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Abstract 
 

We investigate the general mechanism design problems in which agents take ex-ante hidden 
actions (or investments) that influence state distribution. We show that the variety of action choices 
drastically shrinks the set of mechanisms that induce targeted actions in the sense that there is a 
one-to-one tradeoff between the dimensionality of action space and that of payment rules with 
which the targeted action profile is taken in an equilibrium. This result comprehends the 
observations made by previous works. When agents can take unilateral deviations to change the 
state distribution in various directions, we have equivalence properties with respect to ex-post 
payoffs, payments, and revenues. In particular, the pure-VCG mechanism, the simplest form of the 
canonical VCG mechanism, becomes the only mechanism that induces an efficient action profile. 
Contrarily, the popular pivot mechanism generically fails to induce efficient actions, even when 
the action space is one-dimensional. 
 
Keywords: hidden action, hidden information, VCG-necessity, equivalence 
 
JEL Classification: C72, D44, D82, D86 

 
1 This paper supersedes “Mechanism Design in Hidden Action and Hidden Information: Richness and Pure-
VCG.” 
2* Corresponding author. Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-
0033, Japan; hitoshi[at]e.u-tokyo.ac.jp. 
3 Vancouver School of Economics, University of British Columbia, 6000 Iona Dr, Vancouver, BC, V6T 1L4, 
Canada; shunya.noda[at]gmail.com. 



2 
 

1. Introduction 

The larger the action space, the more serious the hidden action problem. Large action spaces 

restrict the set of mechanisms/contracts that successfully incentivize agents to take targeted actions. 

Such restrictions on mechanisms may make it impossible to (i) solve other problems the 

mechanism designer faces (e.g., hidden information, participation constraints) or (ii) satisfy the 

properties demanded for the mechanism (e.g., efficiency, non-negative revenue). To identify a 

mechanism that satisfies all of the required properties at the same time, we need to characterize 

the relationship between the largeness of an action space and the smallness of a set of mechanisms 

that induce targeted actions. 

 This paper studies a general class of mechanism design problem in which a hidden action 

problem and hidden information problem coexist. Agents initially take general ex-ante actions/ 

investments, which determines the probability distribution over the state of the world. Once the 

state is realized, the mechanism (which the central planner commits beforehand) determines the 

allocation and payment in a state-contingent manner. Neither actions nor states (agents’ private 

types) are assumed to be observable. Hence, the central planner must carefully design a mechanism 

to (i) induce the targeted action profile to generate a targeted state distribution (i.e., the targeted 

action profile comprises a Nash equilibrium of the game implied by the mechanism), and (ii) 

incentivize the truthful reporting of agents’ private types so as to implement the targeted allocation 

rule. 

 Many mechanism design problems, such as principal–agent problems, partnerships, auctions, 

and public good provision, have such a structure. Practically, agents in such problems often have 

opportunities to take ex ante actions, such as information acquisition, R&D investment, patent 

control, standardization, M&A, rent-seeking, positive/negative campaigns, product differentiation, 

entry/exit decisions, preparation of infrastructure, and headhunting. Each of these actions 

influences the state of the world in a different way. Furthermore, participants might be able to take 

multiple kinds of actions. To study these problems comprehensively, we consider a very general 

class of action spaces. 

 Our focus is on the relationship between the largeness of the action space and the smallness 

of the set of mechanisms that induce a targeted action profile. The largeness of an action space can 

be measured by the dimensionality of the set of state distributions generated from unilateral 
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deviations. The smallness of a set of mechanisms can be measured by the dimensionality of 

payment rules with which the targeted action profile is induced (given a targeted allocation rule). 

We characterize the relationship between these two, which we then use to comprehend a variety 

of issues related to the hidden action and information problems. 

The main characterization theorem in this study articulates the one-to-one tradeoff between 

the dimensionality of action space and that of the set of well-behaved mechanisms. We show that, 

as the dimensionality of action space increments by one, the upper-bound of the dimensionality of 

the set of payment rules inducing the targeted action profile decrements by one (Theorem 1). This 

bound is tight with additional assumptions, with which the global optimality of action choices is 

implied by the local optimality (Theorem 2). Theorems 1 and 2 indicate that, even when a 

mechanism induces a targeted action profile with an action space, once there arises an additional, 

different kind of actions, the mechanism generically fails to induce the same actions. 

As Theorems 1 and 2 imply, the presence of hidden actions imposes a severe restriction on 

the design of desirable mechanisms. As corollaries, we complement a number of previous results 

related to hidden action and information problems. 

First, we show that the popular pivot mechanism (due to Green and Laffont, 1979), which 

aligns an agent’s payoff with his marginal contribution to social welfare, generically fails to induce 

efficient actions (Proposition 2). Intuitively, this is because each agent is tempted to weaken other 

agents to exaggerate his marginal contribution. This generalizes Krähmer and Strausz’s (2007) 

observation, which is made for the case of one-dimensional investment space. 

We also derive a uniqueness theorem for the case of large action spaces. As the dimensionality 

of the action space increases, the dimensionality of the set of desirable payment rules decreases. 

In an extreme case, each agent can unilaterally change the state distribution in full-dimensional 

directions. We say the action space is rich in such a case. Krähmer and Strausz (2007) and Athey 

and Segal (2013) prove that, unlike the pivot mechanism, the pure-VCG mechanism always 

induces an efficient action profile. The pure-VCG mechanism is the simplest form of canonical 

Vickrey–Clarke–Groves (VCG) mechanisms,4 which gives each agent the welfare of the other 

agents and then imposes a fixed monetary fee. We newly show the necessity of pure-VCG in that 

any mechanism other than pure-VCG fails to induce an efficient action profile if the action space 

 
4 Vickrey (1961), Clarke (1971), and Groves (1973). 



4 
 

is sufficiently large. Accordingly, when the action space is rich, pure-VCG is the unique 

mechanism inducing an efficient action profile (Theorem 4). 

We further obtain a full characterization theorem for general targeted actions. If an action 

space is rich, the set of mechanisms that induce an efficient action profile becomes one-

dimensional: such mechanisms are unique up to constants (Theorem 3). Therefore, if the planner 

desires to induce a targeted action, there will be no degree of freedom for designing a payment 

rule to incentivize truthful reporting. This is a new notion of the “revenue-equivalence principle,” 

which extends Theorem 3 of Holmström and Milgrom (1987) (proven for a principal–agent 

problem) to a general mechanism design problem. 

 Finally, we also study an environment that have independent types: the influence of each 

agent’s action is restricted to his own private type distribution. Even in such a case, the variety of 

actions restricts the set of mechanisms that solve the hidden action problem. Parallel to Theorem 

3, assuming a large action space, we derive a characterization theorem—all payment rules that 

induce a targeted action profile are interim equivalent, rather than ex-post (Theorem 5). In 

particular, a mechanism induces an efficient action profile if and only if it is the expectation-VCG 

mechanism: each agent’s expected payment is equal to that from a VCG mechanism (Theorem 6).5 

Our theorems complement the observations made by Rogerson (1992), Bergemann and Välimäki 

(2002) and Hatfield, Kojima, and Kominers (2015). For further detail, we direct the reader to 

Section 7. 

The rest of the manuscript is structured as follows. Section 2 describes the model. Section 3 

reviews the literature. Section 4 studies the hidden action problem. Section 5 analyzes the hidden 

information problem. Section 6 studies an efficient mechanism design. Section 7 considers the 

case without externality and compares the result with those of previous works. Section 8 concludes 

the paper. 

 
5

 Matthews (1984), Hausch and Li (1991), and Tan (1992) show that the first- and second-price auctions provide 
each agent with the same incentive in hidden action in symmetric environments, in which the first-price auction 
is an indirect implementation of an expectation-VCG mechanism and the second-price auction is equivalent to 
the pivot mechanism. Tan (1992), Stegeman (1996), and Arozamena and Cantillon (2004) also show that, with 
private values, the second-price auction (the pivot mechanism) induces an efficient hidden action. This study 
provides a comprehensive understanding of all such previous works. 
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2. Literature Review 

Some papers have demonstrated the desirability of simple contracts in complex environments. 

Holmström and Milgrom (1987), for instance, study the moral hazard problem with a principal–

agent model. They show that when an agent’s action space is sufficiently large, there is a unique 

contract inducing the targeted effort level. Carroll (2014) proves that when the principal faces 

ambiguity about the range of activities, the optimal robust contract must be linear with respect to 

the resultant output. This paper studies a general class of mechanism design problem, of which the 

principal–agent model is a special case. For such an environment, we show that pure-VCG, which 

is the simplest form of the VCG mechanism, is a unique fully efficient mechanism when the action 

space is sufficiently large (i.e., it satisfies the richness condition). 

 The literature has also shown that, when the scope of action spaces is sufficiently limited, we 

can design efficient incentive mechanisms by tailoring the payment rule to detailed specifications. 

We can even achieve either full surplus extraction or budget balance (e.g., Matsushima, 1989; 

Legros and Matsushima, 1991; Williams and Radner, 1995; Obara, 2008). However, when agents 

can take various actions, a mechanism’s dependence on the detail tempts each agent to deviate. We 

study not only the case with extremely large or extremely small action spaces but also intermediate 

ones. Our Theorem 1 implies that even if agents can only take a few kinds of actions, the set of 

mechanisms inducing targeted actions shrinks drastically. 

