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Abstract

In their analysis of strategic information transmission, Vincent Crawford and
Joel Sobel (1982) showed the existance of partition equilibria (Theorem 1).
Although the theorem itself is correct, the proof contains some incorrect
statements. We present a counter-example and provide a correct version of
the proof.



1 Introduction

Vincent Crawford and Joel Sobel (1982) discovered a remarkable property
that, in their general model of strategic information transmission, if there
is a partition equilibrium where the state space [0, 1] is partitioned into N
intervals, then for any integer 1 ≤ n ≤ N , there is also a partition equilibrium
with size n (Theorem 1). While this claim is true, the proof is built on some
incorrect statements. We point this out by means of a counter-example and
propose a correct version of the proof.

Their model consists of a sender S and a receiver R. The state of nature
m is a random variable with density f on its support [0, 1], and m is observed
only by the sender. After observing m, the sender costlessly sends an arbi-
trary message to the receiver. The receiver observes the message and takes
an action y ∈ R. The payoffs of the sender and the receiver are US(y,m) and
UR(y,m) respectively. The payoff functions are twice continuously differen-
tiable, and each function is strictly concave in y (U i

11 < 0, i = S,R) and has a
unique maximizer for each m denoted by yi(m), i = S,R. It is assumed that
the ideal points of the sender and the receiver are distinct; yS(m) ̸= yR(m)
for all m. Moreover, U i

12 > 0, i = S,R.
An partition equilibrium is defined to be a perfect Bayesian equilibrium,

where (i) the state space [0, 1] is partitioned intoN intervals [0, a1], [a1, a2], ...[aN−1, 1]
and (ii) the sender reveals to the receiver which interval contains the realized
state m. Lemma 1 of the paper correctly establilshes that (i) any equilibrium
is a partition equilibrim and (ii) the size of partition N is bounded. After
Lemma 1, the paper presents Theorem 1, and its main contents are summa-
rized as follows. Let ȳ(a, a′) be the receiver’s optimal action when she knows
that m lies in [a, a′].

Theorem 1’ [1] Partition [0, a1], [a1, a2], ...[aN−1, 1] consititutes a partition
equilibrium if and only if

US(ȳ(ai−1, ai), ai) = US(ȳ(ai, ai+1), ai) (i = 1, 2, · · · , N − 1), (A)

a0 = 0, ((11) in the paper) and

aN = 1. ((12) in the paper)

[2] There exists an integer N(b) > 0 such that a partition equilibrium of every
size from one to N(b) exists.
[3] Any equilibrium is equivalent to one in this class.
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Condition (A) is the key to characterize the equilibrium and it is called the
arbitrage condition. It states that the sender who is just on the boundary
of [ai−1, ai] and [ai, ai+1] (i.e., the sender who knows m = ai) is indifferent
between reporting that m is in [ai−1, ai] and in [ai, ai+1]. Note that (A)
defines a second order difference equation.

Parts [1] and [3] are correctly proved (the last paragraph of page 1438
and onwards).1 We found, however, the proof of part [2] depends on incorrect
assertions. They define, on page 1438

K(a) := max{i| (A) has a solution 0 = a0 < a1 = a < · · · < ai ≤ 1}
and argue that the following is true.

If K(a1) = N and K(a) is discontinuous at a = a1, then a satisfies
(11) and (12). 2 (*)

This is a key step to prove statement [2] in their proof. However, we found
that this statement can fail when yS(m) < yR(m). More precisely, we found
that condition (12) aN = 1 can fail at the point of discontinuity.

The basic intuition is as follows. The proof correctly observes that, when
there is a solution 0 = a0 < a1 < · · · < aN < 1, in the neighborhood of this
solution the terminal point aN varies continuously with respect to the choice
of a1 (note that the second order difference equation (A) is being solved with
given initial conditions 0 = a0 < a1). The above assertion basically states
that, by a suitable choice of a1, the terminal point aN can hit 1, and at
this point a solution with the given length (N + 1) disappears (this is the
discontinuous point of K(a) in (*)). However, this claim is not warranted
because as we vary a1, the penultimate point aN−1 can possibly hit aN before
the latter reaches 1, and at this point (A) can cease to have a solution with
the given length (N + 1). Indeed, we provide a counter-example in the next
section in which this happens. Because of this property, the following main
implication of the above assertion to prove [2] also fails in our example;

(A) has a solution 0 = a′0 < a′1 < · · · < a′n = 1 for any 1 ≤ n ≤
N(b),

(**)

1A minor comment to [1]: Partition equilibrium with size 1, 0 = a0 < a1 = 1, does not
satisfy (A) because (A) is a second order difference equation and it should be defined on
(a0, a1, a2) (here, a2 does not exist). This is a minor semantic issue that does not cause
any difficulty in the proof. This statement can be interpreted as the fact that the model
always has the 1-partition equilibrium where no information is transmitted.

