pagès & Sagna (2015) [41] and references therein for its recent
developments. Delarue & Menozzi (2006, 2008) [22, 23] studied a class of quasi-linear PDEs
via a coupled forward-backward SDE with Lipschitz functions, which, in particular, becomes
equivalent to a special type of quadratic-growth (qg) BSDE (so called deterministic KPZ
equation) under a certain setting. Recently, Chassagneux & Richou (2016) [15] extended the
standard backward scheme to qg-BSDEs with bounded terminal conditions in a Markovian
setting.

As another approach, a semi-analytic approximation scheme was proposed by Fujii &
Takahashi (2012) [26] and justified in the Lipschitz case by Takahashi & Yamada (2015) [47].
An efficient implementation algorithm based on an interacting particle method by Fujii &
Takahashi (2015) [28] has been successfully applied to a large scale credit portfolio by Crépey
& Song (2015) [18]. This is an asymptotic expansion around a linear driver motivated by the
observation that, for many financial applications, the non-linear part of the driver is propor-
tional to an interest rate spread and/or a default intensity which is, at most, of the order
of a few percentage points. Although it cuts the cost of numerical computation drastically
under many interesting situations, the non-linear effects may grow and cease to be perturba-
tive when one deals with longer maturities, higher volatilities, or general risk-sensitive control
problems for highly concave utility functions. For example, the quadratic-growth terms of the
control variables appearing in the exponential utility optimization may give rise to significant
non-linearity when the risk-averseness is high.

In this paper, we propose a new approximation scheme for Markovian qg-BSDEs with
bounded terminal functions, which aims to achieve the advantages of both the standard Monte
Carlo scheme, in terms of generality, and also the semi-analytic approximation scheme, in
terms of the lesser numerical cost. The main idea is to decompose the original qg-BSDE into
a sequence of qg-BSDEs each of which is defined in a short-time interval. We then employ an
asymptotic expansion method to solve each of them approximately.1 In order to obtain the
total error estimate, we first investigate the propagation of error for a sequence of qg-BSDEs
with terminal conditions perturbed by bounded functions, say {δi}1≤i≤n. The first main
result is thus obtained as Theorem 3.1. We then substitute the error function associated to
the asymptotic expansion in each period for the function δi, which then leads to our second
main result of Theorem 4.1 providing the total error estimate for the proposed scheme.

Although there remains assumptions which cannot be confirmed a priori, which is a
drawback of the current scheme, they can still be checked numerically for each model (under
one plausible assumption). Once it is confirmed, the convergence with the rate of n−1/2+δ

for all δ > 0 in the strong sense is obtained for a finite range of discretization. In the case of
the standard scheme with Monte Carlo simulation, although the convergence is guaranteed
a priori for sufficiently small discretization and many paths, it is not completely free from a

1Similar ideas have been applied to stochastic filtering by Fujii (2014) [27] and to European option pricing
by Takahashi & Yamada (2016) [48].
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posteriori checks, either. One still needs to run heavy tests with varying discretization sizes
and number of paths to confirm whether a given result provides a reasonable approximation or
not. The advantage of the proposed scheme is that one can avoid time-consuming simulation
for estimating conditional expectations at each space-time node by using simple semi-analytic
results and finer discretization becomes easier to implement. We give numerical examples for
both qg- and Lipschitz BSDEs to illustrate the empirical performance. They suggest that
the scheme works well even for very large quadratic coefficients, and all the more so for large
Lipschitz constants. Note also that, the short-term asymptotic expansion of qg-BSDEs in
the strong sense is provided for the first time, which may be useful for other applications.

The organization of the paper is as follows: Section 2 explains the general setting and
notations, Section 3 gives the time-discretization and investigates a sequence of qg-BSDEs
perturbed in the terminal values; Section 4 applies the short-term expansion to the result of
Section 3 which yields the total error estimate of the proposed scheme. Section 5 explains
a concrete implementation using a discretized space-time grid and the corresponding error
estimates. Finally Appendix A summarizes the properties of BMO-martingales, Appendices
B and C derive the formula of the short-term asymptotic expansion and obtain the error
estimates relevant for the analysis in the main text.

2 Preliminaries

2.1 General setting and notations

Throughout the paper, we fix the terminal time T > 0. We work on the filtered probability
space (Ω,F ,F,P) carrying a d-dimensional independent standard Brownian motion W . F =
(Ft)t∈[0,T ] is the Brownian filtration satisfying the usual conditions augmented by the P-
zero sets. We denote a generic positive constant by C, which may change line by line and
it is sometimes associated with several subscripts (such as Cp,K) when there is a need to
emphasize its dependency on those parameters. T T

0 denotes the set of all F-stopping times
τ : Ω → [0, T ]. We denote the sup-norm of Rk-valued function x : [0, T ] → Rk, k ∈ N by the
symbol ||x||[a,b] := sup

{
|xt|, t ∈ [a, b]

}
and write ||x||t := ||x||[0,t].

Let us introduce the following spaces for stochastic processes with p ≥ 2 and k ∈ N. For
the convenience of the reader, we separately summarize the relevant properties of the BMO
martingales and the associated function spaces in Appendix A.
• Sp

[s,t](R
k) is the set of Rk-valued adapted processes X satisfying

||X||Sp
[s,t]

:= E
[
||X||p[s,t]

]1/p
< ∞ .

• S∞
[s,t](R

k) is the set of Rk-valued essentially bounded adapted processes X satisfying

||X||S∞
[s,t]

:=
∣∣∣∣supr∈[s,t] |Xr|

∣∣∣∣
∞ < ∞ .

• Hp
[s,t](R

k) is the set of Rk-valued progressively measurable processes Z satisfying

||Z||Hp
[s,t]

:= E
[(∫ t

s
|Zr|2dr

) p
2
] 1

p
< ∞.

• Kp[s, t] is the set of functions (Y, Z) in the space Sp
[s,t](R) × Hp

[s,t](R
1×d) with the norm

defined by

||(Y, Z)||Kp[s,t] :=
(
||Y ||pSp

[s,t]

+ ||Z||pHp
[s,t]

)1/p
.
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We frequently omit the argument Rk and subscript [s, t] if they are obvious from the context.
We use

(
Θs, s ∈ [0, T ]

)
as a collective argument Θs := (Ys, Zs) to lighten the notation. We

use the following notation for partial derivatives with respect to x ∈ Rd such that

∂x = (∂x1 , · · · , ∂xd) =
( ∂

∂x1
, · · · , ∂

∂xd
)

and ∂θ = (∂y, ∂z) for the collective argument Θ.

2.2 Setup

Firstly, we introduce the underlying forward process Xt, t ∈ [0, T ]:

Xt = x0 +

∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr , (2.1)

where x0 ∈ Rd, b : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×d.2

Assumption 2.1. (i) For all t, t′ ∈ [0, T ] and x, x′ ∈ Rd, there exists a positive constant K

such that |b(t, x)− b(t′, x′)|+ |σ(t, x)− σ(t′, x′)| ≤ K
(
|t− t′|

1
2 + |x− x′|

)
.

(ii) ||b(·, 0)||T + ||σ(·, 0)||T ≤ K.
(iii) b and σ are 3-time continuously differentiable with respect to x and satisfy

|∂m
x b(t, x)|+ |∂m

x σ(t, x)| ≤ K ,

|∂m
x b(t, x)− ∂m

x b(t′, x)|+ |∂m
x σ(t, x)− ∂m

x σ(t′, x)| ≤ K|t− t′|1/2 , (2.2)

for all 1 ≤ m ≤ 3, t, t′ ∈ [0, T ] and x ∈ Rd.

Let us now introduce a qg-BSDE which is a target of our investigation:

Yt = ξ(XT ) +

∫ T

t
f(r,Xr, Yr, Zr)dr −

∫ T

t
ZrdWr, t ∈ [0, T ] (2.3)

where ξ : Rd → R, f : [0, T ]× Rd × R× R1×d → R.

Assumption 2.2. (i) f satisfies the quadratic structure condition [2]:

|f(t, x, y, z)| ≤ lt + β|y|+ γ

2
|z|2

for all (t, x, y, z) ∈ [0, T ]× Rd × R× R1×d, where β ≥ 0, γ > 0 are constants, l : [0, T ] → R+

is a positive function bounded by a constant K, i.e. ||l||T ≤ K.
(ii) f satisfies, for all t, t′ ∈ [0, T ], y, y′ ∈ R, x, x′ ∈ Rd, z, z′ ∈ R1×d,

|f(t, x, y, z)− f(t′, x, y, z)| ≤ K|t− t′|1/2 ,

|f(t, x, y, z)− f(t, x, y′, z)| ≤ K|y − y′| ,
|f(t, x, y, z)− f(t, x, y, z′)| ≤ K

(
1 + |z|+ |z′|

)
|z − z′| ,

|f(t, x, y, z)− f(t, x′, y, z)| ≤ K
(
1 + |y|+ |z|2

)
|x− x′|.

2Useful standard estimates on the Lipschitz SDEs can be found, for example, in Appendix A of [30].
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(iii) the driver f is 1-time continuously differentiable with respect to the spacial variables with
continuous derivatives. In particular, we assume that

|∂yf(t, x, y, z)| ≤ K, |∂zf(t, x, y, z)| ≤ K(1 + |z|), |∂xf(t, x, y, z)| ≤ K(1 + |y|+ |z|2)

for all (t, x, y, z) ∈ [0, T ]× Rd × R× R1×d.
(iv) ξ is a 3-time continuously differentiable function satisfying that ||ξ(·)||L∞ ≤ K and
||∂m

x ξ(·)||L∞ ≤ K for every 1 ≤ m ≤ 3.

Remark 2.1. The 2nd- and 3rd-order differentiability in Assumptions 2.1 and 2.2 is relevant
only for the later part of the discussions (Section 4∼), where the error estimate of the short-
term expansions are required.

It has been well-known since the work of Kobylanski (2000) [35] that there exists a unique
solution (Y, Z) to (2.3) in the space (Y,Z) ∈ S∞ ×H2

BMO.

Lemma 2.1. (universal bound) Under Assumptions 2.1 and 2.2, the solution (Y, Z) ∈ S∞×
H2

BMO of (2.3) satisfies

||Y ||S∞ ≤ eβT
(
||ξ(·)||L∞ + T ||l||T

)
,

||Z||2H2
BMO

≤ e4γ||Y ||S∞

γ2

(
3 + 6γT (β||Y ||S∞ + ||l||T )

)
.

Proof. This follows straightforwardly from the quadratic structure condition [2] which is given
by Assumption 2.2 (i). See, for example, Lemma 3.1 and 3.2 in [29].

3 A sequence of qg-BSDEs perturbed in terminals

In this section, we investigate a sequence of qg-BSDEs. For each connecting point, we intro-
duce a bounded perturbation function δi : Rd → R. We then investigate the propagation of
its effects to the total error.

3.1 Setup

Let us introduce a time partition π : 0 = t0 < t1 < · · · < tn = T . We put hi := ti − ti−1,
|π| := max1≤i≤n hi. We denote each interval by Ii := [ti−1, ti], i ∈ {1, · · · , n} and assume
that there exists some positive constant C such that |π|n ≤ C as well as |π|/hi ≤ C for
every i ∈ {1, · · · , n}. In order to approximate the BSDE (2.3), we introduce a sequence of
qg-BSDEs perturbed in the terminal values for each interval t ∈ Ii, i ∈ {1, · · · , n} in the
following way:

Y
i
t = ûi+1(Xti) +

∫ ti

t
f(r,Xr, Y

i
r, Z

i
r)dr −

∫ ti

t
Z

i
rdWr , (3.1)

where ûi+1 : Rd → R with ûn+1(x) := ξ(x).

Each terminal function ûi+1(x), x ∈ Rd of the period Ii is defined by
(
Y

i+1,ti,x
t , t ∈

[ti, ti+1]
)
, which is the solution of (3.1) for the period Ii+1 corresponding to the underlying
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process X with the initial data (ti, Xti = x) 3, and the additional perturbation term δi+1

ûi+1(x) := Y
i+1,ti,x
ti − δi+1(x), i ∈ {1, · · · , n− 1}. (3.2)

In the next section, {δi}i≤n will be related to the errors from the short-term expansion.

Assumption 3.1. (i)The perturbation terms δi+1 : Rd → R, i ∈ {1, · · · , n} are absolutely
bounded functions that keep (ûi+1)1≤i≤n satisfying the conditions

(a) max
1≤i≤n

||ûi+1(·)||L∞ ≤ K ′,

(b) max
1≤i≤n

||∂xûi+1(·)||L∞ ≤ K ′,

(c) max
1≤i≤n

||∂m
x ûi+1(·)||L∞ ≤ K ′, (m ∈ {2, 3})

with some n-independent positive constant K ′.4

(ii) There exists an n-independent positive constant C such that
∑n−1

i=1 ||δi+1(·)||L∞ ≤ C.

We use the convention δn+1 ≡ 0 and Y
n+1
tn = ξ(Xtn) in the following.

Remark 3.1. The condition (i)(c) becomes relevant only for the short-term expansion in the
next section.

Remark 3.2. The classical (as well as variational) differentiability of qg-BSDEs is well-
known by the works of Ankirchner et al. (2007) [1], Briand & Confortola (2008) [13] and
Imkeller & Reis (2010) [32]. See Fujii & Takahashi (2015) [29] for the extension of these
results to qg-BSDEs with Poisson random measures.

3.2 Properties of the solution

Applying the known results of qg-BSDE for each period, one sees that there exists a unique

solution (Y
i
, Z

i
) ∈ S∞

[ti−1,ti]
×H2

BMO[ti−1,ti]
. Applying Lemma 2.1 for each period Ii, one also

sees

||Y i||S∞[ti−1,ti] ≤ ||Y ||S∞ := eβ|π|
(
K ′ + |π|||l||T

)
, (3.3)

which is bounded uniformly in i ∈ {1, · · · , n}, and so is ||Zi||H2
BMO[ti−1,ti]

.

Proposition 3.1. Under Assumptions 2.1, 2.2 and Assumption 3.1 [i(a,b)], there exists

some positive (i, n)-independent constant C such that the process Z
i
t, t ∈ Ii of the solution to

the BSDE (3.1) satisfies

|Zi
t| ≤ C(1 + |Xt|), t ∈ Ii

uniformly in i ∈ {1, · · · , n}.