 It is well-known that when the state space is “large,” the set of incentive compatible 

mechanism becomes “small.” Green and Laffont (1977, 1979) and Holmström (1979) show that, 

in hidden information environments with differentiable valuation functions, differentiable path-

connectedness, and private values, VCG mechanisms are the only efficient mechanisms. This study 

reconsiders VCG mechanisms from the viewpoint of the hidden action problems and shows that 

only pure-VCG mechanisms, which are special cases of VCG, can induce an efficient action 

profile. 6  In this sense, our characterization theorem is a new version of the VCG-necessity 

 
6 Hausch and Li (1993) and Persico (2000) are relevant to this point. They demonstrate that first- and second-
price auctions provide different incentives for information acquisition that make the other agents’ valuation more 
accurate. Taking the mechanism design approach rather than comparing special auction formats, we explain that 
the difference in the induced action profile originates from the difference in ex-post payoffs between these 
auction formats. 
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theorem. Importantly, our equivalence theorems rely on assumptions that are completely different 

from Green and Laffont (1977, 1979) and Holmström (1979). 

3. Model 

Consider a setting with one central planner and 𝑛 agents indexed by 𝑖 ∈ 𝑁 = {1,2, . . . , 𝑛}. The 

central planner commits to a mechanism at the beginning. Observing the committed mechanism, 

agents choose ex-ante actions that determine the state distribution. After observing the realized 

private types, agents participate in the mechanism and report their private types. To be more precise, 

the “game” proceeds as follows. 

 

Stage 1: The central planner commits to a mechanism defined as (𝑔, 𝑥), where Ω denotes the set 

of states, 𝐴 denotes the set of allocations, 𝑔: Ω → 𝐴, and 𝑥 ≡ (𝑥௜)௜∈ே : Ω → 𝑅௡. We assume that 

Ω and 𝐴 are finite. We call 𝑔 and 𝑥 the allocation rule and payment rule, respectively.7 

 

 For each 𝑖 ∈ 𝑁, we call a pair of an allocation rule and a payment rule for agent 𝑖 (i.e., 

(𝑔, 𝑥௜)) a mechanism for agent 𝑖. Slightly abusing notation, 𝑥௜ is sometimes regarded as a |Ω|-

dimensional vector (i.e., 𝑥௜ = (𝑥௜(1), . . . , 𝑥௜(|Ω|)) ∈ 𝑅|ஐ| ). We also denote 𝑥 = (𝑥ଵ, . . . , 𝑥௡) =

(𝑥௜(𝜔))௜∈ே,ఠ∈{ଵ,...,|ஐ|} ∈ 𝑅௡|ஐ|. 

 

Stage 2: Each agent 𝑖 ∈ 𝑁  selects a hidden action 𝑏௜ ∈ 𝐵௜ , where 𝐵௜  denotes the set of all 

actions for agent 𝑖. The cost function of agent 𝑖′𝑠 action choice is given by 𝑐௜ : 𝐵௜ → 𝑅ା. We 

assume that there is a no-effort option 𝑏௜
଴ ∈ 𝐵௜ such that 𝑐௜(𝑏௜

଴) = 0. Let 𝐵 ≡×௜∈ே 𝐵௜ and 𝑏 ≡

(𝑏ଵ, . . . , 𝑏௡) ∈ 𝐵. 

 

 
7 This study assumes that the central planner commits to the mechanism before agents take actions. Without the 
assumption of commitment, the desired outcomes, such as efficiency, may be unachievable due to time 
inconsistency. Consider a central planner who commits to a mechanism after the agents’ action choices. In this 
case, the central planner prefers the pivot mechanism because it yields greater revenue than the mechanism 
proposed in this study (the pure-VCG mechanism). However, the pivot mechanism typically fails to induce any 
efficient action profile (see Proposition 2). Anticipating that the use of a pivot mechanism, agents are willing to 
select inefficient actions. 
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Stage 3: The state 𝜔 = (𝜔଴, 𝜔ଵ, ⋯ , 𝜔௡) is randomly drawn from the probability function 𝑓(⋅

|𝑏) ∈ 𝛥(Ω), where 𝑏 ∈ 𝐵 is the action profile selected at stage 2. We call 𝜔଴ a public signal and 

𝜔௜ a type for each agent 𝑖 ∈ 𝑁. Let Ω଴ denote the set of all public signals and Ω௜ denote the set 

of all types of agent 𝑖. Let Ω ≡×௜∈ே∪{଴} Ω௜, and Ωି௜ ≡×ே∪{଴}∖{௜}. Agent 𝑖 observes her type 𝜔௜ 

and public signal 𝜔଴ but cannot observe 𝜔ି௜ at this stage. 

 

Stage 4: Each agent 𝑖 ∈ 𝑁 reports 𝜔෥௜ ∈ Ω௜ about her type. Afterward, all agents, as well as the 

central planner, observe the public signal 𝜔଴ . According to the profile of the agents’ reports 

𝜔෥ି଴ = (𝜔෥௜)௜∈ே and the observed public signal 𝜔଴, the central planner determines the allocation 

𝑔(𝜔଴, 𝜔෥ି଴) ∈ 𝐴 and the side payment vector 𝑥(𝜔଴, 𝜔෥ି଴) ∈ 𝑅௡. The resultant payoff of agent 𝑖 

is given by 

 𝑣௜(𝑔(𝜔଴, 𝜔෥ି଴), 𝜔) − 𝑥௜(𝜔଴, 𝜔෥ି଴) − 𝑐௜(𝑏௜). 

Here, we assume that each agent's payoff function is quasi-linear and risk-neutral, and the cost of 

the agent’s action choice is additively separable. 

 

 Figure 1 describes the timeline of the model. We will study the way to implement the targeted 

action profile and allocation rule, (𝑏, 𝑔). 

 

Remark 1: Without loss of generality, we can focus on the revelation mechanisms in which each 

agent reports only her type, because the central planner attempts to induce a pure action profile 

(see Proposition 1 in Obara, 2008 for the revelation principle with ex-ante actions).8 

 
8 Obara (2008) also argues that, if the central planner attempts to induce a mixed action profile, we need to 
consider mechanisms in which each agent reports not only her type but also her selection of pure action. In a 
model with finite action spaces, by carefully mixing agents’ actions, Obara (2008) generates a correlation 
between (𝑏௜ , 𝜔௜) and (𝑏ି௜ , 𝜔ି௜) and then applies the technique of Crémer and McLean (1985, 1988) to the 
incentives in revelations. However, the argument by Obara needs to make extremely large side payments and 
utilize very detailed knowledge about specifications. 
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4. Hidden Action 

This section focuses on incentives in the hidden action problem. Specifically, we assume that 

agents truthfully report the state 𝜔 = (𝜔଴, 𝜔ଵ, ⋯ , 𝜔௡)  in stage 4, and we characterize the 

mechanism that induces a targeted action profile. All of the results described in this section would 

be true even if the state were publicly observable.  

 

Definition 1 (Inducibility): A mechanism for agent 𝑖, (𝑔, 𝑥௜), is said to induce an action profile 

𝑏 ∈ 𝐵 for agent 𝑖 if 𝑏௜ is a best response to 𝑏ି௜, i.e., for all 𝑏௜
ᇱ ∈ 𝐵௜, 

 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜) ≥ 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] − 𝑐௜(𝑏௜

ᇱ), 

where 𝐸[⋅ |𝑏] denotes the expectation operator given that action profile 𝑏 is taken: for every 

function 𝜉 : Ω → 𝑅, 𝐸[𝜉(𝜔)|𝑏] is defined as follows: 

 𝐸[𝜉(𝜔)|𝑏] ≡ ෍ 𝜉(𝜔)𝑓(𝜔|𝑏).

ఠ∈ஐ

 

A mechanism (𝑔, 𝑥) induces an action profile 𝑏 if (𝑔, 𝑥௜) induces 𝑏 for every 𝑖 ∈ 𝑁, i.e., 𝑏 

is a Nash equilibrium of the game implied by the mechanism (𝑔, 𝑥).  

 

Define 𝑋௜(𝑏, 𝑔) as 

 
 

Figure 1: Timeline with Hidden Action and Hidden Information 



9 
 

 𝑋௜(𝑏, 𝑔) ≡ ൛𝑥෤௜ ∈ 𝑅|ஐ|: (𝑔, 𝑥෤௜) induces 𝑏 for 𝑖ൟ. 

In words, 𝑋௜(𝑏, 𝑔) denotes the set of all payment rules for agent 𝑖 that induce targeted action 

profile 𝑏 along with allocation rule 𝑔.  

𝑋௜(𝑏, 𝑔) ≠ ∅ if and only if there exists a function 𝑢௜ : Ω → 𝑅 such that 

 𝑏௜ ∈ argmax
௕೔

ᇲ∈஻೔

{𝐸[𝑢௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] − 𝑐௜(𝑏௜

ᇱ)} 

for all 𝑖 ∈ 𝑁. In such a case, 𝑥෤௜(𝜔) = 𝑣௜(𝑔(𝜔), 𝜔) − 𝑢௜(𝜔) satisfies 𝑥෤௜ ∈ 𝑋௜(𝑏, 𝑔). Accordingly, 

if the planner has an objective function and 𝑏  is an optimal solution, then 𝑋௜(𝑏, 𝑔)  is non-

empty.9 For example, if (𝑏, 𝑔) maximizes the social welfare (i.e., (𝑏, 𝑔) is fully efficient; see 

Section 6), then 𝑋௜(𝑏, 𝑔)  is always non-empty. Hereinafter we focus on (𝑏, 𝑔)  such that 

𝑋௜(𝑏, 𝑔) is non-empty for every 𝑖 ∈ 𝑁. 

 The dimension of a vector space 𝐿 ⊂ 𝑅௛, denoted by dim 𝐿, is defined as a cardinality of a 

basis of 𝐿. The dimension of a general set 𝐿ᇱ ⊂ 𝑅௛, denoted by dim 𝐿ᇱ, is defined as the minimal 

dimension of vector spaces containing 𝐿ᇱ. We regard dim 𝑋௜(𝑏, 𝑔) as a measure of the largeness 

of 𝑋௜(𝑏, 𝑔) ; i.e., the variety of payment rules 𝑥  such that the associated mechanisms (𝑔, 𝑥) 

induce the targeted action profile 𝑏. 