2Page 1438, the fourth line from the bottom. The last part of this sentence should be
read as “a1 satisfies (11) and (12).”.
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where N(b) := supa∈(0,1]K(a).
In the end, we will show that those assertions in the proof are in fact

correct provided that yR(m) < yS(m), and we provide a correct version of
the proof for statement [2] (the first part of Section 3). Then we go on to
show how to prove statement [2] when yR(m) < yS(m) is not satisfied.

2 A Counter-Example

The following example shows that the statements (*) and (**) can fail when
yS(m) < yR(m). In this example, (A) has a solution 0 = a′0 < a′1 < a′2 < 1
but it fails to have another solution 0 = a′′0 < a′′1 < a′′2 = 1, This shows
that their statement (*) in the previous section is not true, basically be-
cause in this example condition (12) aN = 1 can never be satisfied. Ex-
act proof that this example violates (*) is given at the end of this section.
Their assertion (**) in the previous section also fails, because in this example
N(b) := supa∈(0,1]K(a) ≥ 2.

Let us describe our example. The sender’s utility is

US(y,m) = −y2 + h(m)y − 1

10
,

where h(·) is strictly increasing and satisfies h(m) = 2m− 1
10

if m ≤ 2
5
, and

if m ≥ 2
5
, h(m) only slightly increases from h(2

5
) = 7

10
. More precisely,

h(m)− 7

10
< ε if m ≥ 2

5
.

for some small ε > 0. We choose h in such a way that it is twice con-
tinuously differentiable. Obviously, such a function h exists. All the as-
sumptions in the paper are satisfied; US

11 < 0, US
12 > 0, and US is twice

continuously differentiable. We assume m is uniformly distributed over [0, 1]
and UR(y,m) = −(y −m)2.

First we show that the ideal points of the sender and the receiver are
distinct; yS(m) ̸= yR(m) for all m. The first order condition 0 = US

1 =

−2y + h(m) shows yS(m) = h(m)
2

. Therefore, if m ≤ 2
5
,

yS(m) = m− 1

20
< m = yR(m).
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If m > 2
5
, h(m)

2
< 7

2×10
+ ε

2
, and therefore, if ε is small enough,

yS(m) <
7

20
+

ε

2
<

2

5
< m = yR(m).

Thus we conclude that yS(m) < yR(m) for all m.
Next, we show that (A) has a solution 0 = a′0 < a′1 = 2

5
< a′2 = 3

5
< 1.

When the state of nature is m = a = 2
5
, the sender’s payoff is factorized as

US

(
y,

2

5

)
= −y2 +

7

10
y − 1

10
= −

(
y − 1

5

)(
y − 1

2

)
.

Note that 1
5
is the receiver’s best reply when she knows m ∈ [0, 2

5
] (denoted

ȳ(0, 2
5
)) and that 1

2
is the receiver’s best reply when she knows m ∈ [2

5
, 3
5
]

(denoted ȳ(2
5
, 3
5
)). Hence, the above expression shows that (A) is satisfied

with a0 = 0, a1 =
2
5
, a2 =

3
5
(both sides of the equation (A) is zero).

We now show that (A) fails to have another solution 0 = a′′0 < a′′1 < a′′2 =
1. In particular, we show that the associated condition (A)

US(ȳ(0, a1), a1) = US(ȳ(a1, 1), a1)

cannot be satisfied with any a = a1. In a 2-partition equilibrium, the
state space [0, 1] is partitioned into [0, a] and [a, 1], and the receiver chooses
ȳ(0, a) = a

2
in the former and ȳ(a, 1) = a+1

2
in the latter. Therefore, the

above condition boils down to

g(a) := US
(a
2
, a
)
− US

(
a+ 1

2
, a

)
= 0. (1)

Our functional form of US implies

g(a) =

(
−a2

4
+ h(a)

a

2
− 1

10

)
−
(
−a2 + 2a+ 1

4
+ h(a)

a+ 1

2
− 1

10

)
=

1

4
+

1

2
a− 1

2
h(a).