Proof. We use the representation theorem for the control variable (Theorem 8.5 in [1]) and
follow the arguments of Theorem 3.1 in Ma & Zhang (2002) [39]. Let us introduce the

3In other words, the underlying forward process is given by Xti,x
s = x+

∫ s

ti
b(r,Xti,x

r )dr+
∫ s

ti
σ(r,Xti,x

r )dWr,

s ∈ Ii+1, and hence Y
i+1,ti,x
ti is a deterministic function of x ∈ Rd.

4The exact size of K′ is somewhat arbitrary if it is big enough not to contradict the true solution of (2.3).
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parameterized solution (Xt,x, Y
i,t,x

, Z
i,t,x

) with the initial data (t, x) ∈ [ti−1, ti]× Rd:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +

∫ s

t
σ(r,Xt,x

r )dWr, (3.4)

Y
i,t,x
s = ûi+1(Xt,x

ti
) +

∫ ti

s
f(r,Xt,x

r , Y
i,t,x
r , Z

i,t,x
r )dr −

∫ ti

s
Z

i,t,x
r dWr, (3.5)

s ∈ [t, ti] where the classical differentiability of (3.4) and (3.5) with respect to the position x

is known [1]. The differential processes (∂xX
t,x, ∂xY

i,t,x
, ∂xZ

i,t,x
) are given by the solutions

to the following forward- and backward-SDE:

∂xX
t,x
s = I+

∫ s

t
∂xb(r,X

t,x
r )∂xX

t,x
r dr +

∫ s

t
∂xσ(r,X

t,x
r )∂xX

t,x
r dWr,

∂xY
i,t,x
s = ∂xû

i+1(Xt,x
ti

)∂xX
t,x
ti

+

∫ ti

t

{
∂xf(r,X

t,x
r ,Θ

i,t,x
r )∂xX

t,x
r

+∂θf(r,X
t,x
r ,Θ

i,t,x
r )∂xΘ

i,t,x
r

}
dr −

∫ ti

t
∂xZ

i,t,x
r dWr, (3.6)

where I is the d × d identity matrix and ∂xΘ
i,t,x

= (∂xY
i,t,x

, ∂xZ
i,t,x

). Note that |∂yf | is
bounded and |∂zf(r,Xt,x

r ,Θ
i,t,x
r )| ≤ K

(
1 + |Zi,t,x

r |
)
by Assumption 2.2 (iv). By the facts

given in (3.3) and the remark that follows, one sees ||∂zf(·, Xt,x
· ,Θ

i,t,x
· )||H2

BMO[t,ti]
≤ C with

some constant C. Thus Corollary 9 in [13] or Theorem A.1 in [29] implies that the BSDE
(3.6) has a unique solution satisfying, for any p ≥ 2,

∣∣∣∣∂xΘi,t,x∣∣∣∣p
Kp[t,ti]

≤ Cp,q̄E
[
|∂xûi+1(Xt,x

ti
)∂xX

t,x
ti

|pq̄2 +
(∫ ti

t
|∂xf(r,Xi,t,x

r ,Θ
i,t,x
r )∂xX

i,t,x
r |dr

)pq̄2] 1
q̄2

≤ Cp,q̄E
[
||∂xXt,x||2pq̄

2

[t,ti]

] 1
2q̄2

(
1 + hpiE

[
||Y i||2pq̄

2

[t,ti]

] 1
2q̄2 + E

[(∫ ti

t
|Zi,t,x

r |2dr
)2pq̄2] 1

2q̄2
)

(3.7)

where q̄ is a positive constant satisfying q∗ ≤ q̄ < ∞. Here, q∗ = r∗

r∗−1 > 1 is the conjugate
exponent of r∗ the upper bound of power with which the Reverse Hölder inequality holds for
E(∂zf ∗W ). We have used Assumption 2.2 (iv) and Hölder inequality in the last line.

By the standard estimate of SDE 5, one can show that ||∂xXt,x||S2pq̄2 ≤ C with some

positive constant C that is independent of the initial data (t, x). The boundedness of Y
i

in (3.3) and the following remark on Z
i
together with Lemma A.1 show that the right-

hand side of (3.7) is bounded by some positive constant. In particular, one can choose a

common constant C for every i ∈ {1, · · · , n} such that |∂xY
i,t,x
t | ≤ ||∂xY

i,t,x||Sp[t,ti] ≤ C

uniformly in (t, x) ∈ [ti−1, ti] × Rd. By the representation theorem [1, 39], we have Z
i
t =

∂xu
i(t,Xt)σ(t,Xt), t ∈ [ti−1, ti] where the function ∂xu

i : [ti−1, ti]×Rd → R1×d is defined by

∂xu
i(t, x) := ∂xY

i,t,x
t . Now the Lipschitz property of σ gives the desired result.

Let us now define a progressively measurable process
(
Zt, t ∈ [0, T ]

)
by

Zt :=
n∑

i=1

Z
i
t1{ti−1≤t<ti}, t ∈ [0, T ] (3.8)

5See, for example, Appendix A in [30].
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so that
∫ T
0 |Zt|2dt =

∑n
i=1

∫ ti
ti−1

|Zi
t|2dt.

Proposition 3.2. Under Assumptions 2.1, 2.2 and 3.1 [i(a), ii], the process
(
Zt, t ∈ [0, T ]

)
defined by (3.8) belongs to H2

BMO[0,T ] satisfying ||Z||H2
BMO[0,T ] ≤ C with some n-independent

positive constant C.

Proof. Applying Itô formula to e2γY
i

, one obtains for t ∈ Ii that∫ ti

t
e2γY

i
r2γ2|Zi

r|2dr = e2γY
i
ti − e2γY

i
t +

∫ ti

t
e2γY

i
r2γf(r,Xr, Y

i
r, Z

i
r)dr −

∫ ti

t
e2γY

i
r2γZ

i
rdWr .

The quadratic structure condition in Assumption 2.2 (i) gives∫ ti

t
e2γY

i
rγ2|Zi

r|2dr ≤ e2γY
i
ti − e2γY

i
t +

∫ ti

t
e2γY

i
r2γ

(
lr + β|Y i

r|
)
dr −

∫ ti

t
e2γY

i
r2γZ

i
rdWr .

Since Y
i
ti = ûi+1(Xti) = Y

i+1
ti − δi+1(Xti) and ||δi+1(·)||L∞ ≤ C uniformly in i ∈ {1, · · · , n},

one has e2γY
i
ti ≤ e2γY

i+1
ti +Ce2γY

i+1
ti |δi+1(Xti)| with some positive constant C. It follows that,

with the choice t = ti−1,∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr ≤
(
e2γY

i+1
ti − e

2γY
i
ti−1

)
+ Ce2γY

i+1
ti |δi+1(Xti)|

+

∫ ti

ti−1

e2γY
i
r2γ

(
lr + β|Y i

r|
)
dr −

∫ ti

ti−1

e2γY
i
r2γZ

i
rdWr.

Thus for any τ ∈ T T
0 and j := min

(
j ∈ {1, · · · , n} : τ ≤ tj

)
,∫ tj

τ
e2γY

j
rγ2|Zj

r|2dr +
n∑

i=j+1

∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr ≤ e2γY
n+1
tn − e2γY

j
τ + C

n∑
i=j

e2γY
i+1
ti |δi+1(Xti)|

+

∫ tj

τ
e2γY

j
r2γ

(
lr + β|Y j

r|
)
dr +

n∑
i=j+1

∫ ti

ti−1

e2γY
i
r2γ

(
lr + β|Y i

r|
)
dr

−
∫ tj

τ
e2γY

j
r2γZ

j
rdWr −

n∑
i=j+1

∫ ti

ti−1

e2γY
i
r2γZ

i
rdWr .

Since e2γY
j
τ > 0 and δn+1 ≡ 0, one obtains

E
[∫ tj

τ
e2γY

j
rγ2|Zj

r|2dr +
n∑

i=j+1

∫ ti

ti−1

e2γY
i
rγ2|Zi

r|2dr
∣∣∣Fτ

]

≤ E
[
e2γξ(XT ) + C

n−1∑
i=j

e2γY
i+1
ti |δi+1(Xti)|+

n∑
i=j

∫ ti

ti−1∨τ
e2γY

i
r2γ

(
lr + β|Y i

r|
)
dr
∣∣∣Fτ

]
.

By Assumption 3.1 [i(a), ii] and (3.3), the above inequality implies that there exists some
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n-independent constant C such that

E
[∫ T

τ
|Zr|2dr

∣∣∣Fτ

]
≤ e4γ||Y ||S∞

γ2

(
1 + 2γT

(
||l||T + β||Y ||S∞

)
+ C

n−1∑
i=1

||δi+1(·)||L∞

)
≤ C ,

and thus the claim is proved.

3.3 Error estimates for the perturbed BSDEs in the terminals

Let (Y, Z) be the solution to the BSDE (2.3) and (Y
i
, Z

i
) to (3.1). Let us put

δY i
t := Yt − Y

i
t, δZi

t := Zt − Z
i
t, δf i(t) := f(t,Xt, Yt, Zt)− f(t,Xt, Y

i
t, Z

i
t) ,

for t ∈ Ii, i ∈ {1, · · · , n}. Then (δY i, δZi) follows the BSDE

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t
δf i(r)dr −

∫ ti

t
δZi

rdWr , (3.9)

for t ∈ Ii. Our first main result is given as follows.

Theorem 3.1. Under Assumptions 2.1, 2.2 and 3.1 [i(a,b),ii], there exist some n-independent
positive constants q̄ > 1 and Cp,q̄ such that, for any p > 1,

max
1≤i≤n

E
[
sup
r∈Ii

|δY i
r |2p

] 1
p

+
n∑

i=1

∫ ti

ti−1

E|δZi
r|2dr ≤ Cp,q̄

|π|
E
[(n−1∑

i=1

|δi+1(Xti)|2
)pq̄] 1

pq̄
.

Proof. It directly follows from the next Propositions 3.3 and 3.4.

Remark 3.3. Theorem 3.1 implies that we need E|δ|2 ∝ n−k with k > 2 for the right-hand
side to converge. We shall see in fact that k = 3 is achieved by the short-term expansion.

Proposition 3.3. Under Assumptions 2.1, 2.2 and Assumption 3.1 [i(a,b)], the inequality

n∑
i=1

∫ ti

ti−1

E|δZi
r|2dr ≤ Cp max

1≤i≤n
E
[
sup
r∈Ii

|δY i
r |2p

]1/p
+

C

|π|

n−1∑
i=1

E|δi+1(Xti)|2 ,

holds for any p > 1 with some n-independent positive constants C and Cp.

Proof. For each interval Ii, let us define new progressively measurable processes
(
βi
r, r ∈ Ii

)
and

(
γir, r ∈ Ii

)
as follows:

βi
r :=

f(r,Xr, Yr, Zr)− f(r,Xr, Y
i
r, Zr)

δY i
r

1δY i
r ̸=0, γir :=

f(r,Xr, Y
i
r, Zr)− f(r,Xr, Y

i
r, Z

i
r)

|δZi
r|2

1δZi
r ̸=0(δZ

i
r)

⊤ .

Then, |βi| ≤ K is a bounded process by the Lipschitz property, and by Proposition 3.1, there
exists some (i, n)-independent positive constant C such that

|γir| ≤ K(1 + |Zr|+ |Zi
r|) ≤ C(1 + |Xr|) (3.10)
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for r ∈ Ii, i ∈ {1, · · · , n}. The BSDE (3.9) can now be written as

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t

(
βi
rδY

i
r + δZi

rγ
i
r

)
dr −

∫ ti

t
δZi

rdWr . (3.11)

A simple application of Itô formula gives

E|δY i
ti−1

|2 +
∫ ti

ti−1

E|δZi
r|2dr = E

∣∣δY i+1
ti

+ δi+1(Xti)
∣∣2 + ∫ ti

ti−1

E
[
2δY i

r

(
βi
rδY

i
r + δZi

rγ
i
r

)]
dr .

By Hölder inequality and (3.10), one obtains with some positive constants C,Cp that

1

2

∫ ti

ti−1

E|δZi
r|2dr ≤

(
E|δY i+1

ti
|2 − E|δY i

ti−1
|2
)
+ C|π|E|δY i+1

ti
|2 + C

|π|
E|δi+1(Xti)|2

+C

∫ ti

ti−1

E
[
|δY i

r |2(1 + |γir|2)
]
dr

≤
(
E|δY i+1

ti
|2 − E|δY i

ti−1
|2
)
+ C|π|E|δY i+1

ti
|2 + C

|π|
E|δi+1(Xti)|2 + Cp|π|E

[
sup
r∈Ii

|δY i
r |2p

]1/p
,

where p is an arbitrary constant satisfying p > 1. Summing up for i ∈ {1, · · · , n}, one obtains

1

2

n∑
i=1

∫ ti

ti−1

E|δZi
r|2dr ≤ E|δY n+1

tn |2 − E|δY 1
t0 |

2 + C|π|
n∑

i=1

E|δY i+1
ti

|2

+
C

|π|

n∑
i=1

E|δi+1(Xti)|2 + Cp|π|
n∑

i=1

E
[
sup
r∈Ii

|δY i
r |2p

]1/p
.

Since δY n+1
tn = δn+1 = 0, one gets the desired result.

Proposition 3.4. Under Assumptions 2.1, 2.2 and 3.1 [i(a),ii], there exists some n-independent
positive constants q̄ > 1 and Cp,q̄ such that, for any p > 1,

E
[
max
1≤i≤n

sup
r∈Ii

|δY i
r |p

]
≤ Cp,q̄E

[(n−1∑
i=1

|δi+1(Xti)|
)pq̄]1/q̄

.

Proof. Let us use the same notations βi
r, γ

i
r defined in Proposition 3.3. We also introduce

the process (γr, r ∈ [0, T ]) by γr :=
∑n

i=1 γ
i
r1{ti−1≤r<ti}. With Z defined by (3.8), it satisfies

|γr| ≤ K(1 + |Zr|+ |Zr|). By Lemma 2.1 and Proposition 3.2, both Z and Z are in H2
BMO,

and so is γ. In particular, ||γ||H2
BMO

≤ C by some n-independent constant.