 To measure the availability of unilateral deviations, we introduce the following concept. 

 

Definition 2 (Deviation path): A mapping 𝛽௜ :[ − 1,1] → 𝐵௜  is said to be a deviation path of 

(𝑖, 𝑏) ∈ 𝑁 × 𝐵 if 

 

𝛽௜(0) = 𝑏௜, 

[𝛽௜(𝛼) = 𝛽௜(𝛼ᇱ)] ⇒ [𝛼 = 𝛼ᇱ], 

𝑐௜(𝛽௜(𝛼)) is differentiable in 𝛼 at 𝛼 = 0, 

and there exists a tangent of 𝛽௜ at 𝑏, which is denoted by 𝑡(𝛽௜) ∈ 𝑅|ஐ|, where 

 
9

 For example, 𝑋௜(𝑏, 𝑔) is empty if 𝑏௜  is “dominated”: there exists 𝑏௜
ᇱ ∈ 𝐵௜ such that 𝑓(⋅ |𝑏) = 𝑓(⋅ |𝑏௜

ᇱ, 𝑏ି௜) 
and 𝑐௜(𝑏௜

ᇱ) < 𝑐௜(𝑏௜). In such a case, as long as the other agents take 𝑏ି௜, for any payment rule 𝑥௜, agent 𝑖 does 
not take 𝑏௜; thus, it is impossible to induce 𝑏. However, if we assume that the planner maximizes her objective 
function (e.g., revenue or efficiency) through mechanism design, she has no reason to induce such actions. 
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 𝑡(𝛽௜) ≡ lim
ఈ→଴

𝑓(⋅ |𝛽௜(𝛼), 𝑏ି௜) − 𝑓(⋅ |𝑏)

𝛼
. 

 

 A deviation path is an ordered subset of the action space. Since each point on the deviation 

path is just an action, an agent can always make a local unilateral deviation “along with” the 

deviation path; i.e., to take 𝛽௜(𝛼) ∈ 𝐵௜ with 𝛼 ≠ 0. A mechanism (𝑔, 𝑥) induces 𝑏 only if it 

does not incentivize such a deviation. 

 Each deviation path can be interpreted as a class of actions. For example, if an agent can make 

two different classes of ex-ante actions, say, R&D investment and preemptive behavior, he can 

make a deviation in R&D investment and preemptive behavior, whichever they want. To induce a 

targeted action profile, the mechanism must discourage agents from taking a deviation in both of 

these two actions, simultaneously. In this sense, the set of mechanisms that successfully induce a 

targeted action in this case is an intersection of the set of mechanisms that prevent agents from 

taking a deviation (i) in R&D investment, and (ii) preemptive behavior. By considering deviations 

along with each deviation path, we analyze (i) and (ii), separately. 

Figure 2a illustrates an example of deviation path 𝛽௜. We assume |Ω| = 3, and the triangle 

represents the probability simplex Δ(Ω). The blue point represents 𝑓(⋅ |𝑏). Each point on the 

orange curve corresponds to a probability distribution that can be generated by agent 𝑖’s unilateral 

deviation along deviation path 𝛽௜. The tangent of 𝛽௜ at 𝑏, 𝑡(𝛽௜), is depicted as the green-dotted 

arrow. 

 
Figure 2: Deviation path. If 𝑧௜ is not perpendicular to 𝑡(𝛽௜), agent 𝑖 has an incentive to 
make a unilateral deviation along with 𝛽௜ (i.e., increase or decrease 𝛼 slightly). 
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 Fix an arbitrary payment rule for agent 𝑖, 𝑥௜ ∈ 𝑋௜(𝑏, 𝑔). We define 

 𝑍௜(𝑏, 𝑔, 𝑥௜) ≡ ൛𝑧௜ ∈ 𝑅|ஐ| : 𝑥௜ + 𝑧௜ ∈ 𝑋௜(𝑏, 𝑔)ൟ. 

Clearly, we have 

 dim 𝑋௜(𝑏, 𝑔) = dim 𝑍௜(𝑏, 𝑔, 𝑥௜). 

 Proposition 1 shows that each deviation path constrains 𝑍௜(𝑏, 𝑔, 𝑥௜)  (and 𝑋௜(𝑏, 𝑔) ) by 

imposing one equality constraint. 

 

Proposition 1: Suppose that (𝑔, 𝑥௜) induces 𝑏 for agent 𝑖 and there exists a deviation path 𝛽௜ 

of (𝑖, 𝑏) ∈ 𝑁 × 𝐵. Then, we have 𝑧௜ ∈ 𝑍௜(𝑏, 𝑔, 𝑥௜) only if 

(1) 𝑧௜ ⋅ 𝑡(𝛽௜) = 0. 

 

Proof: Consider an arbitrary 𝑧௜ ∈ 𝑍௜(𝑏, 𝑔, 𝑥௜) . Since (𝑔, 𝑥௜)  induces 𝑏  for agent 𝑖 , the 

following first-order condition is necessary for preventing agent 𝑖 from locally deviating along 

𝛽௜: 

(2) 
𝑑

𝑑𝛼
{𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝛽௜(𝛼), 𝑏ି௜] − 𝑐௜(𝛽௜(𝛼))}ฬ

ఈୀ଴
= 0. 

Similarly, (𝑔, 𝑥௜ + 𝑧௜) must satisfy the following first-order condition: 

(3) 
𝑑

𝑑𝛼
{𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔) − 𝑧௜(𝜔)|𝛽௜(𝛼), 𝑏ି௜] − 𝑐௜(𝛽௜(𝛼))}ฬ

ఈୀ଴
= 0. 

Subtracting (3) from (2), we obtain 

 
𝑑

𝑑𝛼
𝐸[𝑧௜(𝜔)|𝛽௜(𝛼), 𝑏ି௜]ฬ

ఈୀ଴
= 0, 

or equivalently, 𝑧௜ ⋅ 𝑡(𝛽௜) = 0. 

Q.E.D. 
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 Proposition 1 implies that a payment rule 𝑥෤௜  for agent 𝑖 is never included in 𝑋௜(𝑏, 𝑔) if 

the difference 𝑧௜ ≡ 𝑥෤௜ − 𝑥௜ is not perpendicular to the tangent of the deviation path 𝛽௜ (i.e., 𝑧௜ ⋅

𝑡(𝛽௜) ≠ 0). Since (𝑔, 𝑥௜) induces 𝑏, agent 𝑖 is (approximately) indifferent for local deviations 

along the deviation path 𝛽௜  in (𝑔, 𝑥௜) . If (𝑔, 𝑥௜ + 𝑧௜)  induces 𝑏 , agent 𝑖  must also be 

indifferent for local deviations along 𝛽௜ in (𝑔, 𝑥௜ + 𝑧௜). This implies that the expected value of 

𝑧௜ is (approximately) unchanged even if agent 𝑖 locally deviates. Figure 2b shows a case of 𝑧௜ ⋅

𝑡(𝛽௜) > 0 , where agent 𝑖  has an incentive to take 𝛼  slightly larger than zero. Accordingly, 

(𝑔, 𝑥௜ + 𝑧௜) fails to induce 𝑏. 

 In general, there exist multiple deviation paths whose tangents are linearly independent. In 

such a case, the equality condition (1) must be satisfied for all deviation paths. Accordingly, one 

deviation path decreases the upper-bound of the dimensionality of 𝑋௜(𝑏, 𝑔) by one as follows: 

 

Theorem 1: Suppose there exist 𝐾௜ deviation paths of (𝑖, 𝑏), denoted by 𝛽௜
ଵ, …, and 𝛽௜

௄೔, such 

that the respective tangents 𝑡(𝛽௜
ଵ), …, and 𝑡൫𝛽௜

௄೔൯ are linearly independent. Then, we have 

 dim 𝑋௜(𝑏, 𝑔) ≤ |Ω| − 𝐾௜ . 

 

Proof: Proposition 1 implies 

 𝑍௜(𝑏, 𝑔, 𝑥௜) ⊂ ൛𝑧௜ ∈ 𝑅|ஐ| : 𝑧௜⋅ 𝑡൫𝛽௜
௞൯ = 0 for all 𝑘 = 1,2, ⋯ , 𝐾௜ൟ. 

Hence, 

 dim 𝑍௜(𝑏, 𝑔, 𝑥௜) ≤ dim൛𝑧௜ ∈ 𝑅|ஐ| : 𝑧௜⋅ 𝑡൫𝛽௜
௞൯ = 0 for all 𝑘 = 1,2, ⋯ , 𝐾௜ൟ. 

Since 𝑡(𝛽௜
ଵ), …, and 𝑡(𝛽௜

௄೔) are linearly independent, 

 dim൛𝑧௜ ∈ 𝑅|ஐ| : 𝑧௜⋅ 𝑡൫𝛽௜
௞൯ = 0 for all 𝑘 = 1,2, ⋯ , 𝐾௜ൟ ≤ |Ω| − 𝐾௜. 

Therefore, 

 dim 𝑍௜ (𝑏, 𝑔, 𝑥௜) ≤ |Ω| − 𝐾௜. 
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Hence, we have dim 𝑋௜(𝑏, 𝑔) = dim 𝑍௜(𝑏, 𝑔, 𝑥௜) ≤ |Ω| − 𝐾௜ as desired. 

Q.E.D. 

 

 Theorem 1 only gives an upper-bound on the dimensionality of 𝑋௜(𝑏, 𝑔). This is because 

Proposition 1 and Theorem 1 only consider local deviations along with deviation paths. Agents 

may also make a deviation to a distant action, and this opportunity further constrains the set of 

payment rules that induce 𝑏. Consequently, dim 𝑋௜(𝑏, 𝑔) could be smaller than |Ω| − 𝐾௜. 

When local optimality of action choices implies global optimality, the number of deviation 

paths provides a tight characterization of the set of inducible mechanisms. Theorem 2 exhibits this 

result. 