By plugging in the functional form of h, we obtain

g(a) =
3

10
− 1

2
a if a ≤ 2

5
,
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which is strictly positive (it is minimized g(2
5
) = 1

10
> 0). For a > 2

5
, we have

g(a) >
1

4
+

1

2
a− 1

2

(
ε+

7

10

)
=

1

2
a− 1

10
− ε

2

>
1

2
· 2
5
− 1

10
− ε

2

=
1

10
− ε

2
> 0,

for small enough ε. We conclude that g(a) > 0 for all a and therefore there
is no a ∈ [0, 1] that satisfies the required condition g(a) = 0 (condition (1)).
Hence, there is no sequence 0 = a′′0 < a′′1 < a′′2 = 1 that satisfies (A).

What happens in this example is that, as we vary a1, the solution to
(A) has the property that the penultimate point a1 can hits the terminal
point a2 before the latter reaches 1, and at that point (A) ceases to have a
solution with length three (0 = a0, a1, a2). This happens at a1 = a∗ such that
(a0, a1, a2) = (0, a∗, a∗), and the existence of a∗ ∈ (2

5
, 1) is demonstrated as

follows. a∗ is a solution to

US(ȳ(0, a), a) = US(ȳ(a, a), a).

Since we consider positive solutions, our definition of US induces that this
equation is equivalent to

h(a) =
3

2
a.

Consider the following continuous function

ϕ(a) := h(a)− 3

2
a.

Note that ϕ is strictly decreasing in (2
5
, 1) because h′(a) is almost zero if ε is

small enough, and therefore ϕ′(a) = h′(a)− 3
2
< 0. The property of h implies

ϕ

(
2

5

)
= h

(
2

5

)
− 3

2
· 2
5
=

7

10
− 3

5
> 0,

and for small ε

ϕ(1) = h(1)− 3

2
· 1 <

7

10
+ ε− 3

2
< 0.
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Therefore, there exists a∗ ∈ (2
5
, 1) such that ϕ(a∗) = 0, equivalently

US(ȳ(0, a∗), a∗) = US(ȳ(a∗, a∗), a∗).

Indeed, a∗ is a counter-example of (*). To show this, we confirm

K(a∗) = 1, (i)

K is discontinuous at a = a∗, (ii)

a∗ ̸= 1 ((12) does not hold). (iii)

Firstly, to prove (i) we show that there is no a′ ∈ (a∗, 1) such that

US(ȳ(0, a∗), a∗) = US(ȳ(a∗, a′), a∗).

Computing this equation, we obtain

a′ = 2(h(a∗)− a∗).

Recall that 0 = ϕ(a∗) = h(a∗)− 3
2
a∗. Then the above condition is written as

a′ = a∗.

This is not compatible with the assumption that a′ lies in (a∗, 1). This fact
implies that there is no solution to (A) with the initial condition (0 = a0, a

∗)
with the length three or more. Hence, (i) holds.

To show (ii), we prove the following claim:

for all a ∈
(
2

5
, a∗

)
, K(a) ≥ 2.

Take a ∈ (2
5
, a∗) and solve

US(ȳ(0, a), a) = US(ȳ(a, a′), a).

As we have seen above, we obtain a′ = 2(h(a) − a). Now we show that
a′ ∈ (a, 1). From the strict monotonicity of ϕ,

a′ − a = 2h(a)− 3a = 2ϕ(a) > 2ϕ(a∗) = 0,

and for small ε,

1− a′ = 1− 2h(a) + 2a > 1− 2h(a) + 2 · 2
5
=

9

5
− 2h(a) >

9

5
− 7

5
− 2ε > 0

holds. Therefore, 0 < a < a′(< 1) is a solution to (A), and consequently,

lim inf
a→a∗−0

K(a) ≥ 2 > 1 = K(a∗),

which implies (ii).
(iii) is obviously true, so that a∗ does not satisfy what (*) states.
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3 Corrections to the Proof

Given the correct statements [1] in Theorem 1’ and Lemma 1 in the paper
(which shows that there is the maximum size N(b) of partition equilibria),
it is clear that statement [2] of Theorem 1’ is equvalent to the following.