From the remark following Definition A.2, one can show that γ ∗ W ∈ BMO(P). Thus
the new probability measure Q can be defined by dQ/dP = ET , where E is a Doléan-Dade

exponential Et := E
(∫ T

0 γ⊤r dWr

)
. The Brownian motion WQ under the measure Q is given

by WQ
t = Wt −

∫ t
0 γrdr for t ∈ [0, T ]. Furthermore, it follows from Lemma A.2 that there

exists a constant r∗ satisfying 1 < r∗ < ∞ such that, for every 1 < r̄ ≤ r∗, the reverse

Hölder inequality of power r̄ holds:
(
1/Eτ

)
E
[
E r̄
T |Fτ

]1/r̄ ≤ Cr̄. Here, τ ∈ T T
0 is an arbitrary

F-stopping time, Cr̄ is some positive constant depending only on r̄ and ||γ||H2
BMO

. We put
q̄ > 1 as the conjugate exponent of this r̄ in the following. By the last observation, all of
these constants can be chosen independently of n.
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Under the new measure Q, the BSDE (3.11) is given by

δY i
t = δY i+1

ti
+ δi+1(Xti) +

∫ ti

t
βi
rδY

i
r dr −

∫ ti

t
δZi

rdW
Q
r ,

which can be solved as δY i
t = EQ[e∫ ti

t βi
rdr

(
δY i+1

ti
+ δi+1(Xti)

)∣∣Ft

]
. for all t ∈ Ii. Since

|βi| ≤ K, one obtains |δY i
t | ≤ eKhiEQ[|δY i+1

ti
|+ |δi+1(Xti)|

∣∣Ft

]
. It then follows by iteration

|δY i
t | ≤ EQ

[
eK

∑n
j=i hj |δY n+1

tn |+
n∑

j=i

eK
∑j

k=i hk |δj+1(Xtj )|
∣∣∣Ft

]
.

Since δY n+1
tn = δn+1(Xtn) = 0, one concludes |δY i

t | ≤ EQ[∑n−1
j=i e

K
∑j

k=i hk |δj+1(Xtj )|
∣∣Ft

]
for

t ∈ Ii, i ∈ {1, · · · , n}. The reverse Hölder inequality gives

|δY i
t | ≤ eKTEQ

[n−1∑
j=i

|δj+1(Xtj )|
∣∣∣Ft

]
=

eKT

Et
E
[
ET

n−1∑
j=i

|δj+1(Xtj )|
∣∣∣Ft

]

≤ Cq̄e
KTE

[(n−1∑
j=i

|δj+1(Xtj )|
)q̄∣∣∣Ft

]1/q̄
,

which then yields

max
1≤i≤n

sup
t∈Ii

|δY i
t | ≤ Cq̄ sup

t∈[0,T ]
E
[(n−1∑

i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]1/q̄
.

Using Jensen and Doob’s maximal inequalities, one finally obtains

E
[
max
1≤i≤n

sup
t∈Ii

|δY i
t |p

]
≤ Cp,q̄E

[
sup

t∈[0,T ]
E
[(n−1∑

i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]p/q̄]
≤ Cp,q̄E

[
sup

t∈[0,T ]
E
[(n−1∑

i=1

|δi+1(Xti)|
)q̄∣∣∣Ft

]p]1/q̄
≤ Cp,q̄E

[(n−1∑
i=1

|δi+1(Xti)|
)pq̄]1/q̄

which proves the claim.

4 Connecting the sequence of qg-BSDEs

4.1 Short-term expansion of a qg-BSDE

We now give an analytic approximate solution (Y
i
, Z

i
) of the BSDE (3.1) as a short-term

expansion (Ŷ i, Ẑi). We need two steps involving the linearization method as well as the
small-variance expansion method for BSDEs proposed in Fujii & Takahashi (2012) [26] and
(2015) [30], respectively. We set aside technical details until Appendices B and C so that we
can focus on the main story.

We obtain the approximated solution (Ŷ i, Ẑi) as

Ŷ i
t := Ŷ

i,[0]
t + Ŷ

i,[1]
t , Ẑi

t := Ẑ
i,[0]
t , (4.1)
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for every interval t ∈ Ii, i ∈ {1, · · · , n}, for which the exact expressions can be read from
(C.15), (C.16), (C.17) and (C.18). For numerical implementation, the values at each con-
necting point {ti} are the most relevant; Under the condition Xti−1 = x, x ∈ Rd, the ap-

proximate solutions Ŷ
i,ti−1,x
ti−1

:= Ŷ i
ti−1

∣∣
Xti−1=x

, Ẑ
i,ti−1,x
ti−1

:= Ẑi
ti−1

∣∣
Xti−1=x

are given by the

following simple explicit formulas;

Ŷ
i,ti−1,x
ti−1

= y(ti−1, x) +
1

2
y
[2]
0 (ti−1, x)

+hif
(
ti−1, x, y(ti−1, x) +

1

2
y
[2]
0 (ti−1, x),y

[1]⊤(ti−1, x)σ(ti−1, x)
)
, (4.2)

Ẑ
i,ti−1,x
ti−1

= y[1]⊤(ti−1, x)σ(ti−1, x) , (4.3)

where


χ(ti, x) = x+ hib

(
ti−1, x

)
,

y(ti−1, x) = ûi+1
(
χ(ti, x)

)
,

y[1](ti−1, x) =
(
I+ hi

[
∂xb(ti, χ(ti, x))

])
∂xû

i+1(χ(ti, x)) ,

y
[2]
0 (ti−1, x) = hiTr

(
∂2
x,xû

i+1(χ(ti, x))
[
σσ⊤](ti, χ(ti, x))) ,

where I denotes d × d-identity matrix. The main result regarding the error estimate for
the short-term approximation is given by Theorem C.1. We emphasize that the theorem is
interesting in its own sake. It provides the short-term asymptotic expansion of a qg-BSDE
explicitly in the strong sense.

4.2 Connecting procedures

We now connect these approximate solutions by the following scheme.

Definition 4.1. (Connecting Scheme)
(i) Setting ûn+1(x) = ξ(x), x ∈ Rd.
(ii) Repeating from i = n to i = 1 that
(a) Calculate the short-term approximation of the BSDE (3.1) by using (4.2)

and store the values
{
Ŷ

i,ti−1,x
′

ti−1

}
x′∈Bi

for a finite subset Bi of Rd.

(b) Define the terminal function ûi(x), x ∈ Rd for the next period Ii−1 by

ûi(x) := Interpolation
({

Ŷ
i,ti−1,x

′

ti−1

}
x′∈Bi

)
(x)

where “Interpolation” stands for some smooth interpolating function satisfying the bounds in
Assumption 3.1 (i) .

From the definition of δi in (3.2), we have

δi(x) = Y
i,ti−1,x
ti−1

− ûi(x) = δiSE(x) +Ri(x),

where δiSE(x) :=
(
Y

i,ti−1,x
ti−1

− Ŷ
i,ti−1,x
ti−1

)
, (4.4)

Ri(x) :=
(
Ŷ

i,ti−1,x
ti−1

− ûi(x)
)
. (4.5)

Here, δiSE denotes the error of the short-term approximation (see Theorem C.1), and Ri the
interpolation error as well as the regularization effects rendering the approximated function
Ŷ

i,ti−1,x
ti−1

into the bounds satisfying Assumption 3.1 (i).
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Remark 4.1. Despite the similarity in its appearance, it differs from four-step-scheme (Ma
et.al.(1994) [37]), its extensions such as [22, 23], and other PDE discretization approaches.
They typically require differentiability in time t, the uniform ellipticity of σσ⊤ and the global
Lipschitz continuity of the driver. In particular, we do not know any literature treating
Markovian BSDEs with drivers of quadratic growth in the control variables.

4.3 Total error estimate

Lemma 4.1. Under Assumptions 2.1 and 2.2, the solution Yt, t ∈ [0, T ] of the BSDE (2.3)

satisfies the continuity property E
[
sups≤u≤t

∣∣Yu − Ys
∣∣p] ≤ Cp

∣∣t− s
∣∣p/2 for any 0 ≤ s ≤ t ≤ T

and p ≥ 2 with some positive constant Cp.

Proof. Using the Burkholder-Davis-Gundy inequality and Assumption 2.2 (i), one obtains

E
[
sup

s≤u≤t
|Yu − Ys|p

]
≤ CpE

[(∫ t

s
|f(r,Xr, Yr, Zr)|dr

)p
+

(∫ t

s
|Zr|2dr

)p/2]
≤ CpE

[(∫ t

s

[
lr + β|Yr|+

γ

2
|Zr|2

]
dr
)p

+
(∫ t

s
|Zr|2dr

)p/2]
.

Since l, |Y | are bounded and |Zt| ≤ C(1 + |Xt|) with a constant C, the claim is proved.

Let us now give the main result of the paper:

Theorem 4.1. Define the piecewise constant process (Y π
t , Zπ

t ), t ∈ [0, T ] by

Y π
t := ûi(Xti−1), Zπ

t := y[1]⊤(ti−1, Xti−1)σ(ti−1, Xti−1) ,

for ti−1 ≤ t < ti, i ∈ {1, · · · , n} and Y π
tn = ξ(Xtn), Zπ

tn = 0, where the ûi and y[1] are
those determined by the connecting scheme in Definition 4.1. Then, under Assumptions 2.1,
2.2 and 3.1, there exist some n-independent positive constants q̄ > 1 and Cp,q̄ such that the
following inequality holds for any p > 1

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

] 1
2p

+
( n∑
i=1

∫ ti

ti−1

E
[∣∣Zt − Zπ

t

∣∣2]dt)1/2

≤ Cp,q̄

√
|π|+ Cp,q̄

√
nE

[( n∑
i=1

∣∣Ri(Xti−1)
∣∣2)pq̄] 1

2pq̄
.

Proof. One obtains, by simple manipulation, that

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

]1/p
+

n∑
i=1

∫ ti

ti−1

E
∣∣Zt − Zπ

t

∣∣2dt
≤ Cp

(
max
1≤i≤n

E
[∣∣Yti−1 − Y

i
ti−1

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Zt − Z

i
t

∣∣2dt)
+Cp

(
max
1≤i≤n

E
[∣∣Y i

ti−1
− ûi(Xti−1)

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Zi

t − Ẑi
t

∣∣2dt)
+Cp

(
max
1≤i≤n

E
[
sup
t∈Ii

∣∣Yt − Yti−1

∣∣2p]1/p + n∑
i=1

∫ ti

ti−1

E
∣∣Ẑi

t − Ẑi
ti−1

∣∣2dt) .
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It follows that, by applying Theorems 3.1, C.1, Lemmas 4.1, C.7, and expressions (4.4), (4.5),

max
1≤i≤n

E
[∣∣∣∣Y − Y π

∣∣∣∣2p
[ti−1,ti]

]1/p
+

n∑
i=1

∫ ti

ti−1

E|Zt − Zπ
t |2dt

≤ Cp,q̄

|π|
E
[(n−1∑

i=1

|δi+1(Xti)|2
)pq̄] 1

pq̄
+ Cp

(
max
1≤i≤n

E
[
|δi(Xti−1)|2p

]1/p
+

n∑
i=1

h3i

)
+ Cp|π|

≤ Cp|π|+
Cp,q̄

|π|

{
npq̄−1

n∑
i=1

E
[∣∣δiSE(Xti−1)

∣∣2pq̄]+ E
[( n∑

i=1

|Ri(Xti−1)|2
)pq̄]} 1

pq̄

≤ Cp,q̄|π|+ Cp,q̄nE
[( n∑

i=1

|Ri(Xti−1)|2
)pq̄] 1

pq̄
,

which proves the desired result.

Remark 4.2. Comments on the Lipschitz BSDEs and the terminal function
The proposed scheme can be equally applicable to the standard Lipschitz BSDEs with a driver
f ∈ C1

b and also with the terminal function ξ ∈ C3 of linear growth. Except Proposition 3.2,
which is not necessary anymore (and so is Assumption 3.1 (ii)), all the relevant results can be
shown with slightly sharper estimates by following the arguments similar to those of Theorem
3.1 in Bouchard & Touzi (2004) [11].

5 An example of implementation

5.1 Finite-difference scheme

The remaining problem for us is to find a concrete method of constructing a smooth bounded
functions (ûi)1≤i≤n+1 used in the step (ii) of Definition 4.1. It is important to notice that
there is no need to specify ûi(x) for whole space x ∈ Rd but only for those used in the
interpolation. Based on this observation, we consider a finite-difference scheme as a method
of non-parametric coarse graining. Let us suppose every Bi a grid-cube in Rd centered at
the origin, equally spaced by the size ∆. For a function v : Rd → R, we denote the 1st-order
central difference as ∂∆v : Rd → Rd; (∂∆v(x))j := (v(x + ∆ ej) − v(x − ∆ ej))/(2∆), j =
{1, · · · , d} where ej is the unit vector of direction j. Note that, when v ∈ C3, |∂xv−∂∆v| ∝ ∆2.
For higher-order differences, we use a non-central scheme denoted similarly as ∂m

∆v, m = 2, · · ·.
Let us arrange a sequence of grids Bi ⊆ Bi+1 satisfying that

M/2 ≤ |B1| ≤ |Bn+1| ≤ M, (5.1)

where M is some sufficiently large constant and |Bi| the length of the cube’s edge. Let us
write x ∈ Bi when x is inside the cube but not necessary on the grid point and denote the
boundary of the cube by ∂Bi.

Lemma 5.1. Suppose ûi ∈ C∞
b ∩ L∞ and dist(y, ∂Bi) ≤ C ′∆ with some positive constant

C ′. Then, denoting x ∈ Bi as the nearest grid point to y, there exists a constant C such that∣∣ûi(y)− [ûi(y)]
∣∣≤ C∆3,

∣∣∂xûi(y)− [∂xû
i(y)]

∣∣ ≤ C∆2,∣∣∂2
xû

i(y)− [∂2
xû

i(y)]
∣∣ ≤ C∆ ,
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where


[ûi(y)] := ûi(x) + ∂xû

i(x) · (y − x) + (y−x)⊤

2 ∂2
xû

i(x) · (y − x)

[∂xû
i(y)] := ∂xû

i(x) + ∂2
xû

i(x) · (y − x)

[∂2
xû

i(y)] := ∂2
xû

i(x)

.

