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Abstract 
 
 A real player sometimes fails to practice hypothetical thinking, which increases the 
occurrence of anomalies in various situations. This study incorporates psychology into 
game theory and demonstrates a cognitive method to encourage bounded-rational 
players to practice correct hypothetical thinking in strategic interactions with imperfect 
information. We introduce a concept termed “frame” as a description of a synchronized 
cognitive procedure through which each player decides multiple actions in a 
step-by-step manner, shaping his (or her) strategy selection. We could regard a frame as 
the supposedly irrelevant factors from the viewpoint of full rationality. However, this 
paper theoretically shows that in a multi-unit trading with private values, the ascending 
proxy auction has a significant advantage over the second-price auction in terms of the 
bounded-rational players' incentive to practice hypothetical thinking, because of the 
difference, not in physical rule, but in background frame. By designing a frame 
appropriately, we generally show that any static game that is solvable in iteratively 
undominated strategies is also solvable, even if players cannot practice hypothetical 
thinking without the help of a well-designed frame. We further investigate the 
possibility that even a detail-free frame design serves to overcome the difficulty of 
hypothetical thinking. We extend this investigation to the Bayesian environments. 
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1. Introduction 

 

 A real player sometimes fails to practice hypothetical thinking (or conditional 

reasoning) in strategic situations3. Since each player cannot observe the other players’ 

strategies, it is inevitable that he (or she) makes a hypothesis about the other players’ 

strategies, provided he wants to carry out rational behavior. In this study, hypothetical 

thinking implies the “what-if” manner of strategic thought, such that a rational player 

first makes a hypothesis about the other players’ strategies, and then reasons about his 

best strategy from this hypothesis, where he does not recognize whether the hypothesis 

is true. 

A real player, however, sometimes avoids or incorrectly practices such hypothetical 

thinking. Instead of thinking hypothetically, he incorrectly thinks: “I expect the other 

players to select a strategy profile if I intend to select a strategy, while I expect them to 

select another strategy profile if I intend to select another strategy.” In other words, he 

incorrectly expects the other players’ strategies to depend on which strategy he intends 

to select, though he ought to recognize that they cannot observe his strategy selection. 

In the prisoners’ dilemma game, for instance, a bounded-rational player incorrectly 

thinks: “I expect the other player to select C (cooperation) if I intend to select C, while I 

expect him to select D (defection) if I intend to select D.” 

 The failure of hypothetical thinking generally causes various anomalies in 

economics, such as the winner’s curse, overbidding, non-pivotal voting, Ellsberg’s 

paradox, and Allais paradox. Players may fail to think hypothetically even in simple 

situations that have dominant strategies, such as the prisoners’ dilemma and a second 

price auction. 

 Hence, it is important in game theory to consider the possibility that players 

sometimes irrationally avoid hypothetical thinking. Furthermore, it is important to 

explore a psychological method that encourages such bounded-rational players to 

practice hypothetical thinking more appropriately. 

 This paper argues that frame design serves to promote correct hypothetical 

                                                 
3 We have a literature in cognitive psychology that studied hypothetical thinking. For instance, see 
Evans (2007) and Nickerson (2015). This study attempts to incorporate cognitive psychology into 
game theory. 
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thinking. We define a frame as a description of the players’ cognitive procedure, which 

is a re-formulation of the static game that players face, as an extensive form game with 

imperfect information. We regard a frame as the “supposedly irrelevant factors” from 

the viewpoint of full rationality. We assume that the frame is common knowledge 

among all players. 

 A frame divides each player’s strategy selection into multiple cognitive steps of 

decision-making. According to the frame, we regard each player’s strategy as a 

combination of multiple actions that he sequentially decides on through the cognitive 

procedure implied by the frame. 

 A frame synchronizes players' sequential decisions with each other. Importantly, at 

each step, a player assumes that the other players have already decided upon the actions 

that the frame requires them to before this step, whereas they have not yet done so at 

this and later steps. We show that this sequential and synchronized nature of a frame 

plays a significant role in helping players to practice correct hypothetical thinking. 

 This study categorizes hypothetical thinking into the following two types. The first 

type concerns the actions that the other players have already decided upon before the 

current step. The second type concerns the actions that the other players will decide 

upon at the current and future steps. We assume that players can correctly practice the 

first type of hypothetical thinking, whereas they fail to practice the second type of 

hypothetical thinking. 

 At each step, a player perceives the actions that the other players have already 

decided to take as irreversible ones. This perception leads the player to correctly 

perceive that his action decision at the current step has no relation with the actions that 

the other players have decided to take. On the other hand, the player does not perceive 

the actions that the other players will decide to take at the current and future steps as 

irreversible ones. This misperception prevents him from correctly perceiving that his 

action decision he takes at the current step has no relation with these actions. Hence, a 

player can practice the first type of hypothetical thinking, whereas he does not 

necessarily practice the second type. 

 To overcome the failure of applying the second type of hypothetical thinking, we 

propose methods of designing a frame, and then show various permissible results in the 

frame design. For instance, we can gain insights into the comparison between the 
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second price auction and the ascending proxy auction, both of which are static games 

with imperfect information. The strategic interactions implied by these auctions are 

logically equivalent, but their background frames are different. The second price auction 

accompanies a degenerate frame, whereas the detailed description of the open-bid 

ascending auction protocol frames the ascending proxy auction. The latter frame 

positions the decisions that are more suspected of causing the failure on later steps. 

Because of this difference in background frame, players can practice hypothetical 

thinking more correctly in the ascending proxy auction than in the second price auction. 

This observation is consistent with the evidence that people have historically hesitated 

to apply the second price auction, whereas people are willing to use proxy bids in online 

open-bid ascending auctions. 

 The failure to think hypothetically also badly influences the practice of 

higher-order reasoning and iterative elimination in strategic situations. Without the help 

of appropriate frame design, a player cannot even expect the other players to play 

undominated strategies, because they do not necessarily practice correct hypothetical 

thinking. This significantly obstructs the practice of higher-order reasoning and iterative 

elimination of dominated strategies. 

 However, a well-designed frame can avoid such obstacles. We show that for any 

static game that is solvable in iteratively undominated strategies, there always exists a 

frame that motivates even bounded-rational players to practice both hypothetical 

thinking and higher-order reasoning, that is, to play the unique iteratively undominated 

strategy profile. To overcome the difficulties, we design a frame that positions the 

strategies that can be eliminated in earlier stages of iteration in later steps. 

 Unfortunately, this frame design is generally dependent on the finer details of 

payoff functions. However, this study also investigates the possibility that a detail-free 

frame design functions in a wide class of games with both complete and incomplete 

information. 

 

2. Literature Review and Contributions 

 

This study investigates a case of framing effects. In contrast with the previous 
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works on framing effects and related topics such as prospect theory (Kahneman and 

Tversky, 1979) and focal points (Schelling, 1963), this study defines a frame as an 

extensive form game with imperfect information, and shows that it serves as a guidance 

for all players to behave rationally. 

Game theory typically interprets an extensive form game as a physical rule of 

strategic interactions. However, this study should view an extensive form game as a 

frame, that is, a description of not a physical rule but a cognitive procedure. In this 

respect, this study is related to the seminal work by Glazer and Rubinstein (1996). 

Glazer and Rubinstein (1996) argued that an extensive form game provides useful 

information about how to carry out iterative elimination in a static game. In contrast, 

this study assumes that players are rational in iterative elimination, but not rational in 

hypothetical thinking. We then emphasize that an extensive form game provides useful 

information about how to carry out hypothetical thinking in a static game. 

Because of the difference in role, the manner of designing extensive form games in 

this study is substantially different from Glazer and Rubinstein. While the physical rule 

is a static game with imperfect information, the extensive form game that Glazer and 

Rubinstein consider assumes perfect information. However, to make the cognitive 

procedure consistent with the physical rule, this study considers an extensive form game 

that assumes imperfect information. Moreover, Glazer and Rubinstein put the decisions 

in the order of elimination, while this study puts the decisions in the reverse order of 

elimination. For instance, in the study of Abreu-Matsushima mechanisms, Glazer and 

Rubinstein design the extensive form game that fines the first deviants from truthful 

revelation, while this study designs the extensive form game (with imperfect 

information) that fines the last deviants from truthful revelation. 