Claim 1. If the second order difference equation (A) has a solution 0 = a′0 <
a′1 < · · · < a′N = 1, then for any integer 2 ≤ n ≤ N , it has another solution
0 = a′′0 < a′′1 < · · · < a

′′
n = 1.

In this section, we directly prove this Claim to supply the correct proof
of statement [2]. Obviously, the above claim is true if the following holds:

For for any integer n ≥ 2, if the second order difference equation
(A) has a solution 0 = a′0 < a′1 < · · · < a′n < 1, it has another
solution 0 = a′′0 < a′′1 < · · · < a

′′
n = 1.

(#)

Vincent Crawford and Joel Sobel (1982) basically tried to prove statement
[2] of Theorem 1’ by the above assertion, but our counter-example shows that
it is not valid if yR(m) > yS(m). We first show that this assertion is in fact
true provided that yR(m) < yS(m).3 Then we go on to show that Claim 1
also holds when yR(m) < yS(m) is not satisfied.

The following Lemma is the key to prove Claim 1, and it requires yR(m) <
yS(m). This lemma guarantees that, as we vary a1, an never hits an+1 before
the latter reaches 1,

Lemma 1. Suppose that yS(m) > yR(m) for all m ∈ [0, 1]. Then, there
exists ε > 0 such that for any partial partition (a0, · · · , aN) satisfying (A),

an+1 − an > ε (n = 1, · · · , N − 1).

Remark 1. The original proof correctly observes a similar property an+2 −
an > ε for some ε > 0, which holds under the general assumption yS(m) ̸=
yR(m) for all m, but this is not enough to prove (#), as our counter-example
shows.

3This implies that K(a) jumps down by 1 and condition (12) is satisfied at any discon-
tinuity point, as asserted in the proof of the paper. Hence their statements in the proof
are correct when yR(m) < yS(m). Since it is possible to prove Claim 1 directly without
introducing function K(a), we chose this simpler way to provide a correct version of the
proof, rather than closely following their original argument that is given in terms of the
properties of function K(a).
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Proof. Since yS and yR are strictly increasing, their inverses are well-defined
and continuous on compact domain [yS(0), yR(1)]. Therefore, miny(y

R−1
(y)−

yS
−1
(y)) exists, and it is strictly positive because yS(m) > yR(m). We denote

this by ε. The arbitrage condition (A) states that the sender who knows
m = an has identical payoff at ȳ(an−1, an) and ȳ(an, an+1), and the concavity
of the payoff implies that the peak of the payoff, which is achieved by yS(an),
is in between those points;

ȳ(an−1, an) < yS(an) < ȳ(an, an+1).

Moreover, the monotonicity of ȳ also induces

ȳ(an, an+1) < ȳ(an+1, an+1) = yR(an+1).

Thus we have obtained
yS(an) < yR(an+1).

From the definition of ε and the monotonicity of yR
−1
,

ε ≤ yR
−1
(yS(an))−yS

−1
(yS(an)) < yR

−1
(yR(an+1))−yS

−1
(yS(an)) = an+1−an.

Remark 2. This inequality does not necessarily hold for n = 0 (i.e., it is not
necessarily true that a1−a0 > ε) because a0 and a1 are the initial conditions
for the second order difference equation (A) and therefore a0 < a1 can be
chosen arbitrarily.

Next we show the following lemma to formally prove the continuity of the
solution to (A) with respect to the initial conditions.

Lemma 2. Let g(x, y) be a continuous function defined on W ⊂ R2 such
that, for each x, g(x, y) is stictly decreasing in y. If g(x′, y′) = 0, then
there exsit an open neighborhood of x′ denoted V ⊂ {x| (x, y) ∈ W} and a
continuous function ϕ : V → R such that ϕ(x′) = y′ and g(x, ϕ(x)) = 0 for
all x ∈ V .