Proof. It is obvious from the Taylor formula.

Let us scale the size of the grid-cube according to the number of discretization as

M = Cnδ/2 (5.2)

with a given constant C and an arbitrary δ ∈ (0, 1/2). In this case, the quadratic-growth

term hi|x|2 existing in Ŷ
i,ti−1,x
ti−1

of (4.2) is bounded by Cn−1+δ within the cube. We now
modify the connecting scheme of Definition 4.1 as follows.

Definition 5.1. (Connecting scheme with finite-difference)
(0) Set a scaling rule ∆ = ζ|π|ν with constants ζ, ν > 0, and then construct a sequence of
grid-cubes B1 ⊆ B2 ⊆ · · · ⊆ Bn+1 ⊆ Rd satisfying (5.1) and (5.2).
(i) Suppose ûi+1 is in the class C∞

b ∩L∞ and the values of {ûi+1(x), ∂xû
i+1(x), ∂2

xû
i+1(x) |x ∈

Bi+1} are known. 6

(ii) Store the values of {[Ŷ i,ti−1,x
ti−1

], x ∈ Bi} where [Ŷ
i,ti−1,x
ti−1

] is equal to Ŷ
i,ti−1,x
ti−1

calculated by

(4.2) with ûi+1(χ(ti, x)) and its derivatives replaced by their approximations as in Lemma 5.1 7.

(iii) Store the values of {∂∆[Ŷ
i,ti−1,x
ti−1

], ∂2
∆[Ŷ

i,ti−1,x
ti−1

] |x ∈ Bi}.8

(iv) Consider ûi as an appropriate C∞
b ∩ L∞-class function (see Remark 5.1) satisfying(

ûi(x), ∂xû
i(x), ∂2

xû
i(x)

)
≃

(
[Ŷ

i,ti−1,x
ti−1

], ∂∆[Ŷ
i,ti−1,x
ti−1

], ∂2
∆[Ŷ

i,ti−1,x
ti−1

]
)
, x ∈ Bi .

where ≃ is the approximate equality with the size of error bounded respectively by (C∆3, C∆2, C∆)

with some constant C, and smoothly tracks Y
i,ti−1,x
ti−1

outside the grid-cube while keeping the

same order of accuracy as inside i.e., supx/∈Bi
|Y i,ti−1,x

ti−1
− ûi(x)| ≤ C supx∈Bi

|Y i,ti−1,x
ti−1

− ûi(x)|.

Remark 5.1. The existence of functions ûi ∈ C∞
b ∩ L∞ satisfying (iv) of the above scheme

can be easily seen. Suppose v : Rd → R is an arbitrary smooth and bounded function sat-
isfying maxx∈Bi |v(x) − [Ŷ

i,ti−1,x
ti−1

]| ≤ C∆3. Then, by construction, (∂∆v, ∂
2
∆v) is equal to

(∂∆[Ŷ
i,ti−1,x
ti−1

], ∂2
∆[Ŷ

i,ti−1,x
ti−1

]) with the desired accuracy. Since (∂∆v, ∂
2
∆v) is equal to the true

derivatives with the accuracy (C∆2, C∆) with C = ||∂3
xv||∞, v is in fact a valid candidate for

ûi. Although there is no need to single out ûi, one can just suppose that a function with the
smallest total variation is chosen among the candidates in order to avoid unnecessary oscil-
lations between the neighboring grid points. Adjusting v outside the cube so that it smoothly

tracks Y
i,ti−1,x
ti−1

is always possible.

5.2 Error estimate

Unfortunately, we cannot prove Assumption 3.1 for the above scheme in the limit n → ∞
because of the non-linearity from the driver. Therefore, in the following analysis, we are

6In this scheme, ûn+1 ∈ C∞
b is a bounded function constructed as in step (iv) using Ŷ n+1,tn,x

tn
= ξ(x).

7If b is x-independent, the adjustment of Lemma 5.1 is unnecessary by shifting the center of the grids. If
b is proportional to x, log-transformation may be used to make the drift x-independent once again.

8If x is at the edge of the grid Bi, apply a non-central difference scheme.
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forced to restrict out attention to the approximation within a finite range of n. In this
case, Assumption 3.1 becomes trivial by simply taking the maximum for a given range and
all the estimates including Theorem 4.1 can be used. However, this does not tell if the
approximation is improved by using a finer discretization. We need to confirm that the
bounds of Assumption 3.1 remain stable within the relevant range of n.

Assumption 5.1. (i) (A posteriori check) The values

max
1≤i≤n

max
x∈Bi

{
|ûi(x)|, |∂xûi(x)|, |∂2

xû
i(x)|, |∂3

xû
i(x)|

}
are confirmed, a posteriori, to be stable for a given range of discretization, say, n ∈ [n0, n1].

9

(ii) Under the above condition, the same uniform boundedness can be maintained just slightly
outside of each grid-cube Bi; for x ∈ Rd satisfying dist(x, ∂Bi) ≤ |Bi|(ληi

√
hi), where λ > 1

is some constant and ηi the maximum size of the log-volatility of X
(
i.e., ||σ(·, x)||[ti−1,ti]/|x|

)
for x near the boundary ∂Bi.

Remark 5.2. One easily sees that if ∆ ↓ 0 faster than |π|, the higher-order derivatives goes
to diverge due to the fact that f ∈ C1. On the other hand, we need at least ν > 1/3 for
the sum of C∆3 to converge. Interestingly, for numerical example given in the next section,
we find that the stability (i) is achieved with ν = 1/2, i.e., the scaling ∆ = ζ|π|1/2 with the
coefficient ζ of the order of X’s volatility. The scaling rule also suggests a connection to the
stability problem of parabolic PDEs with explicit finite-difference scheme, but we need further
research to understand whether proving Assumption 3.1 is possible or not for the current
scheme in the limit n → ∞ with some ν > 1/3.

Remark 5.3. Note that the condition (ii) assures the uniform boundedness of |∂m
x ûi(·)|0≤m≤3

for the (λ)-sigma range of the path (Xt, t ∈ Ii) provided Xti−1 ∈ Bi. Now consider the
conditional version of Theorem C.1 for the period Ii = [ti−i, ti] given Xti−1 ∈ Bi. Under
Assumption 5.1, the contribution from the path (Xt, t ∈ Ii) outside this (λ)-sigma range is
suppressed by an arbitrary power of λ. Thus, one can take n-independent constant C such
that

|Y i,ti−1,x
ti−1

− Ŷ
i,ti−1,x
ti−1

| ≤ C|Bi|2h3/2i , ∀x ∈ Bi

at least for a finite range of n. The factor of |Bi|2 appears due to the quadratic growth

property of Ŷ
i,ti−1,x
ti−1

in x.10 In practice, λ ≃ 5 would be large enough and hence in most of
the natural settings for financial problems, ληi ≃ 1 is expected to be good for the purpose.

Proposition 5.1. Suppose Assumptions 2.1, 2.2 and also Assumption 5.1 with the scaling
rule ∆ = ζ|π|1/2, then there exists a constant C such that

∑n
i=1 ||δi+1||L∞ ≤ C uniformly for

n ∈ [n0, n1]. In particular (||ûi||L∞)1≤i≤n are also uniformly bounded.

Proof. By definition, we have

n∑
i=1

||δi+1||L∞ ≤
n+1∑
i=2

{
sup
x∈Bi

(
|Y i,ti−1,x

ti−1
− Ŷ

i,ti−1,x
ti−1

|+ |Ŷ i,ti−1,x
ti−1

− ûi(x)|
)
+ sup

x/∈Bi

|Y i,ti−1,x
ti−1

− ûi(x)|
}
.

9Note that the first three quantities are already used for the connecting scheme itself. Unless (∂2
xû) rapidly

oscillate, the direct evaluation of (∂3
xû) may be skipped.

10The condition (ii) is relevant only for x near the boundary of the grid-cube.
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By Remark 5.3, one can take a version satisfying supx∈Bi
|Y i,ti−1,x

ti−1
−Ŷ

i,ti−1,x
ti−1

| ≤ C|M |2|π|3/2 ≤
Cnδ−3/2 with some constant C uniformly. Next, by construction, |Ŷ i,ti−1,x

ti−1
− ûi(x)| ≤ C∆3,

|∂∆Ŷ
i,ti−1,x
ti−1

−∂xû
i(x)| ≤ C∆2 and |∂2

∆Ŷ
i,ti−1,x
ti−1

−∂2
xû

i(x)| ≤ C∆ at each grid point x ∈ Bi. The

function ûi within the grid-cube Bi can be separated into two parts; one is the regularization
of the first term of (4.2), and the other is the remaining two terms proportional to hi. Since
the first term of (4.2) is confirmed to have bounded derivatives up to the third order, the
difference of the second (first) order derivatives is bounded by C∆ (C∆2) between any interval
of the grid points. For the latter, since they are in class-C1, proportional to h and with at
most quadratic growth in x, the difference of the first order derivatives is bounded by CM2h.
Combining these two, one sees that |Ŷ i,ti−1,x

ti−1
− ûi(x)| ≤ C∆3 + C(∆2 +M2h)∆ ≤ Cnδ−3/2

for whole interval between the two neighboring grid points.11

By repeating the same arguments, one sees maxx∈Bi
|Ŷ i,ti−1,x

ti−1
− ûi(x)| ≤ Cnδ−3/2. Since

ûi(x) outside the cube is constructed to follow Y
i,ti−1,x
ti−1

∈ C1
b ∩ L∞ so that it keeps the same

order of accuracy, one also has supx/∈Bi
|Y i,ti−1,x

ti−1
− ûi(x)| ≤ Cnδ−3/2. Thus ||δi||L∞ ≤ Cnδ−3/2

and the first claim is proved. Using the universal bound iteratively, one also has

||ûi||L∞ ≤ eβ|π|
(
||ûi+1||L∞ + |π|||l||T

)
+ Cnδ−3/2 ≤ eβT

(
||ξ||L∞ + T

(
||l||T + Cnδ− 1

2
))

which yields the second.

Proposition 5.2. Suppose Assumptions 2.1, 2.2 and also Assumption 5.1 with the scaling
rule ∆ = ζ|π|1/2. Then there exist some constant C satisfying that

E
[(n+1∑

i=1

|Ri(Xti−1)|2
)p] 1

2p ≤ Cn−1+δ (5.3)

uniformly for n ∈ [n0, n1], for every p > 1.

Proof. Using maxx∈Bi
|Ŷ i,ti−1,x

ti−1
− ûi(x)| ≤ Cnδ−3/2, ||ûi||L∞ ≤ C shown in Proposition 5.1

and the quadratic-growth property of Ŷ
i,ti−1,x
ti−1

in x, one obtains that

E
[(n+1∑

i=1

|Ri(Xti−1)|2
)p] 1

2p ≤ |n+ 1|
1
2 max
1≤i≤n+1

E
[∣∣∣Ŷ i,ti−1,Xti−1

ti−1
− ûi(Xti−1)

∣∣∣2p] 1
2p

≤ Cn−1+δ + C
√
n max

1≤i≤n+1
E
[
(1 + hi||X||2Ii)

2p
( ||X||Ii

M/2

)4pk] 1
2p

≤ Cn−1+δ + Cp,kn
−kδ+1/2 for any k > 1.

Since k > 1 is arbitrary, one obtains the desired result.

Let us define the approximate piecewise constant processes (Y FD
t , ZFD

t ), t ∈ [0, T ] by
using the bounded function (ûi)1≤i≤n+1 constructed as in Definition 5.1 as

Y FD
t := ûi(x), ZFD

t := y[1]⊤(ti−1, x)σ(ti−1, x)

11Although one may only have |∂∆Ŷ
i,ti−1,x
ti−1

− ∂xû
i(x)| ≤ C∆ when x ∈ ∂Bi and the direction of the

derivative is orthogonal to the boundary (since the central difference cannot be taken for ∂∆[Ŷ
i,ti−1,x
ti−1

] in the
step (iii) of Definition 5.1), one obtains the same conclusion by estimating from the neighboring internal point.
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for t ∈ [ti−1, ti), i ∈ {1, · · · , n+ 1}. x is a Bi-valued Fti−1-measurable r.v. nearest to Xti−1 .

Corollary 5.1. Suppose Assumptions 2.1, 2.2 and also Assumption 5.1 with the scaling rule
∆ = ζ|π|1/2. Then there exist positive constants q̄ > 1 and Cp,q̄ such that

max
1≤i≤n

E
[
||Y − Y FD||2p[ti−1,ti]

] 1
2p

+
( n∑
i=1

∫ ti

ti−1

E
[
|Zt − ZFD

t |2
]
dt
)1/2

≤ Cp,q̄n
−1/2+δ

for ∀p > 1 uniformly for n ∈ [n0, n1].

Proof. For t ∈ Ii, one has

|Y π
t − Y FD

t | ≤ |ûi(Xti−1)− ûi(x)|
(
1{Xti−1∈Bi} + 1{Xti−1 /∈Bi})

≤ C∆+ 2||ûi||L∞1{Xti−1 /∈Bi}

with x ∈ Bi is the nearest grid point to Xti−1 , and thus E
[
||Y π − Y FD||2pIi

] 1
2p ≤ C

√
|π| +

Cp,k

(
1+|x0|
M

)k
for ∀k > 1. Similar estimate also holds for Zπ − ZFD. The conclusion follows

from Propositions 5.1, 5.2 and Theorem 4.1. Note that the contribution from ||X||T > M
in the (non-conditional) short-term expansion used in Theorem 4.1 is also suppressed by an
arbitrary power of M .

Remark 5.4. In the case of the standard Lipschitz BSDEs, ûi is not bounded and has the
linear-growth property. We can still use the same scheme since the errors from |x| > M is
still suppressed by an arbitrary power of M .