 

Theorem 2: Suppose that for every 𝑏௜
ᇱ ∈ 𝐵௜, there exists a deviation path 𝛽௜ that satisfies the 

following two conditions: 

(4) 𝑡(𝛽௜) = 𝑓(⋅ |𝑏௜
ᇱ, 𝑏ି௜) − 𝑓(⋅ |𝑏௜ , 𝑏ି௜), 

(5) 
𝑑

𝑑𝛼
𝑐௜൫𝛽௜(𝛼)൯ฬ

ఈୀ଴
≤ 𝑐௜(𝑏௜

ᇱ) − 𝑐௜(𝑏௜). 

Suppose also that 𝐾௜ is the maximum number of deviation paths of (𝑖, 𝑏), denoted by 𝛽௜
ଵ, …, and 

𝛽௜
௄೔, such that the respective tangents 𝑡(𝛽௜

ଵ), …, and 𝑡൫𝛽௜
௄೔൯ are linearly independent. Then, 

 dim 𝑋௜(𝑏, 𝑔) = |Ω| − 𝐾௜ . 

 

Proof: Suppose that 𝑏௜
ᇱ is a profitable deviation from 𝑏௜ given a mechanism (𝑔, 𝑥); i.e., 

(6) 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] − 𝑐௜(𝑏௜

ᇱ) > 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜). 

By assumption, there exists a deviation path 𝛽௜ that satisfies (4) and (5). By (5) and (6), we have 

 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] − 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] >

𝑑

𝑑𝛼
𝑐௜൫𝛽௜(𝛼)൯ฬ

ఈୀ଴
. 

By (4), we have 
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(7) 

𝑑

𝑑𝛼
𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝛽௜(𝛼), 𝑏ି௜]ฬ

ఈୀ଴
 

= 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] − 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏]. 

By (6) and (7), we have 

 
𝑑

𝑑𝛼
൛𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝛽௜(𝛼), 𝑏ି௜] − 𝑐௜൫𝛽௜(𝛼)൯ൟฬ

ఈୀ଴
> 0. 

Accordingly, when there exists a profitable deviation, there exists a deviation path such that a local 

deviation along with the path is also profitable. 

 Fix a mechanism (𝑔, 𝑥௜) that induces the action profile 𝑏 for 𝑖. By the above argument, a 

mechanism (𝑔, 𝑥௜ + 𝑧௜) induces 𝑏 for 𝑖 if and only if no local deviation along any deviation 

paths is profitable; i.e., 𝑧௜ is perpendicular to all tangents of the deviation paths. Since there are 

exactly 𝐾௜ deviation paths whose tangents are linearly independent, the set of such 𝑧௜’s is exactly 

|Ω| − 𝐾௜ dimensional. 

Q.E.D. 

 

 A sufficient condition for (4) and (5) is the availability of “intermediate” actions in the 

following sense. Suppose that two actions 𝑏௜ and 𝑏௜
ᇱ are available. Then, for all 𝜆 ∈ [0,1], there 

exists another action 𝑏෨௜ such that (i) 𝑏෨௜ generates an intermediate state distribution between 𝑏௜ 

and 𝑏௜
ᇱ: 𝑓൫⋅ ห𝑏෨௜, 𝑏ି୧൯ = 𝜆𝑓(⋅ |𝑏௜, 𝑏ି୧) + (1 − 𝜆)𝑓(⋅ |𝑏௜

ᇱ, 𝑏ି୧), and (ii) the cost of taking 𝑏෨௜ is also 

intermediate between 𝑏௜ and 𝑏௜
ᇱ: 𝑐௜൫𝑏෨௜൯ = 𝜆𝑐௜(𝑏௜) + (1 − 𝜆)𝑐௜(𝑏௜

ᇱ). The hypothesis of Theorem 

2 also requires that such intermediate actions are on some deviation paths. Under a such condition, 

agent 𝑖 has no incentive to deviate to an action 𝑏௜
ᇱ, which is possibly distant from the targeted 

action 𝑏௜, if and only if he has no incentive to deviate to any intermediate actions between 𝑏௜ and 

𝑏௜
ᇱ. Accordingly, under such an assumption, the local optimality condition (with respect to each 

deviation path) is sufficient for global optimality of the action choice. 

 Theorems 1 and 2 exhibit the one-to-one tradeoff between the dimensionality of the action 

space and that of payment rules that induce a targeted action profile. The variety of desirable 

payment rules sharply decreases as the action space becomes larger in the following sense. Let a 

mechanism successfully induces a targeted action profile under the current action space. Now, 
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assume that there arises a new class of actions (deviation path). With the new (larger) action space, 

the mechanism, which performed well under the old (smaller) action space, generically fails to 

induce the targeted action profile because of the reduction of the dimensionality. In this sense, even 

when the largeness of the action space is intermediate (i.e., there are only a few deviation paths), 

the inducibility condition imposes a severe restriction on payment rules. 

 As the number of deviation paths increases, 𝑋௜(𝑏, 𝑔) shrinks. From now, we turn our eyes 

into an extreme case. Let 

 𝑇(Ω) ≡ ൝𝑡 ∈ 𝑅|ஐ| : ෍ 𝑡(𝜔) = 0

ఠ∈ஐ

ൡ. 

Clearly, dim 𝑇(Ω) = |Ω| − 1. For every 𝛼 ∈ [−1,1] ∖ {0} and deviation path 𝛽௜, 

 
𝑓(⋅ |𝛽௜(𝛼), 𝑏ି௜) − 𝑓(⋅ |𝑏)

𝛼
∈ 𝑇(Ω). 

Since 𝑇(Ω) is a closed set, its limit at 0   also belongs to 𝑇(Ω) (i.e., 𝑡(𝛽௜) ∈ 𝑇(Ω)). Hence, 

there are at most |Ω| − 1 deviation paths whose tangents are linearly independent. We say that 

agent 𝑖’s action space 𝐵௜ is rich at action profile 𝑏 if there indeed exist |Ω| − 1 deviation paths 

whose tangents are linearly independent. 

 

Definition 3: Agent 𝑖 ’s action space 𝐵௜  is rich at action profile 𝑏  if there exist |Ω| − 1 

deviation paths of (𝑖, 𝑏) whose tangents are linearly independent. An action space 𝐵 is rich at 

𝑏 if 𝐵௜ is rich at 𝑏 for all 𝑖 ∈ 𝑁. 

 

 
Figure 3: Rich Action Space. The case of |Ω| = 3. 𝐵௜ is rich at 𝑏 if there are two (= |Ω| −
1) different deviation paths of (𝑖, 𝑏). 



16 
 

 When 𝐵௜ is rich at 𝑏, Theorem 1 implies that dim 𝑋௜ (𝑏, 𝑔) = 1. Accordingly, whenever 𝑥௜ 

and 𝑥෤௜  induce 𝑏  for agent 𝑖 , then 𝑥௜  and 𝑥෤௜   are the same up to constants. Hence, we have 

proved the following equivalence theorem: 

 

Theorem 3: Suppose that 𝐵௜  is rich at 𝑏  and (𝑔, 𝑥௜)  induces 𝑏  for agent 𝑖 . Then, the 

following are equivalent: 

(i) 𝑥௜ ∈ 𝑋௜(𝑏, 𝑔) and 𝑥෤௜ ∈ 𝑋௜(𝑏, 𝑔). 

(ii) 𝑥෤௜ = 𝑥௜ + �̄�௜ for some �̄�௜ ∈ 𝑅. 

 

 Theorem 3 implies the following equivalence properties. Consider an arbitrary combination 

of an action profile and an allocation rule (𝑏, 𝑔). Consider two arbitrary payment rules 𝑥 and 𝑥෤ 

such that both (𝑔, 𝑥) and (𝑔, 𝑥෤) induce 𝑏. Let 𝑈௜ ∈ 𝑅 and 𝑈෩௜ ∈ 𝑅 denote the respective ex-

ante expected payoff for each agent 𝑖 ∈ 𝑁: 

 
𝑈௜ ≡ 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜), 

𝑈෩௜ ≡ 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥෤௜(𝜔)|𝑏] − 𝑐௜(𝑏௜). 

By Theorem 3, we have the following three equivalence results. 

(i) the ex-post payment for each agent 𝑖 is unique up to constants: 

 𝑥෤௜(𝜔) = 𝑥௜(𝜔) − 𝑈௜ + 𝑈෩௜ for all 𝜔 ∈ Ω. 

(ii) the ex-post revenue for the central planner is unique up to constants: 

 ෍ 𝑥෤௜(𝜔)

௜∈ே

= ෍ 𝑥௜(𝜔)

௜∈ே

− ෍൫𝑈௜ − 𝑈෩௜൯

௜∈ே

 for all 𝜔 ∈ Ω. 

(iii) the ex-post payoff for each agent 𝑖 is unique up to constants: for all 𝜔 ∈ Ω, 

 
𝑣௜(𝑔(𝜔), 𝜔) − 𝑥෤௜(𝜔) − 𝑐௜(𝑏௜) 

= {𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔) − 𝑐௜(𝑏௜)} + 𝑈௜ − 𝑈෩௜. 
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5. Hidden Information 

This section studies the relationship between the incentives for taking targeted actions and 

incentives for truthfully reporting private types. First, we define ex-post incentive compatibility in 

a standard manner. 

 

Definition 4 (Ex-Post Incentive Compatibility): A mechanism (𝑔, 𝑥)  is ex-post incentive 

compatible (EPIC) if truth-telling is an ex-post equilibrium; for every 𝑖 ∈ 𝑁, 𝜔 ∈ Ω, and 𝜔෥௜ ∈

Ω௜, we have 

 𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔) ≥ 𝑣௜(𝑔(𝜔෥௜, 𝜔ି௜), 𝜔) − 𝑥௜(𝜔෥௜, 𝜔ି௜). 