 The study of hypothetical thinking is a growing concern in experimental and 

theoretical economics. We can expect that the failure of hypothetical thinking contains a 

clue for discovering the origin of various anomalies in laboratory experiments such as 

the winner’s curse (Charness and Levin, 2009), non-pivotal voting (Esponda and Vespa, 

2014), market failure caused by informational asymmetry (Ngangoue and Weizsacker, 

2015), ambiguity, and loss aversion (Esponda and Vespa, 2016). For instance, Esponda 

and Vespa (2016) conducted laboratory experiments for testing the Sure-Thing Principle 

and showed that subjects tend to fail hypothetical thinking in various situations of 
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single-person decision making. Esponda and Vesta compared a noncontingent treatment 

and a contingent treatment, where the contingent treatment added to the corresponding 

noncontingent treatment a device to guide a subject to hypothetical thinking. 

 This study generalizes the devices of guidance in single-person problems to apply 

to multi-person strategic problems. The problem with this generalization is that it is not 

always possible to provide all aspects of multi-person decision-making with the devices 

of guidance, because the order of decision-making across players matters in frame 

design. We need a careful frame design to divide each player's strategy selection into 

multiple steps of action decisions and then to specify the order of these action decisions. 

Hence, we need to formulate a frame as an extensive form game with imperfect 

information that is common to all players. 

 There are various equilibrium analyses in game theory that considered bounded 

rationality in hypothetical thinking, such as Jehiel (2005), Eyster and Rabin (2005), 

Esponda (2008), and Li (2017). Among them, Li (2017) is closely related to this study, 

but in a limited manner. 

 The difficulty of applying hypothetical thinking in daily life sometimes justifies the 

advantage of dynamic mechanism design with perfect information over static 

mechanism design. By assuming perfect information about the players’ previous 

decisions, we can replace hypothetical thinking with information extraction from the 

observed data, which is easier to practice than hypothetical thinking. For this reason, Li 

(2017) emphasized that the open-bid ascending auction is better than the sealed-bid 

second-price auction. 

 In contrast with Li, this study does not consider such devices of mechanism design. 

Instead, we focus on fixed static games with imperfect information. We do not cover 

dynamic games with perfect information such as the open-bid ascending auction. 

 Instead of designing mechanisms, we fix a static game and then design a frame as a 

description of a cognitive procedure, through which, under the imperfect information 

assumption, players sequentially decide multiple actions that shape their strategy 

selections. We should regard a frame as the supposedly irrelevant factors from the 

viewpoint of full rationality. However, a well-designed frame can nudge a 

bounded-rational player to think more rationally. In this respect, the sealed-bid 

ascending proxy auction has a much better frame design than the sealed-bid 
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second-price auction, even though both auctions have the same physical rules of 

strategic interactions. This is in contrast with Li, because the open-bid ascending 

auction is different from the sealed-bid second-price auction even in terms of physical 

rule. 

Players need hypothetical thinking even in dominant strategies or in eliminating 

dominated strategies. In games with imperfect information, Friedman and Shenker 

(1996) and Friedman (2002) introduced a stronger solution concept than dominance, 

which this study terms “obvious dominance.” This strategy totally excludes the practice 

of hypothetical thinking by regarding each player to be very pessimistic about other 

players’ strategy selection. Li (2017) extended this obviously dominant strategy to 

extensive form games without the imperfect information assumption. Friedman and 

Shenker (1996) and Friedman (2002) further introduced the solvability in iteratively 

undominated strategies. Note, however, that a static game with imperfect information 

generally has no obviously dominant strategy or does not satisfy the solvability in 

iteratively obviously undominated strategies, even if it does have a dominant strategy. 

This study weakens the obviously dominant strategy and the solvability in iterative 

obvious dominance by permitting a player to practice the first type of hypothetical 

thinking, which this study terms “quasi-obviously dominant strategy,” and “solvability 

in iteratively quasi-obviously undominated strategies,” respectively. We then show that 

for every static game that is solvable in iteratively undominated strategies, there always 

exists a frame that makes this game solvable in iteratively quasi-obviously undominated 

strategies. 

We further demonstrate a permissive result, indicating the class of games that are 

solvable in iteratively quasi-obviously undominated strategies with the help of only 

detail-free frames. We then apply this result to the robustness of the Abreu-Matsushima 

mechanisms in hypothetical thinking. Several works such as Abreu and Matsushima 

(1992a, 1992b, 1994) and Matsushima (2008a, 2008b, 2017) showed that every social 

choice function is uniquely implementable in iteratively undominated strategies, in the 

virtual or exact sense, provided it is incentive compatible. To prove this result, we 

designed so-called Abreu-Matsushima mechanisms, which require players to announce 

multiple messages about their types and use only small monetary fines. This study 

shows that there exists a detail-free frame, with the help of which, the game implied by 
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the Abreu-Matsushima mechanism is solvable even in iteratively quasi-obviously 

undominated strategies. Importantly, this frame interprets the Abreu-Matsushima 

mechanism as punishing the last deviants from truthful revelation. 

 There is literature about level-k models in game theory, where a player has an 

exogenous limitation in the depth of cognitive hierarchy. See Nagel (1995) and 

Crawford and Iriberri (2007), for instance. In contrast, this study does not assume any 

exogenous limitation on the depth of cognitive hierarchy, and instead explains that each 

player's depth limitation is endogenously determined by the degree to which the other 

players fail to practice correct hypothetical thinking. This study explains that without 

the help of frame design, players fail to behave rationally, even if we assume unlimited 

depth of cognitive hierarchy. 

 This paper assumes that a player can practice correct hypothetical thinking 

regarding the actions that the other players have decided upon before. This assumption 

excludes the case that Shafir and Tversky (1992) investigated as a variant of the 

Newcomb paradox, where a decision maker behaves irrationally in front of a predictor 

with miraculous power irrespective of whether this predictor is the almighty or a 

high-quality artificial intelligence. In this sense, this study assumes players to be 

"slightly" bounded-rational in hypothetical thinking. 

 

3. Outline 

 

 Section 4 demonstrates examples of prisoners' dilemma to give a background to 

this study. Section 5 defines basic notions such as a normal form game, dominant 

strategy, and dominated strategy. We then define obviously dominant strategy and 

obviously dominated strategy. 

 Section 6 introduces a frame as an extensive-form game with imperfect 

information. Section 7 introduces quasi-obviously dominant strategy and 

quasi-obviously dominated strategy. We show a necessary and sufficient condition for 

the existence of a frame such that the dominant strategy profile is also quasi-obviously 

dominant. 

 Section 8 introduces weak quasi-obvious dominance by replacing strict inequalities 
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with weak inequalities. More importantly, we show that in a multi-unit ascending proxy 

auction with single-unit demands the sincere proxy bidding is the weakly 

quasi-obviously dominant strategy. This finding is in contrast with a second-price 

auction, which accompanies just a degenerate frame and fails to motivate bidders to 

play dominant strategies even if its physical rule is the same as that of the ascending 

proxy auction. 

 Section 9 introduces iterative quasi-obvious dominance. We show that whenever a 

game is solvable in iteratively undominated strategies, then we can design a frame, with 

the help of which, the game is solvable even in iteratively quasi-obviously undominated 

strategies. 

 Section 10 considers a case of frames that are detail-free, that is independent of the 

finer detail of payoff functions. We show a sufficient condition of games that are 

solvable in iteratively quasi-obviously undominated strategy by using only detail-free 

frames. Section 11 applies this detail-free frame design to the implementation problem 

where we permit ex-post verification of which allocation is desirable. We show that 

with the help of the detail-free frame investigated in Section 10, the game implied by 

the Abreu-Matsushima mechanism, which fines the last deviants, is solvable in 

iteratively quasi-obviously dominated strategies. 

 Section 12 investigates the frame design in the Bayesian environment. We can 

directly extend the argument of this study to the Bayesian environment by replacing the 

Bayesian game with its agent normal form game. In this case, however, we generally 

utilize a complicated frame design that is defined not for the set of players but for the 

set of type-contingent agents. To overcome this complexity, we demonstrate the 

possibility that a simple frame design, defined for the set of players, functions in the 

Bayesian environment. 

 Section 13 concludes this paper. 

 

4. Intuition: Prisoners' Dilemma 

 

 Figure 1 describes a prisoners’ dilemma. Strategy D (defection) is a dominant 

strategy for each player. It is obviously dominant for player 2, but it is not obviously 
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dominant for player 1, because 

    1 1min[ ( , ), ( , )] min[2,0] 0u D C u D D    

    1 11 max[1, 1] max[ ( , ), ( , )]u C C u C D    , 

while 

    2 2min[ ( , ), ( , )] min[0, 2] 2u C D u D D      

    2 23 max[ 3, 3] max[ ( , ), ( , )]u C C u D C      . 