5.3 Application of sparse grids

In order to mitigate the so called curse of dimensionality, there exists a very interesting result
on high dimensional polynomial interpolation using sparse grids. By Theorem 8 (as well as
Remark 9) of Barthelmann et al. [3], it is known that there exists an interpolating function
satisfying the following uniform estimates on the compact set for a function f : Rd → R in
the class Ck;

sup
|x|≤M

∣∣∣f(x)−Aq,d
(
f(x)

)∣∣∣≤ Cq,dN
−k
(q,d)(log(N(q,d)))

(k+1)(d−1) . (5.4)

Here, Aq,d(f) : Rd → R is an interpolating polynomial function of degree q (≥ d) based on
the Smolyak algorithm. The interpolating function is uniquely determined by the values of
f(xi), xi ∈ H(q, d) where H(q, d) is the sparse grid whose number of nodes is give by N(q,d).
Cq,d is some positive constant depending only on (q, d) and sup|x|≤M |∂m

x f | of m = {0, · · · , k}.
The sparse grid H(q, d) is the set of points on which the Chebyshev polynomials take the
extrema. For details, see [3, 44] and references therein. The sparse grid method looks very
attractive since (5.4) has only weak log dependency on the dimension d.

For our purpose, we want to interpolate f(x) = Ŷ
i,ti−1,x
ti−1

of (4.2) efficiently so that the

right-hand side of (5.4) is of the order of C∆3. Consider the interpolation for the first and
the remaining two terms of (4.2), separately. The former has k = 3, and the latter has only

k = 1 but it is proportional to hi ∝ ∆2. Therefore, for interpolation of Ŷ
i,ti−1,x
ti−1

, the number

of nodes N(q,d) ∝ ∆ε (∝ nε/2), ε > 1 can maintain the same error estimate of Corollary 5.1.

18



6 Numerical examples

In the remainder of the paper, we demonstrate our computation scheme and its empirical
convergence rate using illustrative models. For simplicity, we use a full grid (instead of a
sparse grid) at each time step with the scaling rule ∆ = ζ|π|1/2. As existing literature, we
focus on approximating the initial value of the BSDE (Y0 = Y 0,x0

0 ) and thus restrict the
computations only to the relevant grid points. More extensive tests on higher dimensional
setups with sparse grids will be left for the future works12.

6.1 A solvable qg-BSDE

Let us first consider the following model with d = 2 similar to those studied in [15]:

Xt = x0 +

∫ t

0

(
b1X

1
s

b2X
2
s

)
ds+

∫ t

0

(
σ1X

1
s 0

0 σ2X
2
s

)(
1 0

ρ
√

1− ρ2

)
dWs , (6.1)

Yt = ξ(XT ) +

∫ T

t

a

2
|Zs|2ds−

∫ T

t
ZsdWs , (6.2)

where bi, σi, i ∈ {1, 2}, ρ ∈ [−1, 1] and a are all constants. For this example, by using a
exponential transformation

(
eaYt , t ∈ [0, T ]

)
, we obtain a closed form solution:

Yt =
1

a
log

(
E
[
exp

(
aξ(XT )

)∣∣Ft

])
, (6.3)

whose expectation can be obtained semi-analytically by integrating over the density of X.
We use

ξ(x) = 3
(
sin2(x1) + sin2(x2)

)
(6.4)

as the terminal value function, and set x0 = (1, 1)⊤, T = 1, b1 = b2 = 0.05, ρ = 0.3.

Figure 1: Empirical convergence of the proposed scheme for (6.2) with seti, i ∈ {1, · · · , 5}.

We have tested the following five sets of parameters (σi=1,2, a):

set1 =
{
σi = 0.5, a = 1.0

}
, set2 =

{
σi = 0.5, a = 2.0

}
, set3 =

{
σi = 0.5, a = 3.0

}
,

set4 =
{
σi = 1.0, a = 3.0

}
, set5 =

{
σi = 0.5, a = 4.0

}
(6.5)

12For example, see [40, 49].
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by changing the number of partitions from n = 1 to n = 300. In Figure 1, we have plotted
log10(relative error) against the log10(n) for seti, i ∈ {1, · · · , 5}, where the relative error is
defined by

estimated Y0 by the proposed scheme− the value obtained from (6.3)

the value obtained from (6.3)
.

As naturally expected, the bigger “a” we use, the bigger ζ is needed to keep the derivatives
(calculated by finite-difference scheme) non-divergent as Assumption 5.1 requires.

Driver truncation

As we have emphasized, it is crucial to have stable derivatives as Assumption 5.1 for the
proposed scheme to converge. For the qg-BSDE (6.2), if we increase the coefficient “a” while
keeping the factor ζ of ∆ = ζ|π|1/2 constant, we have observed that these derivatives (and
hence the estimate of Y ) are, in fact, divergent. In the remainder, instead of making ζ
larger, let us study the truncation of the driver f so that it has a global Lipschitz constant
N following the scaling rule ( see Section 2.1 of [15] )

N ∝ nα, 0 < α < 1 . (6.6)

The error estimates for the qg-BSDEs under this truncation have been studied by Imkeller &
Reis (2010) [32] (Theorem 6.2) and applied to the backward numerical scheme by Chassagneux
& Richou (2016) [15]. From Theorem 6.2 [32], one easily sees that this truncation does not
affect the theoretical bound on the convergence rate of Theorem 4.1, which is also the case
for the scheme studied in [15].

Figure 2: Empirical convergence of the proposed scheme for (6.2) with a truncated driver so that the
Lipschitz constant scales as N ∝ n1/3.

We have chosen the constant ζ so that it marginally works for the set3 in (6.5) without
any truncation and adopted the scaling factor α = 1/3. We tested the following seven cases
of large quadratic coefficients;

{a = 2, a = 4, a = 6, a = 8, a = 10, a = 12, a = 20} (6.7)
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while keeping the other parameters the same, i.e.,

x0 = (1, 1)⊤, T = 1, b1 = b2 = 0.05, ρ = 0.3, σ1 = σ2 = 0.5 . (6.8)

In Figure 2, we have plotted the log10(relative error) against the log10(n) changing the
number of partitions from n = 1 to n = 500. Except for coarse partitions n . 10, the trun-
cation of the driver yields quite stable convergence even for very large quadratic coefficients.
We find no significant change in the empirical convergence rate, and it is close to one. The
introduction of the truncation (6.6) looks quite attractive since there is no need to adjust ζ
according to different size of the coefficient a. There seems a deep relation among the stability
(Assumption 5.1), the scaling rule of finite difference scheme as well as the truncation of the
driver (N ∝ nα). This interesting problem requires further research.

Non-differentiable terminal function

We now test a case of non-differentiable terminal function

ξ(x) = min
(
max(x1, 1), 3

)
+max(2− x2, 0) (6.9)

in (6.2). If we apply the finite-difference scheme given in the last section directly, the 2nd
and 3rd-order derivatives appearing in Assumption 5.1 grow with the rate of 1/∆ and 1/∆2,
at least, near the boundary t = T . Thus one naturally expects some instability appears if the
space discretization ∆ = ζ|π|1/2 becomes sufficiently small. Note that, one can always apply
the technique of Section 5 as long as an appropriate mollified function is chosen and kept
fixed. In this case, however, the total error of Corollary 5.1 contains, of course, an additional
term arising from the mollification.

Figure 3: Empirical convergence of the proposed scheme for (6.2) with a non-differentiable terminal
function (6.9). The left one uses (6.8) with a’s in (6.7), and the right one uses a = 10 and (6.8) but
with difference choices of volatilities (σi)1≤i≤2 = 0.2, 0.5, 1.0.

In Figure 3, we have tested the model (6.2) with the terminal function (6.9) and plotted
the log10(relative error) for the number of partitions from n = 1 to n = 500 by directly
applying the finite-difference scheme. The same truncation of the driver N ∝ n1/3 has been
used as in the previous example. In the left figure, we have tested the same seven cases of “a”
(6.7) with the same set of parameters (6.8). In the right one, we have kept a = 10 but tested
(6.8) replaced by three different choices of volatilities (σi)1≤i≤2 = 0.2, 0.5, 1.0. The results
are very encouraging. From the left one, although one actually observes some instability,
the overall rate of convergence is not much different from the previous example in Fig 2 of a
differentiable terminal function. From the right one, one observes that the size of volatilities
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does not meaningfully affect the empirical convergence rate.
In the computation, we observed that the maximum of the derivatives decays rather

quickly when t is away from the maturity. In fact, from the expression (6.3) and the
integration-by-parts formula, one can show that the solution Y t,·

t : Rd → R is a smooth
function of x for t < T as long as XT has a smooth density, which is the case for the current
log-normal model (6.1) for (Xt)t∈[0,T ]. The above numerical result (and also the examples of
the next subsection) suggests that the relaxing the conditions in Assumptions 2.2, 3.1 (and
hence 5.1) may be possible under appropriate conditions. Further studies on the regularity
of the true solution as well as its approximation are needed.

6.2 Lipschitz BSDEs: Option pricing with different interest rates

In the reminder, let us test the proposed scheme for a Lipschitz BSDE for completeness. We
use the same scaling rule ∆ = ζ|π|1/2 but, of course, no truncation of the driver. We consider
a very popular valuation problem of European options under two different interest rates, r
for investing and R (̸= r) for borrowing. Since this problem has been often used for testing
the numerical schemes for Lipschitz BSDEs, it would be informative to compare the current
scheme to the existing numerical examples based on the Monte-Carlo simulation.

Let us assume the dynamics of the security price as

Xt = x0 +

∫ t

0
µXsds+

∫ t

0
σXsdWs ,

where d = 1 and µ, σ are positive constants. For the option payoff Φ(XT ) at the expiry T ,
the option price Yt implied by the self-financing replication is given by

Yt = Φ(XT )−
∫ T

t

{
rYs +

µ− r

σ
Zs −

(
Ys −

Zs

σ

)−
(R− r)

}
ds−

∫ T

t
ZsdWs . (6.10)

Although both of the terminal and driver functions are not smooth, we can expect rather
accurate results considering the result in Fig 3 for the qg-BSDE 13.

Firstly, we study the cases where the payoff function is equal to that of a call option:
Φ(x) = (x − K)+, where K > 0 is the strike price. As suggested by [31], this example
provides a very interesting test since the price must be exactly equal to that of Black-Scholes
model with interest rate R. This is because the replicating portfolio consists of the long-only
position and hence the investor must always borrow money to fund her position. We have
chosen the common parameters as {T = 1, r = 0.01, R = 0.06, µ = 0.06, X0 = 100} and
tested the following five sets of (K,σ) 14 with n = 10 to n = 3000 in Figure 4:

set1 = {K = 106, σ = 0.3} , set2 = {K = 166, σ = 0.3} , set3 = {K = 106, σ = 1.0} ,

set4 = {K = 306, σ = 1.0} , set5 = {K = 106, σ = 2.0}.

The Black-Scholes price for each set is given by BS = {12.000, 1.117, 38.346, 11.662, 68.296}
respectively. Although the relative errors for OTM options are slightly higher, the conver-
gence rate to the exact BS prices is close to 1 for every case. It is a bit striking that we do

13Although we tested the same model with mollified functions, we found no meaningful difference in the
empirical convergence rate.

14K = 106 is close to at the money forward for T = 1 with 6% interest rate. The bigger strikes correspond
to 2σ out of the money.
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not see any deterioration in convergence rate in spite of the non-smooth functions and rather
high volatilities. The observed irregularity of the error size is likely due to the change of the
configuration of the grids close to the terminal time relative to the non-differentiable points
of the terminal function.

Figure 4: Empirical convergence of the proposed scheme for (6.10) for call options.

Figure 5: Empirical convergence of the proposed scheme for (6.10) for a call spread.

Next, let us consider a call-spread case: Φ(x) = (x−K1)
+ − 2(x−K2)

+. This is exactly
the same setup studied in [31] and hence we can test the performance of our scheme relative
to the standard regression-based Monte Carlo simulation. Let us choose the same parameter
sets as in [31]:

{r = 0.01, R = 0.06, µ = 0.05, X0 = 100, T = 0.25, σ = 0.2, K1 = 95, K2 = 105} (6.11)

The result of [31] suggests that Y0 = 2.96 ± 0.01 or Y0 = 2.95 ± 0.01 with one standard
deviation dependent on the choice of basis functions for the regressions. In Figure 5, we have
compared the estimated Y0 from our scheme and the one in [31]. The dotted lines represent
2.96 ± 0.01 for ease of comparison. In our scheme, Y0 converges toward 2.96. In fact, the
improvement of the regression method of [31] using martingale basis functions proposed by
Bender & Steiner (2012) [5] suggests 2.96 which is perfectly consistent with our result.

We have also tested the convergence with a longer maturity and higher volatilities for
the final payoff Φ(x) = (x − K1)

+ − (x − K2)
+. We have used {r = 0.01, R = 0.06, µ =

0.05, X0 = 100, K1 = 95, K2 = 105} as before, but with longer maturity T = 1.0 and
set1 := {σ = 0.3}, set2 := {σ = 0.5} and set3 := {σ = 1.0}. From Figure 6, one observes
smooth convergence for all the cases. The decrease in price for higher volatilities is natural
from the fact that K2 is closer to the at-the-money-forward point and hence the short position
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has higher sensitivity on the volatility.

Figure 6: Empirical convergence of the proposed scheme for (6.10) for a call spread with T = 1.0 and
higher volatilities.

An example with a large Lipschitz constant

Bender & Steiner [5] have tested an extreme scenario with a parameter set (6.11) replaced
by R = 3.01. In this case, the the non-linearity of the driver has a Lipschitz constant
(R−r)/σ = 15. Their experiments suggest that the standard method of [31] fails to converge
for this example under the simulation settings they tried. Their improved method with
martingale basis functions (see Table 3 in [5]) gives Y0 ≃ 6.47 with n = 128 and Y0 ≃ 6.44
with the finest partition n = 181.

Figure 7: Empirical convergence of the proposed scheme for (6.10) with R = 3.01.

In Figure 7, we have plotted estimated Y0 from our scheme with n = 10 to n = 3000. The
dotted line corresponds to the value 6.44 given in [5]. In our scheme, Y0 seems to converge
6.38. In particular, with the same discretization n = 181, our scheme yields Y0 ≃ 6.43
showing a nice consistency. Note that the method [5] requires to change the basis functions
based on the law of X.

A BMO-martingale and its properties

In this section, let us summarize the properties BMO-martingales, the associated H2
BMO-space and

their properties which play an important role in the discussions.