 

 By Theorem 3, when the action space is rich, mechanisms that induce the same action profile 

is identical up to constant. Accordingly, such mechanisms are also equivalent in terms of incentives 

for reporting. In other words, once we design a payment rule to induce a targeted action profile, 

we have no degree of freedom for making a payment rule to incentivize truthful reporting. 

 

Corollary 1: Consider an arbitrary combination of an allocation rule and an action profile (𝑏, 𝑔). 

Suppose that 𝐵 is rich at 𝑏, and a mechanism (𝑔, 𝑥) induces b . If (𝑔, 𝑥) is not EPIC, then 

there is no payment rule 𝑥෤ such that (𝑔, 𝑥෤) induces b  is EPIC. 

 

Corollary 1 indicates that if there is a mechanism that induces an action profile 𝑏 but fails 

to be incentive compatible, then there is no mechanism that satisfies both inducibility and incentive 

compatibility. 

6. Efficiency 

This section studies efficient mechanism design (i.e., maximization of the social welfare). We 

denote the valuation function of the central planner by 𝑣଴ : 𝐴 × Ω → 𝑅. An allocation rule 𝑔 is 

said to be allocatively efficient if 
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 ෍ 𝑣௜

௜∈ே∪{଴}

(𝑔(𝜔), 𝜔) ≥ ෍ 𝑣௜

௜∈ே∪{଴}

(𝑎, 𝜔) 

for all 𝑎 ∈ 𝐴 and 𝜔 ∈ Ω. A combination of an action profile and an allocation rule (𝑏, 𝑔) is said 

to be fully efficient if 𝑔 is allocatively efficient and the selection of 𝑏 maximizes the total welfare 

in expectation—i.e., it satisfies 

 𝐸 ൥ ෍ 𝑣௜(𝑔(𝜔), 𝜔)

௜∈ே∪{଴}

อ 𝑏൩ − ෍ 𝑐௜(𝑏௜)

௜∈ே∪{଴}

≥ 𝐸 ൥ ෍ 𝑣௜(𝑔(𝜔), 𝜔)

௜∈ே∪{଴}

อ 𝑏෨൩ − ෍ 𝑐௜൫𝑏෨௜൯

௜∈ே∪{଴}

 

for all 𝑏෨ ∈ 𝐵. A mechanism (𝑔, 𝑥) is fully efficient if there exists an action profile 𝑏 ∈ 𝐵 such 

that (𝑔, 𝑥) induces 𝑏 and (𝑏, 𝑔) is fully efficient.10 

A payment rule 𝑥 is said to be VCG if there exists 𝑦௜ : Ωି௜ → 𝑅 for each 𝑖 ∈ 𝑁 such that 

 𝑥௜(𝜔) = − ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(𝜔), 𝜔) + 𝑦௜(𝜔ି௜) 

for all 𝑖 ∈ 𝑁 and 𝜔 ∈ Ω. A VCG payment rule gives each agent 𝑖 ∈ 𝑁 the monetary amount 

equivalent to the other agents’ welfare plus the central planner’s welfare (i.e., 

∑ 𝑣௝௝∈ே∪{଴}∖{௜} (𝑔(𝜔), 𝜔)) and retrieves the monetary payment 𝑦௜(𝜔ି௜) that is independent of 𝜔௜. 

 We now introduce a subclass of VCG mechanisms, the pure-VCG mechanism. A payment 

rule 𝑥 is said to be pure-VCG if it is VCG and 𝑦௜(⋅) is constant for each 𝑖 ∈ 𝑁; there exists a 

vector �̄� = (�̄�௜)௜∈ே ∈ 𝑅௡ such that 

 𝑥௜(𝜔) = − ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(𝜔), 𝜔) + �̄�௜ 

for all 𝑖 ∈ 𝑁  and 𝜔 ∈ Ω . Pure-VCG payment rules are special cases of VCG payment rules, 

where the central planner imposes on each agent 𝑖 a fixed amount �̄�௜ as a non-incentive term. 

We term a combination of efficient allocation rule and a VCG payment rule (pure-VCG payment 

rule) a VCG mechanism (pure-VCG mechanism). 

 
10

 Our definition of full efficiency of mechanisms is different from the efficiency defined in Hatfield, Kojima, 
and Kominers (2015) in that we fix agents’ action spaces and cost functions. 
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 The pure-VCG mechanism can be interpreted as a generalization of the selling-out contract 

of the principal–agent problems. The selling-out contract perfectly aligns the output and the agent’s 

payoff (by selling out the firm from the principal to the agent). Under the selling-out contract, the 

agent’s problem becomes isomorphic to the maximization of the expected profit; thus, the first-

best effort level is induced (Harris and Raviv, 1979). 

In a general efficient mechanism design problem, the “output” is the social welfare, and the 

pure-VCG mechanism perfectly aligns each agent’s payoff with the social welfare. Accordingly, 

pure-VCG induces efficient actions. We further show that, when the action space is rich, only pure-

VCG mechanism can be fully efficient: all the other mechanisms are taken advantage of by some 

actions. 

 

Theorem 4:  

(i) Pure-VCG mechanisms are fully efficient. 

(ii) Suppose that, for every fully efficient (𝑏, 𝑔), 𝐵 is rich at 𝑏. Then, a mechanism is fully 

efficient if and only if it is pure-VCG. 

 

Proof: If (𝑏, 𝑔) is fully efficient and 𝑥 is pure-VCG, then, for every 𝑖 ∈ 𝑁 and 𝑏௜
ᇱ ∈ 𝐵௜, 

  𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜) − 𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏௜
ᇱ, 𝑏ି௜] + 𝑐௜(𝑏௜

ᇱ) 

= 𝐸 ቎ ෍ 𝑣௝(𝑔(𝜔), 𝜔)

௝∈ே∪{଴}

ቮ 𝑏቏  − 𝑐௜(𝑏௜) − ቎ ෍ 𝑣௝(𝑔(𝜔), 𝜔)

௝∈ே∪{଴}

ቮ 𝑏௜
ᇱ, 𝑏ି௜቏ + 𝑐௜(𝑏௜

ᇱ) 

≥ 0, 

which implies that (𝑔, 𝑥) induces 𝑏. Furthermore, if 𝐵 is rich at 𝑏, it is clear from Theorem 3 

and the definition of the pure-VCG payment rule that only pure-VCG mechanisms will induce 𝑏. 

Q.E.D. 

 

 Note that any pure-VCG mechanism can be constructed without utilizing any detailed 

information about (𝑓, 𝐵, 𝑐). In this sense, pure-VCG follows the Wilson doctrine (Wilson, 1987): 

it is free from the probability assessment. When the action space is rich, even if such information 

is available, the pure-VCG mechanism is the only choice for maximizing the social welfare. 
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We say that we have private values if, for every 𝑖 ∈ 𝑁 , (i) the valuation 𝑣௜(𝑎, 𝜔)  is 

independent of the other agents’ type profile 𝜔ି଴ି௜ ≡ (𝜔௝)௝∈ே∖{௜} ∈ Ωି଴ି௜ ≡×௝∈ே∖{௜} Ω௝ , and (ii) 

𝑣଴(𝑎, 𝜔)  is independent of 𝜔ି଴ . We write 𝑣௜(𝑎, 𝜔଴, 𝜔௜)  instead of 𝑣௜(𝑎, 𝜔)  for each 𝑖 ∈ 𝑁 , 

and 𝑣଴(𝑎, 𝜔଴) instead of 𝑣଴(𝑎, 𝜔).11 It is well-known that, when we have private values, VCG 

mechanism satisfies EPIC.12  Accordingly, the pure-VCG mechanism also solves the hidden 

information problem. 

Theorem 4 also implies that achieving full efficiency is generally impossible, when we have 

interdependent values (i.e., the private-value assumption is violated). Even with interdependent 

values, it is possible, under certain assumptions, to achieve the allocative efficiency (using some 

mechanisms other than VCG).13 It is also well-known that VCG mechanisms rarely satisfy EPIC 

(or a weaker incentive compatibility condition) with interdependent values. On the other hand, 

Theorem 4 indicates that the pure-VCG mechanism is the only choice for inducing an efficient 

action profile. Hence, with interdependent values, (i) an efficient action profile, (ii) an efficient 

allocation rule, and (iii) incentive compatibility for reporting cannot be achieved at the same time, 

typically.14 This generalizes the observation for the mechanism design problem with information 

acquisition, studied by Bergemann and Välimäki (2002). 

 Although any VCG mechanism is incentive compatible and allocatively efficient in the 

private-value case, they do not always induce an efficient action profile. For example, consider the 

pivot mechanism (𝑔, 𝑥), which is a VCG mechanism specified by 

 𝑥௜(𝜔) = − ෍ 𝑣௝൫𝑔(𝜔), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}∖{௜}

+ min
ఠ೔

ᇲ∈ஐ೔

෍ 𝑣௝൫𝑔(𝜔௜
ᇱ, 𝜔ି௜), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

. 

 
11 We permit the valuations to depend on the public signal 𝜔଴. We write 𝑣଴(𝑎, 𝜔଴, 𝜔଴) instead of 𝑣଴(𝑎, 𝜔଴). 
12 It is well-known that, with the assumption of private values, EPIC is equivalent to incentive compatibility in 
dominant strategies (DIC); for every 𝑖 ∈ 𝑁, 𝜔 ∈ Ω, and 𝜔෥௜ ∈ Ω௜, we have  

𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔) ≥ 𝑣௜(𝑔(𝜔෥௜, 𝜔ି௜), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔෥௜ , 𝜔ି௜). 
13

 See, for example, Crémer and McLean (1985, 1988), Maskin (1992), Dasgupta and Maskin (2000), Jehiel and 
Moldovanu (2001), and Bergemann and Välimäki (2002). 
14 Mezzetti (2004) shows that, if the realized valuation 𝑣௜(𝑔(𝜔), 𝜔) is observable as an ex-post public signal 
and is contractible, even with interdependent values, (allocatively) efficient mechanisms can be implemented  
providing any VCG expected payoffs to each agent (see Noda, 2019 for more general ex-post signals). If these 
schemes are available, full efficiency is achievable even with interdependent values. 
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Clearly, the pivot mechanism is not pure-VCG because the “non-incentive term” is not constant. 