Player 1's failure to play the dominant strategy D is caused by his (or her) failure to 

practice hypothetical thinking. 

 However, by designing a frame that assigns the first mover to player 2 and the 

second move to player 1, we can make the strategy profile ( , )D D  quasi-obviously 

dominant, because the second mover (player 1) can practice hypothetical thinking 

regarding the first mover's strategy selection correctly. 

 

  player 2 
  C D 

Player 
1 

C 1  -3 -1  0 
D 2  -3 0  -2 

 

Figure 1 

 

 Figure 2 describes another prisoners’ dilemma. Strategy D is a dominant strategy, 

but not obviously dominant, for each player. In this case, irrespective of which frame we 

design, strategy D fails to be quasi-obviously dominant for the first mover. 

 However, if the first mover is rational in higher-order reasoning, then he can 

correctly anticipate that the frame nudges the second mover to practice correct 

hypothetical thinking, and then expects the second mover to play strategy D. Hence, 

with the help of the frame design, the first mover comes to play strategy D as the unique 

iteratively quasi-obviously undominated strategy, even if he is (slightly) 

bounded-rational in hypothetical thinking. 

 

  player 2 
  C D 

Player C 1  1 -1  2 
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1 D 2  -1 0  0 
 

Figure 2 

 

5. Normal Form Game as Physical Rule 

  

 We investigate a normal form game, a game in short, which is denoted by 

( , , )G N A u , where {1,..., }N n  is the set of all players, 2n  ; A  is the set of all 

strategy profiles; ii N
A A


  , where iA  is the set of all strategies for player i N ; and 

( )i i Nu u  , where :iu A R  is the payoff function for player i . Let ˆ
i iA A  denote 

an arbitrary subset of strategies for player i . Let ˆ ˆ
ii N

A A


   and 
\{ }

ˆ ˆ
i j

j N i
A A 

  . 

 

Definition 1: A strategy i ia A  for player i  is said to be dominated for Â  in G  if

ˆ
i ia A , and there exists a mixed strategy ˆ( )i iA   such that 

    ˆ ˆ ˆ( , ) ( , )i i i i i iu a a u a a   for all ˆˆ i ia A  .4 

It is said to be dominant for Â  in G  if ˆ
i ia A , and 

    ˆ ˆ ˆ( , ) ( , )i i i i i iu a a u a a   for all ˆˆ \{ }i i ia A a  and ˆˆ i ia A  . 

It is said to be weakly dominated for Â  in G  if ˆ
i ia A , and there exists a mixed 

strategy ˆ( )i iA   such that 

    ˆ ˆ ˆ( , ) ( , )i i i i i iu a a u a a   for all ˆˆ i ia A  , 

and the strict inequality holds for some i ia A  . It is said to be weakly dominant for 

Â  in G  if ˆ
i ia A , and for every ˆˆ \{ }i i ia A a , 

    ˆ ˆ ˆ( , ) ( , )i i i i i iu a a u a a   for all ˆˆ i ia A  , 

and the strict inequality holds for some ˆˆ i ia A  . 

 
                                                 
4 ( )X  denotes the set of all lotteries over X . 
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 A strategy for player i  is dominant for Â  in G  if and only if it is the unique 

undominated strategy for Â  in G . It is weakly dominant for Â  in G  if and only if 

it is the unique weakly dominated strategy for Â  in G . If it is dominant for Â  in 

G , it is also weakly dominant for Â  in G . If it is dominated for Â  in G , it is also 

weakly dominated for Â  in G . If Â A , we will simply say that ia  is dominated 

in G . We will say similarly for the other definitions. 

 According to Friedman and Shenker (1996), Friedman (2002), and Li (2017), we 

introduce obvious dominance as follows. Li (2017) defined obviously dominant strategy 

for extensive form games, while this paper defines it for normal form games. 

 

Definition 2: A strategy i ia A  for player i  is said to be obviously dominated for Â  

in G  if ˆ
i ia A , and there exists ˆˆi ia A  such that 

    
ˆˆ ˆˆ

ˆ ˆ ˆmax ( , ) min ( , )
i ii i

i i i i i i
a Aa A

u a a u a a
  

 


 . 

It is said to be obviously dominant for Â  in G  if ˆ
i ia A , and 

    
ˆ ˆˆ ˆ

ˆ ˆ ˆmin ( , ) max ( , )
i i i i

i i i i i i
a A a A

u a a u a a
   

 
 

  for all ˆˆ \{ }i i ia A a . 

 

 Definition 2 permits each player’s expectation regarding the other players’ 

strategies to depend on his (or her) strategy selection. This permission implies that each 

player i N  is not rational in hypothetical thinking, that is, he (or she) fails to practice 

correct hypothetical thinking in the "what-if" manner, such that he (or she) selects a 

strategy ia  if the other players select a profile of strategies ia , whereas he selects 

another strategy ia  if the other players select another profile of strategies ia . Instead 

of practicing such hypothetical thinking, a player i  incorrectly thinks about the other 

players’ strategies in a "strategy-dependent" manner, such that he selects a strategy ia , 

and the other players then select a profile of strategies ia , while he selects another 

strategy i ia a  , and the other players then select another profile of strategies i ia a   . 

 Obviously dominated strategy implies that a player hesitates to select a strategy 
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even if he is the most optimistic in his strategy-dependent expectation about the other 

players' strategy selections. Obviously dominant strategy implies that a player prefers 

selecting a strategy even if he is the most pessimistic in his strategy-dependent 

expectation about the other players' strategy selections. If a strategy for player i  is 

obviously dominant for Â  in G , then it is also dominant for Â  in G . If it is 

obviously dominated for Â  in G , then it is also dominated for Â  in G . It is 

obviously dominant for Â  in G  if and only if it is the unique obviously undominated 

strategy for Â  in G . 

 We regard a normal form game as a physical rule of strategic interactions, 

implying a full description of the supposedly relevant factors to ideally rational players. 

To nudge bounded-rational players to play rationally, we will introduce a cognitive 

procedure that is a description of the factors that are supposedly irrelevant to ideally 

rational players but nudge bounded-rational players to play rationally. 

 

6. Frame 

 

 This section defines a frame as an extensive game form with imperfect information 

that is consistent with a given normal form game. We regard a frame as a cognitive 

procedure that is common to all players. 

 

6.1. Definition 

 

Associated with a game G , we introduce a concept that we term a frame, which is 

denoted by 
, ,( , ( , ( )) , ) )i t i t t T i i NT A A     . Each player makes multiple action decisions 

from step 1 to step T . At each step {1,..., }t T , each player i  selects an action ,i ta  

from a finite set ,i tA . Let ,1 ,( ,..., )t
i i i ta a a  denote a sequence of player 'i s  action 

decisions up to the step t . For every {1,..., }t T , we define the set of possible 

sequences of player 'i s  action decisions up to the step t  by ,1

t
t
i iA A  
  . We also 

define the sequence-dependent set of actions at step t , which is described as a function 
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,1
, : 2 i tAt

i t iA A   , where 

   0 1
,1 ,1( )i i i iA a A A  , 

and for every {2,..., }t T , 

 1
, ,[ ] [ ( ) {1, ..., }]t t

i i i i ia A a A a for all t
      . 

At each step {1,..., }t T , where player i  has determined 1
,1 , 1( ,..., )t

i i i ta a a
  up to 

the step 1t  , he selects an action ,i ta  from the sequence-dependent set 

1
, ,( )t

i t i i tA a A  . 

 Let : T
i i iA A   denote a one-to-one correspondence, where we regard a strategy 

i ia A  for player i  in the game G  as the complete sequence of player 'i s  action 

decisions ( ) T
i i ia A   in the frame  . We will write ,1 ,( ) ( ,..., )i i i i i Ta a a a  . 

 We interpret a frame as a description of players’ cognitive procedures regarding 

how to determine their strategy selections. That is, each player i  determines his 

strategy selection in the game G  according to the cognitive procedure implied by the 

frame  . We assume that not only the game G , but also the frame  , is common 

knowledge among all players. Importantly, at each step {1,..., }t T , each player i  

perceives that any other player j i  has already decided the sequence of actions 

1
,1 , 1( ,..., )t

j j j ta a a
  up to the step 1t  , but has not decided on , ,( ,..., )j t j Ta a  yet. 

 

6.2. Specifications 

 

 We introduce two specifications of frame as follows. 