Definition A.1. A BMO-martingale M is a square integrable martingale satisfying M0 = 0 and

||M ||2BMO := sup
τ∈T T

0

∣∣∣∣∣∣E[⟨M⟩T − ⟨M⟩τ |Fτ

]∣∣∣∣∣∣
∞

< ∞ ,
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where the supremum is taken over all stopping times τ ∈ T T
0 .

Definition A.2. H2
BMO(Rk) is the set of Rk-valued progressively measurable processes Z satisfying

||Z||2H2
BMO

:= sup
τ∈T T

0

∣∣∣∣∣∣E[∫ T

τ

|Zs|2ds
∣∣∣Fτ

]∣∣∣∣∣∣
∞

< ∞ .

Note that if Z ∈ H2
BMO(R1×d), we have∣∣∣∣∣∣∫ ·

0

ZsdWs

∣∣∣∣∣∣2
BMO

= sup
τ∈T T

0

∣∣∣∣∣∣E[∫ T

τ

|Zs|2ds
∣∣∣Fτ

]∣∣∣∣∣∣
∞

= ||Z||2H2
BMO

< ∞ ,

and hence Z ∗W is a BMO-martingale. The next result is well-known as energy inequality.

Lemma A.1. Let Z be in H2
BMO. Then, for any n ∈ N,

E
[(∫ T

0

|Zs|2ds
)n]

≤ n!
(
||Z||2H2

BMO

)n

.

Proof. See proof of Lemma 9.6.5 in [20].

Let E(M) be a Doléan-Dade exponential of M .

Lemma A.2. (Reverse Hölder inequality) Let M be a BMO-martingale. Then,
(
Et(M), t ∈ [0, T ]

)
is a uniformly integrable martingale, and for every stopping time τ ∈ T T

0 , there exists some positive
constant r∗ > 1 such that the inequality

E
[
ET (M)r|Fτ

]
≤ Cr,MEτ (M)r ,

holds for every 1 < r ≤ r∗ with some positive constant Cr,M depending only on r and ||M ||BMO.

Proof. See Theorem 3.1 of Kazamaki (1994) [33].

Lemma A.3. Let M be a square integrable martingale and M̂ := ⟨M⟩ −M . Then, M ∈ BMO(P) if
and only if M̂ ∈ BMO(Q) with dQ/dP = ET (M). Furthermore, ||M̂ ||BMO(Q) is determined by some
function of ||M ||BMO(P).

Proof. See Theorem 2.4 and 3.3 in [33].

Remark A.1. Theorem 3.1 [33] also tells that there exists some decreasing function Φ(r) with
Φ(1+) = ∞ and Φ(∞) = 0 such that if ||M ||BMO(P) satisfies ||M ||BMO(P) < Φ(r) then E(M) al-
lows the reverse Hölder inequality with power r. This implies together with Lemma A.3, one can take
a common positive constant r̄ satisfying 1 < r̄ ≤ r∗ such that both of the E(M) and E(M̂) satisfy the
reverse Hölder inequality with power r̄ under the respective probability measure P and Q. Furthermore,
the upper bound r∗ is determined only by ||M ||BMO(P) (or equivalently by ||M ||BMO(Q)).

B Short-term expansion: Step 1

In the following two sections, we approximate the solution (Y
i
, Z

i
) of the BSDE (3.1) semi-analytically

and also obtain its error estimate. We need two steps for achieving this goal, which involve the lin-
earization method and the small-variance expansion method for BSDEs proposed in Fujii & Takahashi
(2012) [26] and (2015) [30], respectively 15.

15Note that the small-variance asymptotic expansion has been widely applied for the pricing of European
contingent claims since the initial attempts by Takahashi (1999) [46] and Kunitomo & Takahashi (2003) [36].
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When there is no confusion, we adopt the so-called Einstein convention assuming the obvious
summation of duplicate indexes (such as i ∈ {1, · · · , d} of xi) without explicitly using the summation
symbol

∑
. For example, ∂xi,xjξ(XT )∂xX

i
T∂xX

j
T assumes the summation about indexes i and j so

that it denotes
∑d

i,j=1 ∂xi,xjξ(XT )∂xX
i
T∂xX

j
T .

(Standing Assumptions for Section B) We make Assumptions 2.1, 2.2 and Assumption 3.1 (i) the
standing assumptions for this section.

Let us introduce the next decomposition of the BSDE (3.1) for each interval t ∈ Ii, i ∈ {1, · · · , n}:

Y
i,[0]

t = ûi+1(Xti)−
∫ ti

t

Z
i,[0]

r dWr , (B.1)

Y
i,[1]

t =

∫ ti

t

f
(
r,Xr, Y

i,[0]

r , Z
i,[0]

r

)
dr −

∫ ti

t

Z
i,[1]

r dWr . (B.2)

They are the leading contributions in the linearization method [26, 47].

Lemma B.1. For every interval Ii, i ∈ {1, · · · , n}, there exists a unique solution (Y
i,[0]

, Z
i,[0]

) to the

BSDE (B.1) satisfying, with some (i, n)-independent positive constants C and Cp, that ||Y
i,[0]||S∞[ti−1,ti]+

||Zi,[0]||H2
BMO[ti−1,ti] ≤ C, and also ||Zi,[0]||Sp[ti−1,ti] ≤ Cp for any p ≥ 2.

Proof. The boundedness ||Y i,[0]||S∞ ≤ C follows easily from Assumption 3.1 (i), which then implies

||Zi,[0]||H2
BMO

≤ C. The second claim follows from the similar arguments used in Proposition 3.1 .

Lemma B.2. For every interval Ii, i ∈ {1, · · · , n}, there exists a unique solution (Y
i,[1]

, Z
i,[1]

) to the
BSDE (B.2) satisfying, with some (i, n)-independent positive constant Cp, that

||Y i,[1]||Sp[ti−1,ti] + ||Zi,[1]||Hp[ti−1,ti] ≤ Cp

for any p ≥ 2.

Proof. Since it is a Lipschitz BSDE (with zero Lipschitz constant), the existence of a unique solution
easily follows. The standard estimate (see, for example, [12]) and Assumption 2.2 (i) implies∣∣∣∣∣∣(Y i,[1]

, Z
i,[1]

)
∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE
[(∫ ti

ti−1

|f(r,Xr, Y
i,[0]

r , Z
i,[0]

r )|dr
)p]

≤ CpE
[(∫ ti

ti−1

[
lr + β|Y i,[0]

r |+ γ

2
|Zi,[0]

r |2
]
dr
)p]

≤ Cp

(
||l||pT + ||Y i,[0]||pSp[ti−1,ti]

+ ||Zi,[0]||2pS2p[ti−1,ti]

)
.

Thus one obtains the desired result by Lemma B.1.

We now define the process (Ỹ
i

, Z̃
i

) for each interval t ∈ Ii, i ∈ {1, · · · , n} by

Ỹ
i

t := Y
i,[0]

t + Y
i,[1]

t , Z̃
i

t := Z
i,[0]

t + Z
i,[1]

t .

Proposition B.1. There exists some (i, n)-independent positive constant Cp such that the inequality

E
[∣∣∣∣Y i − Ỹ

i∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

∣∣Zi

r − Z̃
i

r

∣∣2dr) p
2
]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.
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Proof. For notational simplicity, let us put

δY
i,[0]
t := Y

i

t − Y
i,[0]

t , δZ
i,[0]
t := Z

i

t − Z
i,[0]

t

δY
i,[1]
t := Y

i

t − Ỹ
i

t, δZ
i,[1]
t := Z

i

t − Z̃
i

t

for each interval t ∈ Ii, i ∈ {1, · · · , n}. Then, they are given by the solutions to the following BSDEs
respectively:

δY
i,[0]
t =

∫ ti

t

f(r,Xr, Y
i

r, Z
i

r)dr −
∫ ti

t

δZi,[0]
r dWr ,

δY
i,[1]
t =

∫ ti

t

(
f(r,Xr, Y

i

r, Z
i

r)− f(r,Xr, Y
i,[0]

r , Z
i,[0]

r )
)
dr −

∫ ti

t

δZi,[1]
r dWr .

By the stability result for the Lipschitz BSDEs (see, for example, [12]), Assumption 2.2 (i), (3.3) and
Proposition 3.1, one obtains∣∣∣∣∣∣(δY i,[0], δZi,[0])

∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE
[(∫ ti

ti−1

[
lr + β|Y i

r|+
γ

2
|Zi

r|2
]
dr
)p]

≤ Cph
p
i

(
||l||pT + ||Y i||pS∞[ti−1,ti]

+ ||Zi||2pS2p[ti−1,ti]

)
≤ Cph

p
i , (B.3)

with some (i, n)-independent positive constant Cp for ∀p ≥ 2. Similar analysis for (δY i,[1], δZi,[1])
using Assumption 2.2 (ii) yields∣∣∣∣∣∣(δY i,[1], δZi,[1])

∣∣∣∣∣∣p
Kp[ti−1,ti]

≤ CpE
[(∫ ti

ti−1

[
|δY i,[0]

r |+ (1 + |Zi

r|+ |Zi,[0]

r |)|δZi,[0]
r |

]
dr
)p]

≤ Cp

(
hp
i ||δY

i,[0]||pSp[Ii]
+ E

[
1 + ||Zi||2pIi + ||Zi,[0]||2pIi

] 1
2E

[(
hi

∫ ti

ti−1

|δZi,[0]
r |2dr

)p] 1
2
)
.

By applying Proposition 3.1, Lemma B.1 and the previous estimate (B.3), one obtains the desired
result.

C Short-term expansion: Step 2

In the second step, we obtain simple analytic approximation for the BSDEs (B.1) and (B.2) while
keeping the same order of accuracy given in Proposition B.1. We use the small-variance expansion
method for BSDEs proposed in [30] which renders all the problems into a set of simple ODEs. Fur-
thermore, we shall see that these ODEs can be approximated by a single-step Euler method for each
interval Ii.

(Standing Assumptions for Section C) Similarly to the last section, we make Assumptions 2.1, 2.2
and Assumption 3.1 (i) the standing assumptions for this section.

C.1 Approximation for (Y
i,[0]

, Z
i,[0]

)

For each interval, we introduce a new parameter ϵ satisfying ϵ ∈ (−c, c) with some constant c > 1 to
perturb (2.1) and (B.1):

Xϵ
t = Xti−1 +

∫ t

ti−1

b(r,Xϵ
r)dr +

∫ t

ti−1

ϵσ(r,Xϵ
r)dWr . (C.1)

Y
i,[0],ϵ

t = ûi+1(Xϵ
ti)−

∫ ti

t

Z
i,[0],ϵ

r dWr . (C.2)
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for t ∈ Ii = [ti−1, ti], i ∈ {1, · · · , n}. Notice that the way ϵ is introduced to Xϵ, by which we have a
different process for each interval Ii.

16 In the following, in order to avoid confusion between the index
specifying the interval and the one for the component of x ∈ Rd, we use the bold Gothic symbols such
as {i, j, · · · } for the latter, each of which runs through 1 to d.

Lemma C.1. The classical derivatives of (Xϵ, Y
i,[0],ϵ

, Z
i,[0],ϵ

) with respect to ϵ

∂k
ϵ X

ϵ
t :=

∂k

∂ϵk
Xϵ

t , ∂k
ϵ Y

i,[0],ϵ
:=

∂k

∂ϵk
Y

i,[0],ϵ

t , ∂k
ϵ Z

i,[0],ϵ
:=

∂k

∂ϵk
Z

i,[0],ϵ

t

for k = {1, 2, 3} are given by the solutions to the following forward- and backward-SDEs:

∂ϵX
ϵ,i
t =

∫ t

ti−1

∂xjbi(r,Xϵ
r)∂ϵX

ϵ,j
r dr +

∫ t

ti−1

[
σi(r,Xϵ

r) + ϵ(∂ϵX
ϵ,j
r )∂xjσi(r,Xϵ

r)
]
dWr ,

∂2
ϵX

ϵ,i
t =

∫ t

ti−1

[
∂xjbi(r,Xϵ

r)∂
2
ϵX

ϵ,j
r + ∂2

xj,xkb
i(r,Xϵ

r)∂ϵX
ϵ,j
r ∂ϵX

ϵ,k
r

]
dr

+

∫ t

ti−1

[
2(∂ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r) + ϵ(∂2
ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r) + ϵ(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r)
]
dWr ,

∂3
ϵX

ϵ,i
t =

∫ t

ti−1

[
∂xjbi(r,Xϵ

r)∂
3
ϵX

ϵ,j
r + 3∂2

xj,xkb
i(r,Xϵ

r)∂
2
ϵX

ϵ,j
r ∂ϵX

ϵ,k
r

+∂3
xj,xk,xmbi(r,Xϵ

r)∂ϵX
ϵ,j
r ∂ϵX

ϵ,k
r ∂ϵX

ϵ,m
r

]
dr +

∫ t

ti−1

[
3(∂2

ϵX
ϵ,j
r )∂xjσi(r,Xϵ

r)

+3(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r) + ϵ(∂3
ϵX

ϵ,j
r )∂xjσi(r,Xϵ

r)

+3ϵ(∂2
ϵX

ϵ,j
r )(∂ϵX

ϵ,k
r )∂2

xj,xkσ
i(r,Xϵ

r) + ϵ(∂ϵX
ϵ,j
r )(∂ϵX

ϵ,k
r )(∂ϵX

ϵ,m
r )∂3

xj,xk,xmσi(r,Xϵ
r)
]
dWr ,

∂ϵY
i,[0],ϵ

t = ∂xj ûi+1(Xϵ
ti)∂ϵX

ϵ,j
ti −

∫ ti

t

∂ϵZ
i,[0],ϵ

r dWr ,

∂2
ϵY

i,[0],ϵ

t = ∂xj ûi+1(Xϵ
ti)∂

2
ϵX

ϵ,j
ti + ∂2

xj,xk û
i+1(Xϵ

ti)∂ϵX
ϵ,j
ti ∂ϵX

ϵ,k
ti −

∫ ti

t

∂2
ϵZ

i,[0],ϵ

r dWr ,

∂3
ϵY

i,[0],ϵ

t = ∂xj ûi+1(Xϵ
ti)∂

3
ϵX

ϵ,j
ti + 3∂2

xj,xk û
i+1(Xϵ

ti)(∂
2
ϵX

ϵ,j
ti )(∂ϵX

ϵ,k
ti )

+∂3
xj,xk,xm ûi+1(Xϵ

ti)(∂ϵX
ϵ,j
ti )(∂ϵX

ϵ,k
ti )(∂ϵX

ϵ,m
ti )−

∫ ti

t

∂3
ϵZ

i,[0],ϵ

r dWr ,

for t ∈ Ii = [ti−1, ti]. Einstein convention is used with {i, j, · · · } running through 1 to d.