The following proposition demonstrates a sufficient condition under which the pivot mechanism 

fails to achieve full efficiency: 

 

Proposition 2: Suppose that allocation rule 𝑔 is allocatively efficient. Define 𝑧௜ : Ω → 𝑅 by 

(8) 𝑧௜(𝜔) = min
ఠ೔

ᇲ∈ஐ೔

෍ 𝑣௜൫𝑔(𝜔௜
ᇱ, 𝜔ି௜), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

. 

Then, a pivot mechanism fails to achieve full efficiency if, for every 𝑏 ∈ 𝐵 such that (𝑏, 𝑔) is 

fully efficient, there exists an agent 𝑖 ∈ 𝑁 and a deviation path 𝛽௜ of (𝑖, 𝑏) such that 

 𝑧௜ ⋅ 𝑡(𝛽௜) ≠ 0. 

 

Proof: 𝑧௜ , defined by (8), is the difference between a pure-VCG payment rule and the pivot 

payment rule. Since pure-VCG mechanisms induce 𝑏, it follows from Proposition 1 that the pivot 

mechanism induces 𝑏 for 𝑖 only if 𝑧௜ ⋅ 𝑡(𝛽௜) = 0. 

Q.E.D. 

 

 Proposition 2 indicates that the pivot mechanism induces an efficient action profile only when 

a special congruence condition is satisfied. We have no reasons to expect that every tangent of 

deviation path will be perpendicular to 𝑧௜, which is defined by (8). Therefore, even if there exists 

at least one deviation path around the efficient action profile, the pivot mechanism generically fails 

to achieve full efficiency.15 

 

Remark 2: In Appendix B, we propose an open-bidding procedure that implements pure-VCG 

mechanisms. In our procedure, the mechanism determines the compensation for losers, rather than 

the payment to the winner (as in standard auctions). The mechanism starts with a sufficiently high 

price and gradually descends the price until one bidder declares to win the object. The winner 

 
15

 Prior to our work, Krähmer and Strausz (2007) showed that the pivot mechanism generically fails to induce 
an efficient level of investment when each agent takes one-dimensional ex-ante investments. Proposition 2 
generalizes this observation. 
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obtains nothing, and the losers are compensated with the price determined by the mechanism. This 

procedure is in contrast to the ascending (English) auction implementing the pivot mechanism. For 

further details, the reader is directed to Appendix B. 

 

Remark 3: Theorem 4 and Proposition 2 indicate that when agents can take hidden actions, it is 

difficult to earn non-negative revenue while achieving full efficiency. Although the pure-VCG 

mechanism achieves full efficiency, it cannot earn non-negative revenue in a very general class of 

environment. For further details, the reader is directed to Appendix C. 

7. Independent Types and Interim Equivalence 

Thus far, we have assumed that each agent’s action choice (possibly) have externality effects (i.e., 

may influence the distribution of the entire state 𝜔, rather than his private type 𝜔௜). We have seen 

that, even if the dimensionality of unilateral deviations is low, the pivot mechanism generally fails 

to achieve full efficiency (Proposition 2). If agents can take various unilateral deviations (i.e., if 

the action space is rich), only pure-VCG mechanism can be full efficient (Theorem 4). 

 This section excludes externality effects by assuming that one agent’s action only influences 

his own type distribution. Even with such an assumption, Theorem 1 holds without any 

modifications. Parallel to Theorem 4, we can also derive the equivalence theorem from Theorem 

1. However, the equivalence result is interim (rather than ex-post), and therefore, the set of 

mechanisms inducing a targeted action profile becomes significantly larger. 

As in Bergemann and Välimäki (2002) and Hatfield, Kojima, and Kominers (2015), this 

section assumes independent types of information structure. We have independent types if each 

agent 𝑖’s action choice 𝑏௜ ∈ 𝐵௜ influences only the marginal distribution of the agent’s own type 

𝜔௜; for every 𝜔 ∈ Ω and 𝑏 ∈ 𝐵, we have 

 𝑓(𝜔|𝑏) = 𝑓଴(𝜔଴) ෑ 𝑓௜(𝜔௜|𝑏௜)

௜∈ே

. 

Here, 𝑓௜(⋅ |𝑏௜) denotes the marginal distribution of each agent 𝑖’s type 𝜔௜, which is assumed to 

depend only on 𝑏௜, and 𝑓଴(⋅) denotes the distribution of the public signal 𝜔଴, which is assumed 

to be independent of the action profile, 𝑏 ∈ 𝐵. When we have independent types, agent 𝑖’s action 
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space is equivalent to the set of available marginal distributions on agent 𝑖 ’s type. With 

independent types, for every 𝜉 : Ω → 𝑅  and 𝜉௜ : Ω௜ → 𝑅 , we can simply write 

𝐸ఠష೔
[𝜉(𝜔෥௜, 𝜔ି௜)|𝑏ି௜]  and 𝐸[𝜉௜(𝜔௜)|𝑏௜]  instead of 𝐸ఠష೔

[𝜉(𝜔෥௜ , 𝜔ି௜)|𝑏, 𝜔௜]  and 𝐸[𝜉௜(𝜔௜)|𝑏] , 

respectively. 

Even with independent types, Theorem 1 remains true without any modification; thus, there 

is a one-to-one tradeoff between the number of deviation paths and the dimensionality of payment 

rules with which a targeted action profile is induced. However, with independent types, the action 

set cannot be rich (i.e., cannot have |Ω| − 1 distinct deviation paths). With independent types, the 

choice of 𝑏௜ is isomorphic to the choice of 𝑓௜ ∈ 𝛥(Ω௜), where dim 𝛥(Ω௜) = |Ω௜|. Accordingly, 

there are at most |Ω௜| − 1 deviation paths whose tangents are linearly independent. We say that 

the action space 𝐵௜ is individually rich at 𝑏௜ if such deviation paths actually exist.  

 

Definition 5 (Individual Richness): Agent 𝑖’s action space 𝐵௜ is individually rich at 𝑏௜ if there 

exist |Ω௜| − 1 deviation paths of (𝑖, 𝑏) whose tangents are linearly independent. 

 

 When agent 𝑖’s action space is individually rich, agent 𝑖 can manipulate his own marginal 

type distribution to |Ω௜| − 1 different directions. We cannot find a larger number of deviation 

paths whose tangents are linearly independent, as long as we maintain the independent-type 

assumption. 

Parallel to Theorem 3, when the action space is individually rich, the payment rule inducing 

a targeted action profile become unique up to “constants” in the interim sense. 

 

Theorem 5: Suppose that 𝐵௜ is individually rich at 𝑏 and (𝑔, 𝑥௜) induces 𝑏 for agent 𝑖. Then, 

the following are equivalent: 

(i) 𝑥௜ ∈ 𝑋௜(𝑏, 𝑔) and 𝑥෤௜ ∈ 𝑋௜(𝑏, 𝑔). 

(ii) 𝑥෤௜ = 𝑥௜ + 𝑟௜  for some 𝑟௜: Ω → 𝑅  such that 𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜]  is independent of 𝜔௜ ∈

Ω௜. 

 

Proof: See Appendix A. 
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The distribution of 𝜔ି௜ is determined solely by the choice of 𝑏ି௜, which agent 𝑖 cannot 

manipulate. Accordingly, agent 𝑖 ’s unilateral deviation does not change the value of 

𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜]  whenever it is independent of 𝜔௜ . Hence, the interim equivalence is 

sufficient. When the action space is individually rich, agent 𝑖 can manipulate the distribution of 

𝜔௜ in full-dimensional directions. Hence, if 𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜] depends on 𝜔௜, agent 𝑖 has 

a way to take advantage of it. Accordingly, the interim equivalence is necessary. 

Now, we consider fully efficient mechanisms. A payment rule 𝑥 is said to be expectation-

VCG if, for each 𝑖 ∈ 𝑁, there exist 𝑟௜ : Ω → 𝑅 such that for every 𝑖 ∈ 𝑁 and 𝜔 ∈ Ω, we have 

 𝑥௜(𝜔) = − ෍ 𝑣௝(𝑔(𝜔), 𝜔)

௝∈ே∪{଴}∖{௜}

+ 𝑟௜(𝜔), 

and 𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜] is independent of 𝜔௜ ∈ Ω௜. We term the combination of an efficient 

allocation rule and expectation-VCG payment rule an expectation-VCG mechanism. Clearly, any 

VCG mechanism (including pure-VCG) belongs to expectation-VCG. 

 It is straightforward to show that any expectation-VCG mechanism can induce an efficient 

action profile (Rogerson, 1992). Furthermore, by Theorem 5, any mechanism inducing the efficient 

action profile is interim equivalent if the action space is individually rich. Accordingly, only 

expectation-VCG can be fully efficient. 

 

Theorem 6: Under the assumption of independent types: 

(i) Any expectation-VCG mechanism is fully efficient. 

(ii) Suppose that, for every fully efficient (𝑏, 𝑔), 𝑏 is individually rich. Then, a mechanism is 

fully efficient if and only if it is expectation-VCG. 

 

Proof: See Appendix A. 

 

Trivially, expectation-VCG mechanism does not satisfy EPIC in general (even with private 

values). On the other hand, it is straightforward to see that when the type distribution is fixed and 

we have private values, expectation-VCG mechanism is Bayesian incentive compatible (BIC): if 

a profile of truthful reporting consists a Bayesian Nash equilibrium.  
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In our model, standard BIC is not sufficient for preventing deviations. The traditional 

definition of BIC only considers deviations in reporting (assuming a type distribution to be fixed). 