 

Specification (1): Fix an arbitrary strategy profile a A  as the default. Let 

    : \{ } {1,..., }i i i
i N i N

A a A n
 

   

denote a one-to-one correspondence that describes an order of all players’ strategies 

except for 1{ ,..., }na a . We define ( , ) :{1,..., }i
i N

A n N 


    by 
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    [ ( ) ] [ ( , ) ]ia t t i       for all i N , \{ }i i ia A a , and 

          {1,..., }i
i N

t A n


  . 

According to  , player 'i s  strategy \{ }i i ia A a  is placed in the position 

( ) {1,..., }i i
i N

a A n


  , and ( ( ), )ia i     identifies the player who occupies the 

position ( )ia . 

 We specify a frame, denoted by  , such that 

    i
i N

T A n


  , 

    , {0,1}i tA  , 

    1
, ( ) {0}t

i t iA a      if either ( , )t i    or 

         , 1ia    for some {1,..., 1}t   , 

    1
, ( ) {0,1}t

i t iA a     otherwise, 

and , 1( ) ( ( ))
i

i N

A n

i i i t i ta a  






 , where 

    , ( ) 0i t ia   for all {1,..., }t T , 

and for every \{ }i i ia A a , 

    , ( ) ( ) 1
ii a ia  , and , ( ) 0i t ia   for all ( )it a . 

At each step {1,..., }t T , only player ( , )t   is active and decides whether to select 

strategy 1( ) \{ }i i ia t A a  , that is, decide “action 1,” or not, that is, decide "action 

0." By deciding action 0 at all steps, player i  selects the default strategy ia . By 

deciding action 1 at the step ( )it a , player i  selects strategy \{ }i i ia A a . Each 

player can choose action 1 only once during the cognitive procedure implied by  . 

 

Specification (2): Let : N N   denote a permutation on N . We specify a frame, 

denoted by  , such that 

    T n , 

    ( ) 1
, ( ) , ( ) ( )i

i i i i i iA A a A
 

   for all i N  and ( ) 1 ( ) 1i i
i ia A   , 
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    ,i tA  is a singleton for all i N  and ( )t i , 

and , 1( ) ( ( ))
i

i N

A n

i i i t i ta a  






 , where for every i ia A , 

    , ( ) ( )i i i ia a  , and , ( ) 0i t ia   for all ( )t i . 

 Each player selects a strategy in the order of the permutation  . At each step 

{1,..., }t n , only player 1( )t  is active and selects his strategy. 

 

7. Quasi-Obvious Dominance 

 

Because of the imperfect information assumption, it is a precondition that each 

player i  cannot observe the other players’ action decisions during the cognitive 

procedure implied by the frame  . However, at each step {1,..., }t T , each player i  

perceives that the other players have already decided upon actions 1t
ia 

  as irreversible 

ones up to the step t . With the help of this perception, he can correctly recognize that 

his action decision ,i ta  at the step t  has no relation to 1t
ia 

 , and can therefore practice 

correct hypothetical thinking regarding the other players’ past action decisions 1t
ia 

 . 

On the other hand, he perceives that the other players have not decided ( ,..., )t T
i ia a   

yet. This perception motivates him to incorrectly expect that his action decision may 

influence the other players’ future and current action decisions, thus, leading to his 

failure to enforce hypothetical thinking regarding the other players’ future and current 

action decisions. 

 This section introduces a new concept that we term quasi-obvious dominance. For 

each sequence of player 'i s  action decisions up to step t , t t
i ia A , we define the set 

of all strategies for player i  that are consistent with t
ia  by 

    ˆ ˆ( ) { | }t t t
i i i i i iA a a A a a   . 

 

Definition 3: A strategy i ia A  for player i  is said to be quasi-obviously dominated 

for Â  in a game with a frame ( , )G   if ˆ
i ia A , and there exist {1,..., }t T  and 
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ˆˆi ia A  such that 

    1ˆ ( )t
i i ia A a  , 

    , ,ˆi t i ta a , 

and 

(1)    
11 ˆˆ ˆˆ ( )( )

ˆ ˆ ˆmax ( , ) min ( , )
tt

i j j ji j j j
j ij i

i i i i i i
a A A aa A A a

u a a u a a


 

 





 for all 1 1ˆt t
i ia A 

  . 

A strategy i ia A  for player i  is said to be quasi-obviously dominant for Â  in 

( , )G   if ˆ
i ia A , and for every {1,..., }t T  and ˆˆi ia A , whenever 1ˆ ( )t

i i ia A a   and 

, ,ˆi t i ta a ,  

(2)    
1 1ˆ ˆˆ ˆ( ) ( )

ˆ ˆ ˆmin ( , ) max ( , )
t t

i j j j i j j j
j i j i

i i i i i i
a A A a a A A a

u a a u a a
 

  

 
 


 

 for all 1 1ˆt t
i ia A 

  . 

 

 According to a frame  , each player i  determines whether or not he selects a 

strategy ia , and also determines whether or not he selects another strategy ˆia , at the 

first step that distinguishes these strategies, that is, at the step t  where 1 ˆt t
i ia a   and 

, ,ˆi t i ta a . More importantly, he perceives that the other players have already made the 

action decisions that the frame requires them to make up to the step 1t  , whereas they 

do not have decided their future and current actions yet. 

 Quasi-obviously dominated strategy implies that a player hesitates to select one 

strategy over another even if, at the first step that distinguishes these strategies, he is the 

most optimistic in terms of his strategy-dependent expectation about the other players’ 

future and current action decisions. Quasi-obviously dominant strategy implies that a 

player prefers selecting a strategy over another strategy even if, at the first step that 

distinguishes these strategies, he is the most pessimistic in terms of his 

strategy-dependent expectation about the other players’ future and current action 

decisions. 

 The main difference between quasi-obvious dominance and obvious dominance is 

that at each step during the cognitive procedure implied by the frame, any player can 

practice hypothetical thinking regarding the other players’ past action decisions 
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correctly. 

 Li (2017) defined obviously dominant strategy for the general class of extensive 

form games that includes both imperfect information and perfect information. In 

contrast with quasi-obviously dominant strategy in this study, Li’s concept does not 

require players to practice hypothetical thinking at all. Hence, for extensive form games 

with imperfect information games, Li's concept is the same as obviously dominant 

strategy in this study. 

If a strategy for player i  is quasi-obviously dominant for Â  in G , then it is 

dominant for Â  in G . If it is obviously dominant for Â  in G , then it is 

quasi-obviously dominant for Â  in G . If it is quasi-obviously dominated for Â  in 

G , then it is dominated for Â  in G . If it is obviously dominated for Â  in G , then 

it is quasi-obviously dominated for Â  in G . It is quasi-obviously dominant for Â  in 

G , if and only if it is the unique quasi-obviously undominated strategy for Â  in G . 

 Consider an arbitrary strategy profile *a A  as the targeted strategy profile. We 

will demonstrate a necessary and sufficient condition for the existence of a frame   

such that *a  is quasi-obviously dominant in ( , )G  . 

 Consider the specification of frame (1),  , where we regard *a  as the default, 

that is, 

    *a a . 

For each i N , i ia A  , and {1,..., }t T , we define the set of all players j i  

other than player i  who select strategy ja  after the step t  by 

    ( , , , ) { \{ } | ( ) }i jC a i t j N i a t     . 

We define the set of all strategies that player i  can select after the step t  by 

    ( , ) { | ( ) }i i i iA t a A a t    . 

From the specification of   and the definitions of ( , , , )iC a i t   and ( , )iA t  , it 

follows that the inequalities (2) for *
i ia a  in Definition 3 are equivalent to the 

following inequalities: for every *
i ia a  and i ia A  , 
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(3)    
( , , , ) ( , , , )

*
( , , , ) ( , , , )( , )

min ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i ta A t
u a a a

 
   

 
 

  

 
( , , , ) ( , , , )

( , , , ) ( , , , )
( , )

max ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i t
a A t

u a a a
 

   
 

 



 , 

where we denote *min[ ( ), ( )]i it a a  . Hence, the inequality (3) is necessary and 

sufficient for *a  to be quasi-obviously dominant in ( , )G  . 

 The implication of (3) is as follows. Suppose that a player i  considers selecting 

*
i ia a  instead of *

ia  and expects that the other players select ia . In this case, player

i  irrationally expects that if he selects *
ia  instead of *

i ia a , any other player j i , 

who can select ja  after the step *min[ ( ), ( )]i it a a  , will select the worst strategy 

among strategies that player j  can select after this step, instead of ja . However, the 

inequality (3) implies that player i  is still willing to select *
ia  even if he is pessimistic 

about the other players’ strategy selection in such a manner. 