Remark 3. This is a slight generalization of the implicit function theorem,
where the assumption ∂g/∂y ̸= 0 in the implicit function theorem is replaced
with g being strictly decreasing in y. The proof relies on the intermediate
value theorem. If we employ an additional assumption that the probability
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density function f(m) is continuous (Vincent Crawford and Joel Sobel (1982)
did not assume this), in what follows we can just use the standard implicit
function theorem instead of this lemma because the continuity of f implies
the differentiability of ȳ.

Proof. For any given ε > 0, choose y and y such that (i) y < y0 < y,
(ii) (x0, y) ∈ W and (x0, y) ∈ W , and (iii) y − y < ε. Since g is strictly
decreasing in y, we obtain g(x0, y) > 0 and g(x0, y) < 0. Continuity of g
implies that there is δ > 0 such that |x1 − x0| < δ ⇒ g(x1, y) > 0 and
g(x1, y) < 0. Continuity of g in y and the intermediate value theorem imples
that, when |x1 − x0| < δ, there is y1 ∈ (y, y) such that g(x1, y1) = 0. Given
that g is strictly decreasing in y, y1 is unique for any given x1. Choose any
pair of ε and δ in the above statement and denote the pair by (ε, δ). The
above argument shows that, for V = {x1| |x1 − x0| < δ}, there is a unique
function ϕ : V → R that satisfy ϕ(x0) = y0 and g(x1, ϕ(x1)) = 0 for all
x1 ∈ V , where ϕ(x1) is equal to y1 in the above argument. Furthermore, ϕ is
continuous at x0 because for any ε > 0, there is δ > 0 such that |x1 − x0| <
δ ⇒ |ϕ(x1) − ϕ(x0)| = |y1 − y0| < ε. The last inequality holds because
y0, y1 ∈ (y, y) and y − y < ε. Applying the same argument for any x ∈ V
shows that ϕ is continuous on V .

Next, recall that y(a, b) is the maximizer of F (a, b, y) :=
∫ b

a
UR(y,m)f(m)dm.

Since F is continuous and strictly concave in y, Berge’s maximum theorem
shows that y(a, b) is continuous. Inspection of the first order condition shows
that y(a, b) is strictly increasing in a and b.

Now we are ready to formally prove the continuity of the solution of (A)
with respect to the initial conditions, which was rather informally alluded
in the proof of Theorem 1 in Vincent Crawford and Joel Sobel (1982). This
lemma is proved by repeated applications of Lemma 2.

Lemma 3. If the second order difference equation (A) has a solution 0 =
a′0 < a′1 < · · · < a′n < 1, then there exist

V : an open neighborhood of a′1 and

continuous ϕi : V → R (i = 2, · · · , n)

such that
ϕi(a

′
1) = a′i
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for all i, and
(0, a1, ϕ2(a1), · · · , ϕn(a1)) satisfies (A)

for all a1 ∈ V.

Proof. We employ induction on i = 2, · · · , n. First we prove the induc-
tion part: if there are continuous functions ϕi−2(a1) and ϕi−1(a1) such that
ϕi−2(a

′
1) = a′i−2 and ϕi−1(a

′
1) = a′i−1 defined on an open set Vi−1, then there is

a continuous function ϕi(a1) defined on an open neighborhood of a′1 denoted
by Vi ⊂ Vi−1 such that ϕi(a

′
1) = a′i and (ϕi−2(a1), ϕi−1(a1), ϕi(a1)) satisfies

(A) for all a1 ∈ Vi.
Proof of the induction part: Define

g(a1, ai) := US
(
y(ϕi−2(a1), ϕi−1(a1)), ϕi−1(a1)

)
−US

(
y(ϕi−i(a1), ai), ϕi−1(a1)

)
.

Note that g is continuous. Furthermore, since a′l−2, a
′
l−1 and a′l satisfy (A),

g(a′1, a
′
i) := US

(
y(a′i−2, a

′
i−1), a

′
i−1

)
− US

(
y(a′i−1, a

′
i), a

′
i−1

)
= 0.

This implies that the peak of strictly concave function US(·, a′i−1) lies in in-
terval [y(a′i−2, a

′
i−1), y(a

′
i−1, a

′
i)] and therefore US

1

(
y(a′i−1, a

′
i), a

′
i−1

)
< 0 (recall

US
1 = ∂US/∂y). Continuity of US

1 and the fact that y(ai−1, ai) is continuous
and strictly increasing in ai imply that there is a small enough open neighbor-
hood of (a′1, a

′
i) denoted W ⊂ Vi−1×R such that US

(
y(ϕi−i(a1), ai), ϕi−1(a1)

)
is strictly decreasing in ai (and therefore so is g(a1, ai)) on W . Hence all the
assumptions in Lemma 2 are satisfied (if g is viewed as a function defined on
W ) and the conclusion of the induction part holds.