However, in our model, agents can make a joint deviation in actions and reporting. To consider an 

incentive for joint deviations, we define the following condition:16 

 

Definition 5 (Bayesian Inducibility and Incentive Compatibility): A combination of an action 

profile and a mechanism (𝑏, (𝑔, 𝑥)) is Bayesian inducible and incentive compatible (BIIC) if the 

selection of action profile 𝑏 at stage 2 and the truthful revelation at stage 4 result in a perfect 

Bayesian equilibrium; for every agent 𝑖 ∈ 𝑁, action 𝑏௜
ᇱ ∈ 𝐵௜, and reporting strategy 𝜎௜ : Ω௜ → Ω௜, 

 
𝐸[𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜) 

≥ 𝐸[𝑣௜(𝑔(𝜎௜(𝜔௜), 𝜔ି௜), 𝜔ି௜) − 𝑥௜(𝜎௜(𝜔௜), 𝜔ି௜)|𝑏௜
ᇱ, 𝑏ି௜] − 𝑐௜(𝑏௜

ᇱ). 

 

 The expectation-VCG mechanism satisfies not only a traditional BIC but also BIIC. 

 

Proposition 3: Suppose that we have private values and independent types. Then, expectation-

VCG mechanism satisfies BIIC. 

 

Proof: See Appendix A. 

 

For example, AGV mechanism, established by Arrow (1979) and D’Aspremont and Gérard-

Varet (1979), is an expectation-VCG mechanism specified by 

 

𝑟௜(𝜔) = ෍ 𝑣௝൫𝑔(𝜔), 𝜔௝൯

௝∈ே∪{଴}∖{௜}

− 𝐸ఠ෥ ష೔
቎ ෍ 𝑣௝൫𝑔(𝜔௜, 𝜔෥ି௜), 𝜔෥௝൯

௝∈ே∪{଴}∖{௜}

ቮ 𝑏ି௜቏

+
1

𝑛 − 1
෍ 𝐸ఠ෥ ష೔

቎ ෍ 𝑣ℎ൫𝑔൫𝜔௝ , 𝜔෥ି௝൯, 𝜔෥ℎ൯

ℎ∈ே∪{଴}∖{௝}

ቮ 𝑏ି௜቏

௝∈ே∖{௜}

. 

 
16

  When we consider EPIC, the incentive condition for actions (inducibility) and reporting (EPIC) can be 
separated. This is because the definition of EPIC is independent of the underlying type distribution. However, 
the definition of the Bayesian incentive compatibility is dependent on the type distribution, and therefore, it 
cannot be defined separately from the inducibility condition. 
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By definition, the AGV mechanism satisfies budget balance: for all 𝜔 ∈ Ω , ∑ 𝑥௜(𝜔)௜∈ே = 0 . 

Accordingly, with independent types the central planner can achieve full efficiency along with 

BIIC and budget balance. 

 The observation in this section articulates our contribution relative to previous works. 

Rogerson (1992) proved that, with independent and private values, expectation-VCG mechanisms 

induce efficient action profiles. Bergemann and Välimäki (2002) studied information acquisition 

for each agent’s own hidden state with independent types and private values and demonstrated that 

VCG mechanisms achieve full efficiency. We derive the full characterization while allowing 

general action spaces. Hatfield, Kojima, and Kominers (2015) showed that when detailed 

information about the environment (action space, cost function, and state distribution associated 

with each action profile) is not available, the VCG mechanism is the unique fully efficient 

mechanism.17 This result is a special case of our Theorem 6 in the sense that only VCG is “detail-

free” (i.e., it can be constructed without using information about (𝑓, 𝐵, 𝑐)) among all expectation-

VCG mechanisms. 

8. Conclusion 

We have studied a general mechanism design problem in which agents take hidden actions that 

determine the state distribution. The variety of action choices substantially restricts the class of 

mechanisms that successfully induce a desired action profile. Indeed, the popular pivot mechanism 

generically fails to induce an efficient action profile, if there exists at least one class of actions 

(deviation path) an agent may take. If agents can take various unilateral deviations (i.e., if the 

action space is rich at the targeted action profile), ex-post payoffs, ex-post payments, and ex-post 

revenues are all unique up to constants. In particular, only pure-VCG mechanisms are able to 

achieve full efficiency. The pure-VCG mechanism has a very restrictive form that is not compatible 

with many demanded properties (e.g., ex-post individual rationality, non-negative revenue, budget 

balance). Hence, this result could be interpreted as a negative result. 

 In order to break down this impossibility result, the central planner must collect detailed 

information about the set of possible action choices. If the central planner is not fully aware of the 

 
17

 On the other hand, Tomoeda (2017) pointed out that the VCG mechanism fails to induce an efficient action 
profile as a unique equilibrium even under the absence of externality effects. 
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set of all possible actions, then she must use a robust and detail-free mechanism, such as pure-

VCG, that achieves full efficiency regardless of the detailed structure of actions and state 

distributions. However, if the central planner knows the action set, she can design a detail-

dependent mechanism that performs well for a particular problem she faces, unless the action space 

is actually rich. Even if the action space is rich, agents may pay limited attention to action choices 

as the wide availability of actions make it difficult to find exactly optimal actions. If the planner 

finds that agents dismiss some dimensions of actions, she could also exclude such actions from the 

design problem. The detailed knowledge about the set of actions, state distributions associated 

with each action profile, and agents’ perception is necessary for these two countermeasures. 

 Alternatively, the central planner can also decide to compromise full efficiency to enhance 

the degree of freedom of the mechanism design. On the one hand, the planner can use the pivot 

mechanism to achieve allocation efficiency and non-negative revenue, while compromising on 

action efficiency. On the other hand, the planner can also offer reward or punishment to prevent 

action deviations while compromising on allocation efficiency. It will be interesting to consider 

the optimal way to compromise the action and allocation efficiencies; however, since it is beyond 

the scope of this paper, this question should be answered in future research. 

Appendix A: Omitted Proofs 

Proof of Theorem 5: (i) ⇒ (ii) is straightforward from the fact that 𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜] is 

independent of 𝜔௜ and 𝑏௜. 

To show the other direction, we first prove the following lemma. 

 

Lemma 1: With the assumption of independent types, if 𝛽௜ is a deviation path of 𝑏 and 𝑡(𝛽௜) ∈

𝑅|ஐ| is its tangent, then there exists 𝑡௜(𝛽௜) ∈ 𝑅|ஐ೔| such that 

 lim
ఈ→଴

𝑓௜(⋅ |𝛽௜(𝛼)) − 𝑓௜(⋅ |𝑏௜)

𝛼
≡ 𝑡௜(𝛽௜). 

Furthermore, for all deviation paths 𝛽௜
ଵ, ⋯ , 𝛽௜

௄, their respective tangents 𝑡(𝛽௜
ଵ), …, 𝑡(𝛽௜

௄) are 

linearly independent if and only if 𝑡௜(𝛽௜
ଵ), …, 𝑡௜(𝛽௜

௄) are linearly independent. 
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Proof: By independent types, 

 𝑓(𝜔|𝛽௜(𝛼), 𝑏ି௜) − 𝑓(𝜔|𝑏௜, 𝑏ି௜) = ෑ 𝑓௝൫𝜔௝ห𝑏௝൯

௝ஷ௜

⋅ ቀ𝑓௜൫𝜔௜ห𝛽௜(𝛼)൯ − 𝑓௜(𝜔௜|𝑏௜)ቁ. 

Accordingly, we have 

(A1) 

𝑡(𝜔, 𝛽௜) = ෑ 𝑓௝൫𝜔௝ห𝑏௝൯

௝ஷ௜

⋅ lim
ఈ→଴

𝑓௜൫𝜔௜ห𝛽௜(𝛼)൯ − 𝑓௜(𝜔௜|𝑏௜)

𝛼
 

= ෑ 𝑓௝൫𝜔௝ห𝑏௝൯

௝ஷ௜

⋅ 𝑡௜(𝜔௜ , 𝛽௜). 

This indicates that whenever 𝑡(𝛽௜) exists, 𝑡௜(𝛽௜) also exists; thus, 𝑡௜(𝛽௜) is well-defined. 

 Suppose that 𝑡(𝛽௜
ଵ) , …, 𝑡(𝛽௜

௄)  are not linearly independent; then, there exists (𝜆௞)௞ୀ଴
௄  

such that 𝜆௞ ≠ 0 for some 𝑘 ∈ {1, ⋯ , 𝐾}, and 

 ෍ 𝜆௞ ⋅ 𝑡(𝜔, 𝛽௜
௞)

௄

௞ୀଵ

= 0 

for all 𝜔 ∈ Ω. Fix some 𝜔ି௜ ∈ Ωି௜ arbitrarily. It follows from (A1) that 

 ෍ 𝜆௞ ⋅ 𝑡௜(𝜔௜, 𝛽௜
௞)

௄

௞ୀଵ

=
1

∏ 𝑓௝(𝜔௝|𝑏௝)௝ஷ௜
෍ 𝜆௞ ⋅ 𝑡(𝜔, 𝛽௜

௞)

௄

௞ୀଵ

= 0 

for all 𝜔௜ ∈ Ω௜ . Hence, 𝑡௜(𝛽௜
ଵ) , …, 𝑡௜(𝛽௜

௄)  are not linearly independent either. If 𝑡௜(𝛽௜
ଵ) , …, 

𝑡௜(𝛽௜
௄) are not linearly independent, we can show that 𝑡(𝛽௜

ଵ), …, 𝑡(𝛽௜
௄) are not independent in 

a similar manner. 

Q.E.D. 