 Since 

    ( , , , ) ( , , , )i iC a i t C a i t     for all t  and all t t  , 

it follows from (3) that to make *a  quasi-obviously dominant, we should design the 

order   that positions the action decisions that are more likely the cause of failure 

during later steps. 

 We show that if there exists no   such that *a  is quasi-obviously dominant in 

( , )G  , then there generally exists no frame   such that it is quasi-obviously 

dominant in ( , )G  . Hence, we only have to consider the specification of frame (1) for 

quasi-obvious dominance. 

 

Theorem 1: There exists a frame   such that a strategy profile *a  is quasi-obviously 

dominant in ( , )G   if and only if there exists   such that *a  is quasi-obviously 

dominant in ( , )G  , that is, the inequality (3) holds. 

 

Proof: Suppose that *a  is quasi-obviously dominant in ( , )G  . For each i N  and 

{1,..., }t T , we define 
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    * 1 *( ) { | ( ) }t t t
i i i i i i i iA t a A a A a and a a    , 

which is the set of all strategies ia  such that the step t  distinguishes ia  and *
ia  at 

the first time. Let *a a . We specify   in the manner that for every 2( , )i j N ,

2( , ) {1,..., }t t T  , and ( , ) ( ) ( )i j i ja a A t A t   , 

    [ ] [ ( ) ( )]i jt t a a     . 

Note that   positions action decisions that are eliminated earlier in iterative 

dominance on later steps. 

 Fix i N  and *\{ }i i ia A a  arbitrarily. Let {1,..., }t T  denote the step in the 

frame   such that 1 * 1t t
i ia a   and *t t

i ia a , that is, ( )i ia A t . From (2), it follows 

that for every i ia A  , 

(4)    
1 1

*

ˆ ˆ( ) ( )
ˆ ˆmin ( , ) max ( , )

t t
i i i i i i

i i i i i i
a A a a A a

u a a u a a
 

     
 

 
 . 

From the specification of  , it follows that for every ( , , , )ij C a i t  , 

    1( , ) ( )t
j j jA t A a  , 

where we denote *min[ ( ), ( )]i it a a  . From this inclusion, 1( )t
j j ja A a  , and the 

inequality (4), it follows that for every *
i ia a  and i ia A  , 

    
( , , , ) ( , , , )

*
( , , , ) ( , , , )( , )

min ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i ta A t
u a a a

 
   

 
 

  

 
( , , , ) ( , , , )

( , , , ) ( , , , )
( , )

max ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i t
a A t

u a a a
 

   
 

 



 , 

which implies the inequality (3). Hence, we have proved Theorem 1. 

Q.E.D. 

 

Example 1 (Two-Strategy Game): Consider a two-strategy game G , where 

    {0,1}iA   for all i N . 

In this game, the specification of frame (1) is essentially the same as the specification of 

frame (2). Let * (1,...,1)a   and (0,..., 0)a  . Fix an arbitrary  , and consider the 

associated frame  . At each step {1,..., }t n , player 1( )i t N   selects a strategy 
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between * 1ia   and 0ia  . 

 

Proposition 1: In a two-strategy game G , there exists a frame   such that *a  is the 

quasi-obviously dominant strategy profile in ( , )G   if and only if there exists   such 

that *a  is the quasi-obviously dominant strategy profile in ( , )G  , that is, for every 

i N  and i ia A  , 

    
( ( ), ) ( ( ), )

*
( ( ), ) ( ( ), )( , ) max ( , , )

C i C i
i i i i i i C i C i

a A
u a a u a a a

   
     

  , 

where ( , ) { | ( ) }C t i N i t     denotes the set of all players who select strategies 

after the step t . 

 

Proof: At each step {1,..., }t n , player 1( )i t  fails to practice the hypothetical 

thinking regarding all players who move after this step, that is, all players who belong to 

( , )C t  . This implies that *a  is the quasi-obviously dominant strategy profile in 

( , )G   if and only if for every i N  and i ia A  , 

    
( ( ), ) ( ( ), )

*
( ( ), ) ( ( ), )( , ) max ( , , )

C i C i
i i i i i i C i C i

a A
u a a u a a a

   
     

  . 

It is clear from Theorem 1 that in this example, if there exists a frame   such that *a  

is the quasi-obviously dominant strategy profile in ( , )G  , then there exists   such 

that *a  is the quasi-obviously dominant strategy profile in ( , )G  . 

Q.E.D. 

 

 Since ( , ) ( , )C t C t   for all t  and t t  , it follows from Proposition 1 that to 

make *a  quasi-obviously dominant, we should design   that positions players who 

are more likely to be the cause of failure on later steps. 

 

8. Weak Quasi-Obvious Dominance 

 

The following is a weaker version of quasi-obvious dominance, where we replace 

strict inequalities with weak inequalities. 
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Definition 4: A strategy i ia A  for player i  is said to be weakly quasi-obviously 

dominant for Â  in ( , )G   if it is weakly dominant for Â  in G , and for every 

{1,..., }t T  and ˆˆi ia A , whenever 1ˆ ( )t
i i ia A a   and , ,ˆi t i ta a , then 

    
1 1ˆ ˆˆ ˆ( ) ( )

ˆ ˆ ˆmin ( , ) max ( , )
t t

i j j j i j j j
j i j i

i i i i i i
a A A a a A A a

u a a u a a
 

  

 
 


 

 for all 1 1ˆt t
j ia A 

 . 

 

 The following theorem parallels Theorem 1, which we can prove in the same way 

as Theorem 1. 

 

Theorem 2: Suppose that a strategy profile *a  is weakly dominant in G . There exists 

a frame   such that *a  is weakly quasi-obviously dominant in ( , )G   if and only if 

there exists   such that *a  is weakly quasi-obviously dominant in ( , )G  , that is, 

*a  is weakly dominant in G , and for every *
i ia a  and i ia A  , 

(5)    
( , , , ) ( , , , )

*
( , , , ) ( , , , )( , )

min ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i ta A t
u a a a

 
   

 
 

  

 
( , , , ) ( , , , )

( , , , ) ( , , , )
( , )

max ( , , )
i i

C a i t C a i ti i

i i i C a i t C a i t
a A t

u a a a
 

   
 

 



 , 

where we denote *min[ ( ), ( )]i it a a  . 

Q.E.D. 

 

Example 2 (Ascending Order): Consider a game G  where iA  is a nonempty finite 

set of real numbers, and players select different numbers each as their strategies, that is, 

    i jA A   for all i j . 

 Let 1(max ,...,max )na a a . We specify the order *   that arranges all 

strategies except for { }i i Na   in ascending order, that is, for every 2( , )i j N  and 

( , )i j i ja a A A   , 

    [ * *( ) ( )i ja a   ] [ i ja a ]. 
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Proposition 2: Consider Example 2. Suppose that *a  is a weakly dominant strategy 

profile. Then, it is weakly quasi-obviously dominant in 
*

( , )G   if and only if for every 

i N , *\{ }i i ia A a , i ia A  , and i ia A   , whenever for every \{ }j N i , 

    either j ja a  or *min[ , ] min[ , ]j j i ia a a a  , 

then 

    *( , ) ( )i i i iu a a u a  . 

 

Proof: From the specification of * , it follows that 

    * *( , , , ) { \{ }| min[ , ]}i j i iC a i t j N i a a a    , 

where we denote * * *min[ ( ), ( )]i it a a  . That is, a player j i  selects ja  after the 

step *min[ ( ), ( )]i it a a   if and only if *min[ , ]j i ia a a . This implies that the 

inequality (5) is equivalent to the condition of this proposition. 

              Q.E.D. 

 

 A special case of Example 2 is a multi-unit ascending proxy auction with 

single-unit demands. Let {1,2,..., 1}m n   denote the total number of units of 

homogeneous commodities to be sold, where 1 m n  . We regard a strategy as a proxy 

bid. Each player i  simultaneously makes his proxy bid. He obtains a single unit of the 

commodity if and only if his proxy bid is greater than the ( 1)m th  highest proxy bid 

( , 1)p a m  . Let 

    { , ,2 ,..., ( 1) }iA i n i n i L n i      for all i N , 

where L  is a positive integer. We specify 

    ( ) ( , 1)i iu a v p a m     if ( , 1)ia p a m  , 

    ( ) 0iu a       otherwise, 

where ( , 1)p a m   denotes the ( 1)m th   highest proxy bid, and iv  denotes the 

valuation of player i  for the commodity. We assume 

    i iv A  for all i N . 
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 Let *
ia  be the sincere strategy for player (bidder) i , that is, 

    *
i ia v . 