Proof. The classical differentiability can be shown by following the arguments of Theorem 3.1 in [39].
See Section 6 of [30] for more details.

Lemma C.2. For k = {1, 2, 3}, there exists some (i, n)-independent positive constant Cp,k such that
the inequality

E
[∣∣∣∣∂k

ϵ X
ϵ
∣∣∣∣p
[ti−1,ti]

]
≤ Cp,kh

kp/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. This can be shown by applying the standard estimates for the Lipschitz SDEs given, for

16It would be more appropriate to write Xi,ϵ
t to emphasize the dependence on the interval t ∈ Ii, but we

have omitted “i” to lighten the notation.
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example, in Appendix A of [30]. For k = 1,

E
[
||∂ϵXϵ||p[ti−1,ti]

]
≤ CpE

[(∫ ti

ti−1

|σ(r,Xϵ
r)|2dr

)p/2]
≤ Cph

p/2
i .

For k = 2, one obtains

E
[
||∂2

ϵX
ϵ||p[ti−1,ti]

]
≤ CpE

[(∫ ti

ti−1

|∂ϵXϵ
r |2dr

)p

+
(∫ ti

ti−1

[
|∂ϵXϵ

r |2 + |∂ϵXϵ
r |4

]
dr
) p

2
]

≤ Cp

(
hp
iE

[
||∂ϵXϵ||2pIi

]
+ h

p/2
i E

[
||∂ϵXϵ||pIi + ||∂ϵXϵ||2pIi

])
≤ Cph

p
i ,

as desired. One can show the last case k = 3 in a similar manner.

Let introduce the following processes, with k ∈ {0, 1, 2},

X
[k]
t :=

∂k

∂ϵk
Xϵ

t

∣∣∣
ϵ=0

, Y
i,[0],[k]

t :=
∂k

∂ϵk
Y

i,[0],ϵ

t

∣∣∣
ϵ=0

, Z
i,[0],[k]

t :=
∂k

∂ϵk
Z

i,[0],ϵ

t

∣∣∣
ϵ=0

and also

Ỹ
i,[0]

t :=

2∑
k=0

1

k!
Y

i,[0],[k]

t , Z̃
i,[0]

t :=

2∑
k=0

1

k!
Z

i,[0],[k]

t (C.3)

for each interval t ∈ Ii, i ∈ {1, · · · , n}.

Lemma C.3. There exists some (i, n)-independent positive constant Cp such that the inequality

E
[∣∣∣∣Y i,[0] − Ỹ

i,[0]∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[0]

r − Z̃
i,[0]

r |2dr
)p/2]

≤ Cph
3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. We can use the residual formula of Taylor expansion thanks to the classical differentiability of

Θ
i,[0],ϵ

with respect to ϵ;

E
[∣∣∣∣Y i,[0] − Ỹ

i,[0]∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[0]

r − Z̃
i,[0]

r |2dr
)p/2]

≤ CpE
[
sup
r∈Ii

∣∣∣1
2

∫ 1

0

(1− ϵ)2∂3
ϵY

i,[0],ϵ

r dϵ
∣∣∣p+(∫ ti

ti−1

∣∣∣1
2

∫ 1

0

(1− ϵ)2∂3
ϵZ

i,[0],ϵ

r dϵ
∣∣∣2dr)p/2]

≤ Cp

∫ 1

0

(
E
[∣∣∣∣∂3

ϵY
i,[0],ϵ∣∣∣∣p

[ti−1,ti]
+
(∫ ti

ti−1

∣∣∂3
ϵZ

i,[0],ϵ

r

∣∣2dr)p/2])
dϵ .

Applying the standard estimates of the Lipschitz BSDEs (see, for example, [12]), the boundedness of
∂k
x û

i+1 as well as Lemma C.2, one obtains

E
[∣∣∣∣Y i,[0] − Ỹ

i,[0]∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

∣∣Zi,[0]

r − Z̃
i,[0]

r

∣∣2dr)p/2]
≤ Cp

∫ 1

0

(
E
[
||∂3

ϵX
ϵ||pIi + ||∂2

ϵX
ϵ||pIi ||∂ϵX

ϵ||pIi + ||∂ϵXϵ||3pIi
])

dϵ ≤ Cph
3p/2
i

as desired.
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The last lemma implies that it suffices to obtain (Ỹ
i,[0]

, Z̃
i,[0]

) for our purpose17, which is the

second order approximation of (Y
i,[0]

, Z
i,[0]

). Furthermore, as we shall see next, the solution of these
BSDEs can be obtained explicitly by simple ODEs thanks to the grading structure introduced by the
asymptotic expansion. The relevant system of FBSDEs is summarized below:

X
[0]
t = Xti−1 +

∫ t

ti−1

b(r,X [0]
r )dr ,

X
[1],i
t =

∫ t

ti−1

∂xjbi(r,X [0]
r )X [1],j

r dr +

∫ t

ti−1

σi(r,X [0]
r )dWr ,

X
[2],i
t =

∫ t

ti−1

(
∂xjbi(r,X [0]

r )X [2],j
r + ∂2

xj,xkb
i(r,X [0]

r )X [1],j
r X [1],k

r

)
dr +

∫ t

ti−1

2X [1],j
r ∂xjσi(r,X [0]

r )dWr ,

Y
i,[0],[0]

t = ûi+1(X
[0]
ti )−

∫ ti

t

Z
i,[0],[0]

r dWr , (C.4)

Y
i,[0],[1]

t = ∂xj ûi+1(X
[0]
ti )X

[1],j
ti −

∫ ti

t

Z
i,[0],[1]

r dWr , (C.5)

Y
i,[0],[2]

t = ∂xj ûi+1(X
[0]
ti )X

[2],j
ti + ∂2

xj,xk û
i+1(X

[0]
ti )X

[1],j
ti X

[1],k
ti −

∫ ti

t

Z
i,[0],[2]

r dWr , (C.6)

for t ∈ Ii, i ∈ {1, · · · , n} with Einstein convention for {i, j, · · · }.

Definition C.1. (Coefficient functions)
We define the set of functions χ : Ii × Rd → Rd, y : Ii × Rd → R, y[1] : Ii × Rd → Rd,

y[2] : Ii × Rd → Rd, G[2] : Ii × Rd → Rd×d, y
[2]
0 : Ii × Rd → R by

χ(t, x) := x+

∫ t

ti−1

b(r, χ(r, x))dr ,

y(t, x) := ûi+1(χ(ti, x)) ,

y
[1]
j (t, x) := ∂xj ûi+1(χ(ti, x)) +

∫ ti

t

∂xjbk(r, χ(r, x))y
[1]
k (r, x)dr ,

G
[2]
j,k(t, x) := ∂2

xj,xk û
i+1(χ(ti, x)) +

∫ ti

t

{([
∂xb(r, χ(r, x))

]
G[2](r, x)

)↔

j,k

+∂2
xj,xkb

m(r, χ(r, x))y[2]
m (r, x)

}
dr ,

y
[2]
0 (t, x) :=

∫ ti

t

Tr
(
G[2](r, x)[σσ⊤](r, χ(r, x))

)
dr ,

and y[2] = y[1] for (t, x) ∈ Ii×Rd, i ∈ {1, · · · , n}. We have used Einstein convention and the notation(
[∂xb(r, x)]i,j = ∂xibj(r, x), i, j ∈ {1, · · · , d}

)
. We denote the symmetrization by A↔ := A + A⊤ for a

d× d-matrix A 18.

Note that the above coefficient functions are given by the ODEs for a given x ∈ Rd in each period.
The solution of the BSDEs are expressed by these functions in the following way:

Lemma C.4. For each period t ∈ Ii, i ∈ {1, · · · , n}, the solutions of the BSDEs (C.4), (C.5) and
(C.6) are given by, with Einstein convention,

Y
i,[0],[0]

t = y(t,Xti−1), Z
i,[0],[0]

t ≡ 0 (0-th order)

Y
i,[0],[1]

t = y
[1]
j (t,Xti−1)X

[1],j
t , Z

i,[0],[1]

t = y
[1]
j (t,Xti−1)σ

j(t, χ(t,Xti−1)), (1st order)

17See Remark 3.3.
18Hence, G[2] is symmetric matrix valued.
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and lastly, for the 2nd order

Y
i,[0],[2]

t = y
[2]
j (t,Xti−1)X

[2],j
t +G

[2]
j,k(t,Xti−1)X

[1],j
t X

[1],k
t + y

[2]
0 (t,Xti−1) ,

Z
i,[0],[2]

t = 2
(
y
[2]
j (t,Xti−1)X

[1],k
t ∂xkσj(t, χ(t,Xti−1)) +G

[2]
j,k(t,Xti−1)X

[1],j
t σk(t, χ(t,Xti−1))

)
.

Proof. This is a special case of the results of Section 8 of [30]. The existence of the unique solution
to the BSDEs (C.4), (C.5) and (C.6) is obvious. The expression can be directly checked by applying
Itô formula to the suggested forms using the ODEs given in Definition C.1, and compare the results
with the BSDEs.

Since each interval Ii has a very short span hi, we expect that we can approximate the above
ODEs by just a single-step of Euler method without affecting the order of error given in Lemma C.3.

Definition C.2. (Approximated coefficient functions)
We define the set of functions; χ : Ii × Rd → Rd, y : Ii × Rd → R, y[1] : Ii × Rd → Rd, y[2] :

Ii × Rd → Rd, G
[2]

: Ii × Rd → Rd×d, y
[2]
0 : Ii × Rd → R by

χ(t, x) := x+∆(t)b(ti−1, x) ,

y(t, x) := ûi+1(χ(ti, x)) ,

y
[1]
j (t, x) := ∂xj ûi+1(χ(ti, x)) + δ(t)∂xjbk(ti, χ(ti, x))∂xk ûi+1(χ(ti, x)) ,

G
[2]

j,k(t, x) := ∂2
xj,xk û

i+1(χ(ti, x)) + δ(t)
{(

[∂xb(ti, χ(ti, x))]∂
2
x,xû

i+1(χ(ti, x))
)↔

j,k

+∂2
xj,xkb

m(ti, χ(ti, x))∂xm ûi+1(χ(ti, x))
}

,

y
[2]
0 (t, x) := δ(t)Tr

(
G

[2]
(ti, x)[σσ

⊤](ti, χ(ti, x))
)
,

and y[2] = y[1] for (t, x) ∈ Ii×Rd, i ∈ {1, · · · , n}. We have used Einstein convention and the notations
∆(t) := t− ti−1, δ(t) := ti − t.

The functions in Definition C.2 provide good approximations for the coefficient functions in Defi-
nition C.1 in the following sense:

Lemma C.5. There exists some (i, n)-independent positive constant Cp satisfying

E
{
sup
t∈Ii

∣∣∣χ(t,Xti−1)− χ(t,Xti−1)
∣∣∣p + sup

t∈Ii

∣∣∣y(t,Xti−1)− y(t,Xti−1)
∣∣∣p

+
2∑

k=1

sup
t∈Ii

∣∣∣y[k](t,Xti−1)− y[k](t,Xti−1)
∣∣∣p + sup

t∈Ii

∣∣∣G[2](t,Xti−1)−G
[2]
(t,Xti−1)

∣∣∣p
+sup

t∈Ii

∣∣∣y[2]0 (t,Xti−1)− y
[2]
0 (t,Xti−1)

∣∣∣p} ≤ Cph
3p/2
i ,

for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. Firstly, let us consider (χ, χ). Using 1/2-Hölder continuity in t, the global Lipschitz and linear
growth properties of b in x, we have

|χ(t, x)− χ(t, x)| ≤
∫ t

ti−1

|b(r, χ(r, x))− b(ti−1, x)|dr

≤ K

∫ t

ti−1

[
∆(r)1/2 + |χ(r, x)− χ(r, x)|+∆(r)|b(ti−1, x)|

]
dr

≤ C(1 + |x|h1/2
i )h

3/2
i +K

∫ t

ti−1

|χ(r, x)− χ(r, x)|dr
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and hence by Gronwall inequality, supt∈Ii |χ(t, x)− χ(t, x)| ≤ eKhiC(1 + |x|
√
hi)h

3/2
i . Thus

E
[
sup
t∈Ii

|χ(t,Xti−1)− χ(t,Xti−1)|p
]
≤ Cph

3p/2
i

(
1 + h

p/2
i E

[
|Xti−1 |p

])
≤ Cph

3p/2
i (C.7)

with some (i, n)-independent positive constant Cp. Since |∂xûi+1| ≤ K ′ by Assumption 3.1 (i),

|y(t, x)− y(t, x)| = |ûi+1(χ(ti, x))− ûi+1(χ(ti, x))| ≤ K ′|χ(ti, x)− χ(ti, x)| .

Thus from (C.7),

E
[
sup
t∈Ii

|y(t,Xti−1)− y(t,Xti−1)|p
]
≤ Cph

3p/2
i (C.8)

with some (i, n)-independent positive constant Cp.
Let us now consider

y[1](t, x) = ∂xû
i+1(χ(ti, x)) + δ(t)

[
∂xb(ti, χ(ti, x))

]
∂xû

i+1(χ(ti, x)) .

Since both |∂xûi+1| and |∂xb| are bounded, it is easy to see

sup
(t,x)∈Ii×Rd

|y[1](t, x)| ≤ C (C.9)

with some positive constant C. For t ∈ Ii with a given x ∈ Rd, we have

y[1](t, x)− y[1](t, x) = ∂xû
i+1(χ(ti, x))− ∂xû

i+1(χ(ti, x))

+

∫ ti

t

(
∂xb(r, χ(r, x))y

[1](r, x)− ∂xb(ti, χ(ti, x))y
[1](ti, x)

)
dr .