Next, observe that ϕ0(a1) ≡ 0 and ϕ1(a1) = a1 are continuous and defined
on V1 := R. This shows that the premise of the induction part is true
for i = 2. Thererfore, the conclusion of the induction part holds for all
i = 2, · · · , n, and the lemma follows for V = Vn.

Now we are ready to state our key result.

Theorem 1. Statement (#) and therefore Claim 1 hold if yS(m) > yR(m)
for all m.

Proof. Assume that (A) has a solution 0 = a′0 < a′1 < · · · < a′n < 1. Let

D := {a1 ∈ (0, 1) : there exists 0 < a1 < · · · < an ≤ 1 satisfying (A)}.
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Our assumption implies that D is not empty. Let a′′1 := supD. Then, there

exists a sequence in D converging to a′′1. We denote this by {a(i)1 }i∈N. Also,
we denote the solution to (A) associated with a

(i)
1 by (0, a

(i)
1 , a

(i)
2 , · · · , a(i)n ).

Since the sequence {(a(i)1 , a
(i)
2 , · · · , a(i)n )}i∈N lies in a compact set [0, 1]n, there

exists a convergent subsequence {(a(ik)1 , a
(ik)
2 , · · · , a(ik)n )}k∈N that converges to

a certain point (a′′1, a
′′
2, · · · , a′′n). By definition, the subsequence satisfies (A);

US(ȳ(a
(ik)
l−1 , a

(ik)
l ), a

(ik)
l ) = US(ȳ(a

(ik)
l , a

(ik)
l+1), a

(ik)
l ).

By letting k → ∞, we get

US(ȳ(a′′l−1, a
′′
l ), a

′′
l ) = US(ȳ(a′′l , a

′′
l+1), a

′′

l )

beaches US and ȳ are continuous. Therefore, (0 = a
′′
0 , a

′′
1 , · · · , a

′′
n) satisfies

(A). Our assumption 0 < a1 and a1 ∈ D imply a
′′
1 > 0 because a

′′
1 = supD ≥

a1 > 0. In addition, Lemma 1 shows that a
′′
1 , a

′′
2 , · · · , a

′′
n are all distinct. Thus,

we have obtained 0 = a
′′
0 < a

′′
1 < a

′′
2 < · · · < a

′′
n that satisfies (A). Lastly, we

show a
′′
n = 1. If not, Lemma 3 shows that there exists an open neighborhood

V of a
′′
1 such that each a01 ∈ V (in particular, some a01 > a

′′
1) lies in D. This

contradicts the fact that a
′′
1 = supD. Therefore, (A) has another solution

0 = a′′0 < a
′′
1 < · · · < a

′′
n = 1.

The above result implies that Theorem 1 in the paper holds when yS(m) >
yR(m) for allm. Now we show that Claim 1 and therefore Theorem 1 are also
true in general. When the reverse inequality yS(m) < yR(m) holds for all m,
we can employ the symmetric argument by solving the second order difference
equation (A) “from the top” with the initial conditions aN−1 < aN = 1 to
prove Theorem 1. Namely, the symmetric argument shows the following
sufficient condition to prove Claim 1 when yS(m) < yR(m);

For any integer n ≥ 2, if the second order difference equation (A)
has a solution 0 < a′1 < · · · < a′n−1 < a′n = 1 it has another solution
0 = a′′1 < · · · < a′′n−1 < a

′′
n = 1.

(##)

Lastly, we note that there is no other cases under the maintained assumption
yS(m) ̸= yR(m) for all m. This is because if there are m′ and m′′ such that
yS(m′) > yR(m′) and yS(m′′) < yR(m′′), then the continuity of yS(·) and
yR(·) imply that there is m0 such that yS(m0) = yR(m0), which contradicts
the maintained assumption. Hence, we have shown that statement [2] of
Theorem 1’ and therefore Theorem 1 in Vincent Crawford and Joel Sobel
(1982) are true.
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