Note that for every bidder, the sincere strategy is weakly dominant, but not obviously 

dominant. 

 The frame 
*  associated with the above-mentioned game describes the cognitive 

procedure through which bidders select their respective proxy bids. Note that the game 

along with this frame satisfies the conditions in Proposition 2. With the help of frame 
* , the sincere strategy becomes weakly quasi-obviously dominant. 

 The frame 
*  describes the format of ascending proxy auction. The auctioneer 

asks player 1 whether he wants to purchase one unit of the commodity at the price 1n   

(cents). Player 1 gives an answer to the auctioneer by saying either “yes” or “no.” The 

auctioneer ascends the price by one cent and asks the next player, that is, player 2, 

whether he wants to purchase the commodity at the price 2n  . The auctioneer 

continues to ask players in rotation. The auctioneer stops ascending prices in the end 

after the auctioneer has asked player n  whether he wants to purchase the commodity 

at the price Ln . We assume that any player can answer “no” only once. The auctioneer 

sells the commodities to the last m  players who answered “yes” at the highest price 

among the prices to which the remaining n m  players answered “yes.” Here, we 

implicitly assume that any player i  answered “yes” to the price i . 

 We regard the highest price to which a player i  answers “yes” as his proxy bid. 

Hence, the auctioneer sells the commodities to all players whose proxy bids are greater 

than the ( 1)m th  highest proxy bid at this ( 1)m th  highest proxy bid price. 

 From these observations, we can regard the frame 
*  as the cognitive procedure 

implied by the multi-unit ascending proxy auction with single-unit demands. With 

single-unit demands, bounded-rational players fail to play the strategy of sincere 

bidding in the uniform-price auction (i.e., the Vickrey multi-unit auction) even if it is 

the dominant strategy, while they can successfully play the strategy of sincere bidding 

with the help of the frame that implies the ascending proxy auction format even if the 

physical aspects of strategic interactions are logically unchanged. 
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9. Iterative Quasi-Obvious Dominance 

 

 We define iterative dominance in G  as the following iterative elimination of 

dominated strategies: Let 

    (0)i iA A . 

For every 1k  , we define ( )i iA k A  by 

    [ ( )i ia A k ] 

     [ ( 1)i ia A k  , and ia  is undominated for ( 1)A k   in G ], 

where we denote ( 1) ( 1)ii N
A k A k


    . Let 

0
( ) ( )i i

k
A A k




   . 

 

Definition 5: A strategy i ia A  for player i  is said to be iteratively undominated in 

G  if ( )i ia A  . 

 

 We define iterative obvious dominance in G  by replacing “undominated” in 

Definition 5 with “obviously undominated.” 

 

Definition 6: A strategy i ia A  for player i  is said to be iteratively obviously 

undominated in G  if 

    
* *

0
( ) ( )i i i

k
a A A k




    , 

where we define *( )iA k  similarly to ( )iA k  by replacing “undominated” with 

“obviously undominated.” 

 

Iterative obvious dominance assumes that a player is bounded-rational in 

hypothetical thinking, but is rational in higher-order reasoning. If a strategy for player i  

is the unique iteratively obviously undominated strategy, then it is the unique iteratively 

undominated strategy. However, even if it is the unique iteratively undominated strategy, 

it is not necessarily the unique iteratively obviously undominated strategy. In other 
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words, if a game is solvable in iterative obvious dominance, then it is solvable in 

iterative dominance. Even if a game is solvable in iterative dominance, it is not 

necessarily solvable in iterative obvious dominance.5 

 We define iterative quasi-obvious dominance in ( , )G   by replacing “dominated 

in G ” with “quasi-obviously dominated in ( , )G  .” 

 

Definition 7: A strategy i ia A  for player i  is said to be iteratively quasi-obviously 

undominated in ( , )G   if 

    
* *

0
( , ) ( , )i i i

k
a A A k




     , 

where we define *( , )iA k   similarly to ( )iA k  by replacing “dominated in G ” with 

“quasi-obviously dominated in ( , )G  .” 

 

 Iterative quasi-obvious dominance assumes that a player is "slightly" 

bounded-rational in hypothetical thinking, but is rational in higher-order reasoning. 

Such a slightly bounded-rational player can practice hypothetical thinking regarding the 

other players’ previous action decisions correctly, but fails hypothetical thinking 

regarding their current and future action decisions. 

 The following proposition shows that the dominant strategy profile is always the 

unique iteratively quasi-obviously undominated strategy profile. To prove the 

proposition, we utilize the specification of frame (2),  , in a detail-free manner. 

 

Proposition 3: If *a  is the dominant strategy profile in G , then, irrespective of the 

specification of  , it is the unique iteratively quasi-obviously dominant strategy profile 

in ( , )G  . 

 

Proof: At the last step T n  in the frame  , player ( )n , who is the last person to 

move, is willing to select the strategy *
( )na , because it is the dominant strategy in G  

                                                 
5 The solvability in iterative obvious dominance corresponds to the O-solvability in Friedman and 
Shenker (1996) and Friedman (2002). 



27 
 

 

and the last mover can practice hypothetical thinking correctly. Consider an arbitrary 

step {1,..., 1}t n  . Suppose that at every subsequent step { 1,..., }t t n  , player 

( )t   selects *
( )ta   as the unique iteratively quasi-obviously undominated strategy in 

( , )G  . Then, player ( )t  can also select *
( )ta  as the unique quasi-obviously 

dominant strategy, because he perceives that any subsequent movers will play according 

to *a , and player ( )t  can practice hypothetical thinking regarding the previous 

movers' decisions correctly. These observations imply that *a  is the unique iteratively 

quasi-obviously undominated strategy profile in ( , )G  . The above argument holds 

irrespective of the specification of  . 

Q.E.D. 

 

 We show that whenever a strategy profile is the unique iteratively undominated 

strategy profile in G , then there always exists a frame   such that it is the unique 

iteratively quasi-obviously undominated strategy profile in ( , )G  . Hence, with the 

help of the appropriate frame design, we can make the solvability in iterative dominance 

equivalent to the solvability in iterative quasi-obvious dominance. 

 

Theorem 3: There exists   such that a strategy profile *a  is the unique iteratively 

quasi-obviously undominated strategy profile in ( , )G   if and only if it is the unique 

iteratively undominated strategy profile in G . 

 

Proof: Let ( )iA t  be the subset of strategies for player i  that survives through the 

t time  iterative eliminations of dominated strategies. Let 

    *a a . 

We specify   so that 

    i
i N

T A n


  , 

and for every 2( , )t t T  , 2( , )i j N , ( ) \ ( 1)i i ia A t A t  , and ( ) \ ( 1)j j ja A t A t    , 

    ( ) ( )i ja a    whenever t t . 
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The order   positions strategies that can be eliminated in earlier stages of iteration on 

later steps. 

 It is clear that at the last step, player ( , )T   decides on action 0, that is, 

eliminates the strategy 1
( , )( ) TT A   , because 1( )T  is quasi-obviously 

dominated for A . 

 Consider an arbitrary {1,..., 1}t T  . Note that there exists an integer k  such 

that 1
( , ) ( , )( ) ( ) \ ( 1)t tt A k A k      . Suppose that at any later step { 1,..., }t t T  , 

player ( , )t   decides on action 0, that is, eliminates 1
( , )( ) tt A 
  . Then, from the 

specification of  , every strategy in \ ( 1)i iA A k   will be eliminated at the later steps 

as iteratively quasi-obviously dominated strategies. This implies that player ( , )t   is 

willing to select action 0, that is, eliminate 1
( , )( ) tt A   , because 1( )t  is 

quasi-obviously dominated for ( 1)A k  . 

 From these observations, all players decide action 0 at all times during the 

cognitive procedure implied by the frame  . Hence, *a a  is the unique iteratively 

quasi-obviously undominated strategy profile in ( , )G  . 

Q.E.D. 

 

Example 3 (Proxy Centipede Game): Consider a two-player game that we term a 

proxy centipede game. Let {1, 2}n  , 

    1 {1,3,5,..., 2 1}A L  , and 2 {2,4,6,...,2 }A L . 