From (C.9), 1/2-Hölder continuity and global Lipschitz property of ∂xb, we obtain

|y[1](t, x)− y[1](t, x)|

≤ |∂xûi+1(χ(ti, x))− ∂xû
i+1(χ(ti, x))|+

∫ ti

t

{
|∂xb(r, χ(r, x))||y[1](r, x)− y[1](r, x)|

+|∂xb(r, χ(r, x))||y[1](r, x)− y[1](ti, x)|+ |∂xb(r, χ(r, x))− ∂xb(ti, χ(ti, x))||y[1](ti, x)|
}
dr

≤ K ′|χ(ti, x)− χ(ti, x)|+K

∫ ti

t

|y[1](r, x)− y[1](r, x)|dr

+ Ch2
i + C

∫ ti

t

(
δ(r)1/2 + |χ(r, x)− χ(r, x)|+ |χ(r, x)− χ(ti, x)|

)
dr

≤ K

∫ ti

t

|y[1](r, x)− y[1](r, x)|dr + Ch
3/2
i

(
1 + |x|

√
hi) .

Thus the backward Gronwall inequality (see, for example, Corollary 6.62 in [43]) gives

sup
t∈Ii

|y[1](t, x)− y[1](t, x)| ≤ Ch
3/2
i (1 + |x|

√
hi)e

Khi ,

and hence

E
[
sup
t∈Ii

|y[1](t,Xti−1)− y[1](t,Xti−1)|p
]
≤ Cph

3p/2
i , (C.10)

with some (i, n)-independent constant Cp as desired.
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By the boundedness of |∂m
x ûi+1(x)| and |∂m

x b| with m ∈ {1, 2}, it is easy to see that |G[2]| is also
bounded

sup
(t,x)∈Ii×Rd

|G[2]
(t, x)| ≤ C (C.11)

with some positive constant C. Similar analysis done for y[1] using (C.11), 1/2-Hölder and Lipschitz
continuities for ∂xb, ∂

2
xb, the backward Gronwall inequality yields

sup
t∈Ii

|G[2](t, x)−G
[2]
(t, x)| ≤ Ch

3/2
i (1 + |x|

√
hi) ,

and hence

E
[
sup
t∈Ii

|G[2](t,Xti−1)−G
[2]
(t,Xti−1)|p

]
≤ Cph

3p/2
i (C.12)

with some (i, n)-independent positive constant Cp as desired.
Finally, we consider

y
[2]
0 (t, x) = δ(t)Tr

(
G

[2]
(ti, x)[σσ

⊤]
(
ti, χ(ti, x)

))
.

From (C.11) and the linear-growth property of σ,

|y[2]0 (t, x)| ≤ Cδ(t)
(
1 + |x|2

)
, (C.13)

is satisfied for every (t, x) ∈ Ii × Rd with some positive constant C. We have

y
[2]
0 (t, x)− y

[2]
0 (t, x) =

∫ ti

t

Tr
(
G[2](r, x)[σσ⊤](r, χ(r, x))−G

[2]
(ti, x)[σσ

⊤](ti, χ(ti, x))
)
dr

and thus

|y[2]0 (t, x)− y
[2]
0 (t, x)| ≤

∫ ti

t

Tr
{(

|G[2](r, x)−G
[2]
(r, x)|+ |G[2]

(r, x)−G
[2]
(ti, x)|

)∣∣[σσ⊤](r, χ(r, x))
∣∣

+
∣∣G[2]

(ti, x)
∣∣∣∣∣[σσ⊤](r, χ(r, x))− [σσ⊤](ti, χ(ti, x))

∣∣∣}dr
≤ Ch

3/2
i (1 + |x|) + Ch2

i |x|2(1 + hi|x|)

with some (i, n)-independent constant C. Thus we obtain, for any p ≥ 2,

E
[
sup
t∈Ii

|y[2]0 (t,Xti−1)− y
[2]
0 (t,Xti−1)|p

]
≤ Cph

3p/2
i (C.14)

as desired. From (C.7), (C.8), (C.10), (C.12), (C.14) and y[2] = y[1], the claim is proved.

We now introduce the processes (Ŷ
i,[0]
t , Ẑ

i,[0]
t ) for each period t ∈ Ii. They are defined by

(Ỹ
i,[0]

t , Z̃
i,[0]

t ) of (C.3) with the coefficient functions in Definition C.1 replaced by the approximations
in Definition C.2, i.e.;

Ŷ
i,[0]
t := y(t,Xti−1

) + (X
[1]
t )⊤y[1](t,Xti−1

)

+
1

2

(
(X

[2]
t )⊤y[2](t,Xti−1) + (X

[1]
t )⊤G

[2]
(t,Xti−1)X

[1]
t + y

[2]
0 (t,Xti−1)

)
, (C.15)

Ẑ
i,[0]
t := y[1]⊤(t,Xti−1)σ(t, χ(t,Xti−i))

+
(
(X

[1]
t )⊤∂xσ(t, χ(t,Xti−1))y

[2](t,Xti−1) + (X
[1]
t )⊤G

[2]
(t,Xti−1)σ(t, χ(t,Xti−1))

)
, (C.16)
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where we have used Matrix notation for simplicity. The details of indexing can be checked from those
given in Lemma C.4.

Lemma C.6. There exits some (i, n)-independent positive constant Cp such that the inequality

E
[∣∣∣∣Ỹ i,[0]

− Ŷ i,[0]
∣∣∣∣p
[ti−1,ti]

]
+ E

[∣∣∣∣Z̃i,[0]

− Ẑi,[0]
∣∣∣∣p
[ti−1,ti]

]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} for any p ≥ 2.

Proof. It can be shown easily from Lemmas C.2 and C.5.

Corollary C.1. There exits some (i, n)-independent positive constant Cp such that

E
[
||Y i,[0] − Ŷ i,[0]||p[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[0]

r − Ẑi,[0]
r |2dr

)p/2]
≤ Cph

3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. It follows directly from Lemmas C.3 and C.6.

Since X
[1]
ti−1

= X
[2]
ti−1

= 0, we have a very simple expression at the starting time ti−1 of each period
Ii = [ti−1, ti]:

Ŷ
i,[0]
ti−1

= y(ti−1, Xti−1) +
1

2
y
[2]
0 (ti−1, Xti−1),

Ẑ
i,[0]
ti−1

= y[1]⊤(ti−1, Xti−1)σ(ti−1, Xti−1).

We have the following continuity property of the approximated solution (Ŷ i,[0], Ẑi,[0]):

Lemma C.7. There exists some (i, n)-independent positive constant Cp such that the inequality

E
[
sup
t∈Ii

∣∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣∣p]+ E
[
sup
t∈Ii

∣∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣∣p] ≤ Cph
p/2
i ,

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. Since y(t, x) = y(ti−1, x) for (t, x) ∈ Ii × Rd, we have

Ŷ
i,[0]
t − Ŷ

i,[0]
ti−1

= X
[1]⊤
t y[1](t,Xti−1) +

1

2

(
X

[2]⊤
t y[2](t,Xti−1) +X

[1]⊤
t G

[2]
(t,Xti−1)X

[1]
t

)
+

1

2

(
y
[2]
0 (t,Xti−1)− y

[2]
0 (ti−1, Xti−1)

)
.

The bounds in (C.9) (remember that y[1] = y[2]), (C.11) and (C.13) as well as the estimates in
Lemma C.2 imply

E
[
sup
t∈Ii

∣∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣∣p] ≤ CpE
[
||X [1]||pIi + ||X [2]||pIi + ||X [1]||2pIi + hp

i

(
1 + |Xti−1 |2p

)]
≤ Cph

p/2
i

as desired. Similarly we have

|Ẑi,[0]
t − Ẑ

i,[0]
ti−1

| ≤ |y[1](t,Xti−1)− y[1](ti−1, Xti−1)||σ(t, χ(t,Xti−1))|

+|y[1](ti−1, Xti−1)||σ(t, χ(t,Xti−1))− σ(ti−1, Xti−1)|

+|X [1]
t |

∣∣∣∂xσ(t, χ(t,Xti−1))y
[2](t,Xti−1) +G

[2]
(t,Xti−1)σ

(
t, χ(t,Xti−1)

)∣∣∣
≤ C∆(t)

(
1 + |Xti−1 |

)
+ C

(
∆(t)1/2 +∆(t)(1 + |Xti−1 |)

)
+ C|X [1]

t |
(
1 + |Xti−1 |

)
,
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with some positive constant C. Thus, we obtain E
[
supt∈Ii

∣∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣∣p] ≤ Cph
p/2
i as desired.

C.2 Approximation for (Y
i,[1]

, Z
i,[1]

)

We now want to approximate the remaining BSDE (B.2) appeared in the decomposition of (Y
i
, Z

i
).

We shall see below that this can be achieved in a very simple fashion. We define the process
(Ŷ i,[1], Ẑi,[1]) by

Ŷ
i,[1]
t := δ(t)f

(
ti−1, Xti−1 , Ŷ

i,[0]
ti−1

, Ẑ
i,[0]
ti−1

)
, (C.17)

Ẑ
i,[1]
t := 0 , (C.18)

for each period t ∈ Ii, i ∈ {1, · · · , n}. Here, δ(t) = ti − t as before.

Lemma C.8. There exists some (i, n)-independent positive constant Cp such that the inequality

E
[∣∣∣∣Y i,[1] − Ŷ i,[1]

∣∣∣∣p
[ti−1,ti]

+
(∫ ti

ti−1

|Zi,[1]

r |2dr
)p/2]

≤ Cph
3p/2
i

holds for every interval Ii, i ∈ {1, · · · , n} with any p ≥ 2.

Proof. Let us put δY
i,[1]
t := Y

i,[1]

t − Ŷ
i,[1]
t , δZ

i,[1]
t := Z

i,[1]

t for t ∈ Ii. Then, (δY i,[1], δZi,[1]) is the
solution of the following Lipschitz BSDE:

δY
i,[1]
t =

∫ ti

t

δf(r)dr −
∫ ti

t

δZi,[1]
r dWr ,

where δf(r) := f(r,Xr, Y
i,[0]

r , Z
i,[0]

r )−f(ti−1, Xti−1 , Ŷ
i,[0]
ti−1

, Ẑ
i,[0]
ti−1

). From Assumption 2.2 (ii), it satisfies
with the positive constant K that

|δf(r)| ≤ |f(r,Xr, Y
i,[0]

r , Z
i,[0]

r )− f(ti−1, Xti−1 , Y
i,[0]

r , Z
i,[0]

r )|

+|f(ti−1, Xti−1 , Y
i,[0]

r , Z
i,[0]

r )− f(ti−1, Xti−1 , Ŷ
i,[0]
r , Ẑi,[0]

r )|

+|f(ti−1, Xti−1 , Ŷ
i,[0]
r , Ẑi,[0]

r )− f(ti−1, Xti−1 , Ŷ
i,[0]
ti−1

, Ẑ
i,[0]
ti−1

)|

≤ K
(
∆(r)1/2 + (1 + |Y i,[0]

r |+ |Zi,[0]

r |2)|Xr −Xti−1 |
)

+K|Y i,[0]

r − Ŷ i,[0]
r |+K(1 + |Zi,[0]

r |+ |Ẑi,[0]
r |)|Zi,[0]

r − Ẑi,[0]
r |

+K|Ŷ i,[0]
r − Ŷ

i,[0]
ti−1

|+K(1 + |Ẑi,[0]
r |+ |Ẑi,[0]

ti−1
|)|Ẑi,[0]

r − Ẑ
i,[0]
ti−1

| .

From Lemma B.1, we know that ||Y i,[0]||S∞[ti−1,ti] + ||Zi,[0]||Sp[ti−1,ti] ≤ Cp for any p ≥ 2. From

(C.15), (C.16), Lemma C.2, and the boundedness properties of (y,y[i], G
[2]
) shown in the proof for

Lemma C.5, a similar inequality ||Ŷ i,[0]||Sp[ti−1,ti] + ||Ẑi,[0]||Sp[ti−1,ti] ≤ Cp holds. The continuity

property of the Lipschitz SDE E
[
supt∈Ii |Xt −Xti−1 |p

]
≤ Cph

p/2
i is also well-known to hold for any

p ≥ 2. Then,

E
[
||δY i,[1]||pIi +

(∫ ti

ti−1

|δZi,[1]
r |2dr

)p/2]
≤ CpE

[(∫ ti

ti−1

|δf(r)|dr
)p]

≤ Cp

{
h
3p/2
i + hp

iE
[
1 + ||Y i,[0]||2pIi + ||Zi,[0]||4pIi

] 1
2E

[
sup
t∈Ii

|Xt −Xti−1 |2p
] 1

2

+hp
i

(
E
[
||Y i,[0] − Ŷ i,[0]||pIi

]
+ E

[
sup
t∈Ii

∣∣Ŷ i,[0]
t − Ŷ

i,[0]
ti−1

∣∣p])
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+E
[
1 + ||Zi,[0]||2pIi + ||Ẑi,[0]||2pIi

] 1
2E

[(
hi

∫ ti

ti−1

|Zi,[0]

r − Ẑi,[0]
r |2dr

)p] 1
2

+ hp
iE

[
1 + ||Ẑi,[0]||2pIi + |Ẑi,[0]

ti−1
|2p

] 1
2E

[
sup
t∈Ii

∣∣Ẑi,[0]
t − Ẑ

i,[0]
ti−1

∣∣2p] 1
2

}
≤ Cph

3p/2
i

follows from Corollary C.1 and Lemma C.7.

The main result regarding the short-term approximation can be summarized as the next theorem.

Theorem C.1. Under Assumptions 2.1, 2.2 and Assumption 3.1(i), the process (Ŷ i, Ẑi) defined by

(Ŷ i
t := Ŷ

i,[0]
t + Ŷ

i,[1]
t , Ẑi

t := Ẑ
i,[0]
t , t ∈ Ii) is the short-term approximation of the solution (Y

i
, Z

i
) of

the qg-BSDE (3.1) and satisfies, with some (i, n)-independent positive constant Cp, that

E
[
||Y i − Ŷ i||p[ti−1,ti]

+
(∫ ti

ti−1

|Zi

r − Ẑi
r|2dr

)p/2]
≤ Cph

3p/2
i ,

for every period Ii, i ∈ {1, · · · , n} and ∀p ≥ 2.

Proof. It follows directly from Proposition B.1, Corollary C.1 and Lemma C.8.
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