Player 1 selects a positive odd number less than 2L , while player 2 selects a positive 

even number less than or equal to 2L . Each player prefers the strategy that is smaller 

than the other player's strategy for one point: For every a A  and i ia A , 

    ( ) ( , )i i i ju a u a a   if 1i ja a   and 1i ja a   . 

    ( ) ( , )i i i ju a u a a   if 1i i ja a a   , 

and 

    ( ) ( , )i i i ju a u a a   if 1i i ja a a    . 
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Note that the strategy profile * (1,2)a A   is the unique iteratively undominated 

strategy profile. However, it is not the unique iteratively obviously undominated 

strategy profile. 

 To nudge slightly bounded-rational players to select the targeted strategy profile 

*a , we consider the ascending order *  , where 

    2T L , 

and 

    * ( )t t   for all {1,..., 2 }t L . 

In the frame 
* , we can iteratively eliminate strategies in descending order. Hence, 

with the help of the frame 
* , we can see that * (1, 2)a   becomes the unique 

iteratively quasi-obviously undominated strategy profile. 

 

 To prove Theorem 3, we utilized the order   that positions strategies that can be 

eliminated in earlier stages of iteration on later steps. This implies that the frame 

design   in the proof of Theorem 3 generally depends on the finer details of the 

payoff functions, that is, it is not detail-free. 

 

10. Detail-Free Frame Design 

 

To prove Theorem 3, we have utilized the frame design   that we tailored to the 

finer details of payoff structure, that is, the order of iterative eliminations. This section 

investigates the possibility that even a detail-free frame design promotes the solvability 

in iterative quasi-obvious dominance. 

 Fix an arbitrary positive integer T . We consider games where each player’s 

strategy is decomposed into T  elements as follows. For every {1,..., }t T , the t th  

element of a strategy ia  is denoted by , ,i t i ta A , where ,i tA  is the set of possible 

t th  elements. We define iA  as a nonempty subset of ,1

T

i tt
A


 , that is, ,1

T

i i tt
A A


  . Let 

,1 ,( ,..., )i i i Ta a a  and ,1 ,( ,..., )t
i i i ta a a . 
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 We introduce another specification of frame, that is, * , which does not depend 

on the payoff functions, that is, is detail-free. 

 

Specification (3): We specify a frame *  as follows; for every ( , ) {1,..., }i t N T  , 

1
, ,( )t

i t i i tA a A   is defined as 

    1
, ,[ ( )]t

i t i t ia A a   1
,[( , )t t

i i t ia a a    for some i ia A ]. 

According to * , at each step t , each player i  decides his t th  element ,i ta .  

  

 Fix an arbitrary *a A  as the targeted strategy profile. For every {0,..., }t T , let 

    * *
, ' , '( , ) { | ' { 1,..., }}i i i i i t i tA t a a A a a for all t t T      

denote the set of all strategies for player i  whose elements after the ( 1)t th   

element is the same as *
ia . Note * *(0, ) { }i i iA a a . Let * *( , ) ( , )i ii N

A t a A t a


  . 

 The following theorem shows a sufficient condition for the solvability in iterative 

quasi-obvious dominance through detail-free frame design. The sufficient condition 

implies that at each round of iteration t , each player eliminates all strategies whose 

( )T t th   element is different from *
ia . 

 

Theorem 4: A strategy profile *a A  is the unique iteratively quasi-obviously 

undominated strategy rule profile in *( , )G   if for every i N  and {0,..., }t T , 

    *( ) ( , )i i iA t A T t a  , 

where ( )iA t  is the set of all strategies for player i  that can survive through the 

t time  iterative elimination of dominated strategies. 

 

Proof: It is clear that at the last step T , each player i  hesitates to select any 

*
, ,i T i Ta a  as being dominated, that is, quasi-obviously dominated, for * *(0, )A A   in 

*( , )G  . Hence, 

    * * *(1, ) ( 1, )i i iA A T a   . 
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 Fix an arbitrary {2,..., }t T  and i N . Suppose that 

    * * *( 1, ) ( 1, )j j jA t A T t a      for all j N . 

From the condition of this theorem, it is clear that at the step T t , each player i  

hesitates to select any *
, ,i T t i T ta a   as being dominated, that is, quasi-obviously 

dominated, for *( 1, )A T t a  . This along with the supposition implies that each player 

i  hesitates to select any *
, ,i T t i T ta a   as being dominated, that is, quasi-obviously 

dominated, for * *( 1, )A t   . Hence, 

    * * *( , ) ( , )i i iA t A T t a   . 

The backward induction implies that for every i N , 

    * * *( , ) (0) { }i i iA T A a   , that is, * * *( , ) { }i iA a   . 

Q.E.D. 

 

11. Framing Abreu-Matsushima Mechanisms 

 

 As an application of the detail-free frame design, this section considers the 

following allocation problem. Let C  denote the set of possible allocations. The central 

planner attempts to determine the desirable allocation, but does not know which 

allocation is desirable at the time of his determination. We assume ex-post verification 

in that the desirable allocation becomes verifiable and contractible not before but after 

the central planner determines the allocation.6 

 Assume 3n  . These three players know which allocation is desirable even before 

the central planner's allocation determination. Hence, the central planner requires each 

player to make some announcement regarding the desirable allocation, and then make 

his allocation determination contingent on their announcements. 

 We define a mechanism as ( , , )A g x  , where ii N
A A


  , iA  is the set of 

possible messages for player i , ( )C  denotes the set of all lotteries over allocations,

: ( )g A C  denotes an allocation rule, and ( ) : n
i i Nx x A C R    denotes a 

                                                 
6 See Matsushima (2017) for implementation with ex-post verification. 
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payment rule. Based on the announced message profile a A , the central planner 

determines an allocation according to the lottery ( ) ( )g a C . After this determination, 

the central planner recognizes which allocation was actually desirable and then makes 

the side payment ( , )ix a c  to each player {1,2,3}i , where c  denotes the desirable 

allocation. 

 We permit only small fines. Fix 0   and 0   arbitrarily, both of which are 

close to zero. The side payments are less than or equal to   , that is, 

    ( , )ix a c     for all i N , a A , and c C . 

 Fix a permutation :{1,..., } {1,..., }T T   arbitrarily. We specify the 

Abreu-Matsushima mechanism ( )    as follows. Let 

    ,1 ,i i i TA A A   , 

where 

    ,i tA C  for all {1,..., }t T . 

Each player announces T  sub-messages about which allocation is desirable. Let 

( )
,( )t

i t i Na a  . We specify the allocation rule g  by 

    

( )

1

( )
( )

T
t

t
t

g a
g a

T



, 

where 3:tg C C  denotes the majority rule with respect to their ( )t th  

announcement. That is, 

    ( )( )t
tg a c  if ,i ta c  for two or more players, 

and 

    ( )( )t
tg a c  if there exists no such c C , 

where c  is an arbitrarily fixed allocation. The central planner randomly selects an 

integer {1,..., }t T  and determines the allocation ( )( )t
tg a C . 

 We specify the payment rule x  by 

( , )
( , ) i i

i

k a c
x a c

T
     if there exists {1,..., }t T  such that 

      ,i ta c , and ,j ta c   for all j i  
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      and ' {1,..., }t T  such that 

      ( ) ( )t t   , 

and 

    
( , )

( , ) i i
i

k a c
x a c

T
   otherwise, 

where ( , )i ik a c  denotes the number of elements of player 'i s  sub-message that are 

different from c , that is, 

    ,( , ) { {1,..., } | }i i i tk a c t T a c   . 

Clearly, ( , )ix a c    . More importantly, the central planner fines the last deviant 

from the truthful revelation in the order of the permutation  . Moreover, for every 

{1,..., }t T , each player additionally pays the monetary fine 
T


 whenever his t th  

announcement is different from c . 

 Each player 'i s  valuation function is given by : ( )iv C R  . We assume 

expected utility and quasi-linearity. Fix an arbitrary allocation *c C  as the desirable 

allocation. The game implied by the Abreu-Matsushima mechanism is denoted by 

*( , )G G c , where the payoff function :iu A R  for each player i  is given by 

    *( ) ( ( )) ( , )i i iu a v g a x a c   for all a A . 

Let * *( )i i Na a   denote the sincere strategy profile, where 

     * *
,i ta c  for all i N  and {1,..., }t T . 

Note that the central planner can achieve the desirable allocation *c  without monetary 

fines, provided that the players select the sincere strategy profile *a . 

 We assume that 

(6)    *

( , )
max { ( ) ( )}i i

i c N C
T v c v c 

 
   , 

which is not very restrictive even if   and   are as close to zero as possible, because 

we can set the positive integer T  large enough to satisfy the inequality (6). With this 

assumption, we can prove in the same way as Matsushima (2017) that *a  is the unique 

iteratively undominated strategy profile in the game 
*( , )G c  implied by the 
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Abreu-Matsushima mechanism ( ) . 

 To exclude trivial cases, we assume that there exists *c c  such that 

    *( ) ( )i iu c u c    for two or more players. 

(Otherwise, *a  is the unique iteratively undominated strategy profile even if 1T   

and 0  .) 

 Let *  denote the identity mapping, where 

    *( )t t   for all {1,..., }t T . 

In the game 
* *( , )G c , we can iteratively eliminate strategies whose later elements are 

different from *c . We therefore have 

    *( ) ( , )i i iA t A T t a   for all i N  and {0,..., }t T . 

This inclusion along with Theorem 4 implies that *a  is the unique iteratively 

quasi-obviously undominated strategy profile in 
* *( , )G c . 

 Note that whenever *  , then *a  is not the unique iteratively quasi-obviously 

undominated strategy profile in 
*( , )G c . In this case, there exist t  and t t   such 

that ( ) ( )t t   . Note that players cannot eliminate strategies whose t th  elements 

are different from *c  before eliminating strategies whose ( )t th  elements are different 

from *c . This implies that *a  is not the unique strategy profile that survives through 

the iterative eliminations of quasi-obviously dominated strategies. Hence, we have 

proved the following theorem. 

 

Theorem 5: The strategy profile *a  is the unique iteratively quasi-obviously 

undominated strategy profile in * *( ( , ), )G c   if and only if 

    *  . 

 

 Theorem 5 implies that the Abreu-Matsushima mechanism is robust in hypothetical 

thinking, but the associated frame must interpret this mechanism to fine the last deviants 
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from truthful revelation.7 

 

12. Incomplete Information 

 

Throughout this study, we have assumed complete information. This section 

considers a game with incomplete information as a Bayesian game, which is denoted by 

( , , , , )N A u p   , where   is the set of all states, ii N
    , i  is the set of all 

types for player i , ( )i i Nu u  , :iu A R  is a state-contingent payoff function 

for player i , (( ( | )) )
i ii i i Np p      is a belief system, ( | ) : [0,1]i i ip     , and 

( | )i i ip    is the probability of the occurrence of the other players’ type profile i  

conditional on i . 

Let : ( )i i is A   denote a strategy rule for player i . Player i  whose type is 

given by i  selects a strategy according to the lottery ( ) ( )i i is A  . Let iS  denote 

the set of all strategy rules for player i . Let ( )i i Ns s   and ii N
S S


  . 

It is implicit to assume that the state   is determined before the Bayesian game 

starts. Each player i  therefore has no trouble with hypothetical thinking regarding 

i . 

By treating each type as an individual agent, we can regard the Bayesian game  

as being equivalent to the agent-normal form game, denoted by ( ) ( , , )G G M B w   , 

where M  is the set of all agents, that is, 

    {1,2,..., }i
i N

M


  , 

mm M
B B


  , mB  is the set of all strategies for agent m M , ( )m m Mw w  , and 

:mw B R  is the payoff function for agent m . We assume that there exists a 

                                                 
7 Glazer and Rubinstein (1996) argued that an extensive form game with perfect 
information helps players to practice iterative elimination of dominated strategies, 
which interprets the Abreu-Matsushima mechanism to fine, not the last deviants, but the 
first deviants. 
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one-to-one correspondence : i
i N

M


   such that for every i N  and i i  , 

    ( )i iB A   , 

and 

    ( ) ( )( ) [ (( ) , ) | ]
i ji j N iw b E u b       for all b B . 

We treat each type i  in the Bayesian game  as the agent ( )i M    in the 

agent-normal form game ( )G  . By replacing a Bayesian game   with the 

agent-normal form game ( )G  , we can directly apply the arguments in the previous 

sections to the Bayesian environments. 

We denote by , ,( , ( , ( )) , ) )m t m t t T m m MT B B      a frame associated with the 

agent-normal form game ( )G  , which we define in the same way as   by replacing 

N , A , and   with M , B , and  , respectively. 

 

Definition 8: A strategy rule profile s S  is said to be iteratively quasi-obviously 

undominated in a Bayesian game with a frame ( , )   if the associated strategy 

profile b B  is iteratively quasi-obviously undominated in the agent normal form 

game with the frame ( ( ), )G   , where 

    ( ) ( )
i i ib s    for all i N  and i i  . 

 

 Note that a frame   generally has a non-negligible complexity in that it is a 

cognitive procedure not for the set of all (real) players N  but for the set of all 

type-contingent (hypothetical) agents M . To address such cognitive complexity, we 

should investigate the solvability in iterative quasi-obvious dominance in Bayesian 

environments by using only a simple frame that is defined not for M  but for N . We 

regard the frame   for complete information defined in Section 6 as a simple case of 

the frame   for incomplete information defined in this section. The frame   for 

complete information is equivalent to the frame   for incomplete information 

whenever for every i N , 

    , , , ,( , ( )) ( , ( ))m t m t t T m t m t t TB B B B       if im  and im , 
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and 

    , , , ,( , ( )) ( , ( ))m t m t t T i t i t t TB B A A    . 

In this case, we will simply write   instead of  . 

 Let us consider a Bayesian game   where 

    ,1 ,i i i TA A A    for all i N . 

We denote by , 1( )T
i i t ts s   a strategy rule for player i , where we denote , ,:i t i i ts A  . 

Fix an arbitrary strategy rule profile * *( )i i Ns s   as the targeted strategy rule profile. 

For every {1,..., }t T , i N , and i i  , let 

    * *
, ' , '( , ( )) { | ( ) ' { 1,..., }}i i i i i i t i t iA t s a A a s for all t t T       

denote the set of all strategies for player i  with type i  whose elements after the 

( 1)t th  element are the same as *( )i is  . 

 We specify a frame *  for the set of all players N  so that at each step 

{1,..., }t T , each player i  selects an action ,i ta  from ,i tA  under the imperfect 

information assumption. The following theorem shows a sufficient condition for the 

solvability in iterative quasi-obvious dominance in the Bayesian environments. This 

theorem is an extension of Theorem 4, which we can prove in the same way as Theorem 

4. 

 

Theorem 6: In the above-mentioned Bayesian game , *s  is the unique iteratively 

quasi-obviously undominated strategy rule profile in *( , )   if for every i N , 

i i  , and {0,..., }t T , 

    *
( ) ( ) ( , ( ))

i i i iB t A T t s    , 

where ( ) ( )
i

B t   is the set of all strategies for agent ( )i M    that can survive 

through the t time  iterative elimination of dominated strategies in *( ( ), )G   . 

  

 Based on this theorem, we can extend the argument in Section 10 to the Bayesian 

environment. We can show in the same manner as in Theorem 5 that in the Bayesian 

environment, any social choice function that is uniquely implementable in iterative 
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dominance through the Abreu-Matsushima mechanism is also uniquely implementable 

in iterative quasi-obvious dominance through the Abreu-Matsushima mechanism that 

fines the last deviants. 

 

13. Conclusion 

 

 This study investigated the possibility that even bounded-rational players employ 

rational behavior. We assumed that each player fails to practice hypothetical thinking 

regarding the present and future actions of other players, but not the previous actions of 

the other players. We proposed the method of frame design that induces such players to 

practice correct hypothetical thinking as much as possible. 

 With the help of appropriate frame design, we showed that the solvability in 

iterative undominated strategies is equivalent to the solvability in iteratively 

quasi-obviously undominated strategies. Hence, a well-designed frame successfully 

motivates bounded-rational players to employ rational behavior. 

 This study provided a cogent explanation about why the ascending proxy auction 

has more popularity than the second price auction even if both have the same physical 

rule. This study also showed that the Abreu-Matsushima mechanism is robust in the 

practice of hypothetical thinking, even if we only consider detail-free frames. We 

further extended the method of detail-free frame design to the Bayesian environments. 

 Frame design bridges the gap between rationality and bounded rationality. It might 

be anticipated that frame design avoids the obstruction caused by various aspects of 

bounded rationality besides hypothetical thinking. Our main concern is that different 

frame designs are needed to overcome different aspects of bounded rationality such as 

higher-order reasoning. It would be an important future research topic to consider how 

to design frame systems that can solve multiple issues on bounded rationality altogether. 
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