 

Proof of Theorem 5 (continued): Suppose that both (𝑔, 𝑥) and (𝑔, 𝑥෤) induces 𝑏. Then, for all 

𝑖 ∈ 𝑁 , the following first-order condition of necessary condition must be satisfied: for 𝑘 =

1, ⋯ , |Ω௜| − 1, 
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𝜕

𝜕𝛼
ቄ𝐸ൣ𝑣௜(𝑔(𝜔), 𝜔) − 𝑥௜(𝜔)|𝛽௜

௞(𝛼), 𝑏ି௜൧ − 𝑐௜ ቀ𝛽௜
௞(𝛼)ቁቅฬ

ఈୀ଴
= 0, and 

𝜕

𝜕𝛼
ቄ𝐸ൣ𝑣௜(𝑔(𝜔), 𝜔) − 𝑥෤௜(𝜔)|𝛽௜

௞(𝛼), 𝑏ି௜൧ − 𝑐௜ ቀ𝛽௜
௞(𝛼)ቁቅฬ

ఈୀ଴
= 0. 

Comparing these equations, we obtain 

(A2) 
𝜕

𝜕𝛼
𝐸ൣ𝑥௜(𝜔) − 𝑥෤௜(𝜔)|𝛽௜

௞(𝛼), 𝑏ି௜൧ฬ
ఈୀ଴

= 0 

for 𝑘 = 1, ⋯ , |Ω௜| − 1. With independent types, (A2) can be rewritten as 

(A3) 
𝜕

𝜕𝛼
𝐸ఠ೔

ൣ𝐸ఠష೔
[𝑥௜(𝜔௜, 𝜔ି௜) − 𝑥෤௜(𝜔௜, 𝜔ି௜)|𝑏ି௜]|𝛽௜

௞(𝛼)൧ฬ
ఈୀ଴

= 0 

for 𝑘 = 1, ⋯ , |Ω௜| − 1. Define 

 𝑤௜(𝜔௜) ≡ 𝐸ఠష೔
[𝑥௜(𝜔௜, 𝜔ି௜) − 𝑥෤௜(𝜔௜, 𝜔ି௜)|𝑏ି௜]. 

Then, (A3) is equivalent to 

(A4) 𝑤௜ ⋅ 𝑡௜(𝛽௜
௞) = 0 

for 𝑘 = 1, ⋯ , |Ω௜| − 1 , where 𝑡௜(𝛽௜
ଵ) , …, 𝑡௜(𝛽௜

|ஐ೔|ିଵ
)  are obtained by Lemma 1. Since 

{𝑡௜(𝛽௜
௞)}௞ୀଵ

|ஐ೔|ିଵ are linearly independent, 

 dim൛𝑤௜ ∈ 𝑅|ஐ೔| : 𝑤௜⋅ 𝑡௜(𝛽௜
௞) = 0 for 𝑘 = 1, ⋯ , |Ω௜| − 1ൟ = 1. 

This and (A4) imply that there exists �̄�௜ ∈ 𝑅 such that 

 𝑤௜(𝜔௜) = 𝐸ఠష೔
[𝑥௜(𝜔௜, 𝜔ି௜) − 𝑥෤௜(𝜔௜ , 𝜔ି௜)|𝑏ି௜] = �̄�௜ 

for all 𝜔௜ ∈ Ω௜. Since 𝑟௜(𝜔) = 𝑥௜(𝜔) − 𝑥෤௜(𝜔), Theorem 5 is proved. 

Q.E.D. 

 

Proof of Theorem 6: Whenever (𝑏, 𝑔)  is fully efficient and 𝑥  is pure-VCG, then (𝑔, 𝑥) 

induces 𝑏. Furthermore, if 𝑥 is a pure-VCG payment rule, 𝑥෤ satisfies 𝑥෤௜(𝜔) = 𝑥௜(𝜔) + 𝑟௜(𝜔) 
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and 𝐸ఠష೔
[𝑟௜(𝜔௜, 𝜔ି௜)|𝑏ି௜]  is independent of 𝜔௜ ∈ Ω௜ , then 𝑥෤  is an expectation-VCG payment 

rule. Accordingly, by Theorem 5, (𝑔, 𝑥෤)  induces 𝑏  if and only if 𝑥෤  is an expectation-VCG 

payment rule. 

Q.E.D. 

Appendix B: Open-Bid Implementation of Pure-VCG 

In a single-unit auction with private values, we can implement a pure-VCG mechanism with an 

open-bid procedure, just as we can implement a pivot mechanism with an ascending auction. The 

allocation 𝑎 ∈ 𝐴 ≡ {1,2, ⋯ , 𝑛} specifies the agent who is the winner (who obtains the object). 

Each agent’s type 𝜔௜ ∈ Ω௜ ⊂ 𝑅ା specifies the payoff of that agent when she obtains the object, 

i.e., 

 𝑣௜(𝑎, 𝜔௜) = ቄ
𝜔௜ if  𝑎 = 𝑖,
0 otherwise.

 

 An efficient allocation rule 𝑔 is given by 

 𝑔(𝜔) ∈ argmax
௜∈ே

𝜔௜   for all 𝜔 ∈ Ω. 

The pure-VCG payment rule is given by 

 𝑥௜(𝜔) = ൜
�̄�௜ if  𝑔(𝜔) = 𝑖,

−𝜔௚(ఠ) + �̄�௜ otherwise,
 

where �̄�௜ ∈ 𝑅 is an arbitrary real number for each 𝑖 ∈ 𝑁. 

We consider the following open-bid descending procedure: 

 

1. Each agent pays a fixed participation fee �̄�௜ to the central planner at the beginning. 

2. The mechanism initially sets the price sufficiently high, and then gradually descends the 

price. 

3. When an agent declares taking the object, this descending procedure is immediately 

terminated. The agent who declares taking the object becomes the winner and obtains this 

object.  



31 
 

4. The central planner does not require the winner to pay any additional fee. Instead, the 

central planner gives any other agent (i.e., any loser) the price at the ending time as a 

compensation. 

 

It is a weakly dominant strategy18 for each agent to “declare taking the object” exactly when 

the current price is equal to the agents’ value. If all the agents adopt this dominant strategy, then 

(i) the agent with the highest value wins, (ii) the winner’s payment is �̄�௜ , and (iii) the loser’s 

payment is −𝜔௚(ఠ) + �̄�௜. Accordingly, this open-bid descending procedure generates the same 

outcome as a pure-VCG mechanism. 

The pivot mechanism (the second-price auction) is implemented by the popular ascending 

auction that determines the winner’s payment. By contrast, our procedure descends the price and 

determines the compensation for losers, implementing a pure-VCG mechanism. 

Appendix C: Individual Rationality and Revenues 

 Assuming private values, this section studies whether the central planner can achieve 

efficiency without deficits. We define the central planner’s ex-post revenue by 

(C1) 𝑣଴(𝑔(𝜔), 𝜔଴) + ෍ 𝑥௜(𝜔),

௜∈ே

19 

and the expected revenue in the ex-ante term by 

 𝐸 ൥𝑣଴(𝑔(𝜔), 𝜔଴) + ෍ 𝑥௜(𝜔)

௜∈ே

อ 𝑏൩. 

We introduce three notions of individual rationality below. The timings of the exit opportunities 

are depicted in Figure 1. 

 

 
18

 This open-bid descending procedure satisfies obvious strategy-proofness as defined in Li (2017), same as the 
ascending auctions. 
19 Note that the central planner’s revenue includes not only payments from the agents but also the valuation of 
the central planner. In the single agent case, where the allocation space is degenerate, the value of (C1) 
corresponds to the principal’s payoff in a standard principal–agent model with a risk-neutral principal and agent. 
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Definition 6 (Ex-ante Individual Rationality): A combination of an action profile and a 

mechanism (𝑏, (𝑔, 𝑥)) satisfies ex-ante individual rationality (hereinafter EAIR) if for all 𝑖 ∈ 𝑁, 

we have 

 𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜) ≥ 0 

 

Definition 7 (Interim Individual Rationality): A combination of an action profile and a 

mechanism (𝑏, (𝑔, 𝑥)) satisfies interim individual rationality (IIR) if 

 𝐸ఠష೔
[𝑣௜(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔௜, 𝜔ି௜)|𝑏, 𝜔௜] ≥ 0 

for all 𝑖 ∈ 𝑁 and 𝜔௜ ∈ Ω௜, where 

 𝐸ఠష೔
[𝜉(𝜔෥௜, 𝜔ି௜)|𝑏, 𝜔௜] ≡ ෍ 𝜉(𝜔෥௜, 𝜔ି௜)𝑓 ௜(𝜔ି௜|𝑏, 𝜔௜)

ఠష೔∈ஐష೔

 

denotes the expectation of a function 𝜉(𝜔෥௜,⋅) : Ωି௜ → 𝑅 conditional on (𝑏, 𝜔௜). 

 

Definition 8 (Ex-post Individual Rationality): A mechanism (𝑔, 𝑥)  satisfies the ex-post 

individual rationality (EPIR) if for all 𝑖 ∈ 𝑁 and 𝜔 ∈ Ω, we have 

 𝐸ఠష೔
[𝑣௜(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔௜, 𝜔ି௜)|𝑏, 𝜔௜] ≥ 0. 

 

EPIR implies IIR; however, IIR does not necessarily imply EAIR because the cost for the 

action choice at stage 2 is sunk. The following proposition shows that EPIR implies EAIR: 

 

Proposition 3: Suppose that (𝑔, 𝑥)  induces 𝑏 . Whenever (𝑔, 𝑥)  satisfies EPIR, (𝑏, (𝑔, 𝑥)) 

satisfies EAIR. 

 

Proof: Because 𝑐௜(𝑏௜
଴) = 0, it follows from EPIR and inducibility that 
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𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔)|𝑏] − 𝑐௜(𝑏௜) 

≥ 𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜) − 𝑥௜(𝜔)|𝑏௜
଴, 𝑏ି௜] − 𝑐௜(𝑏௜

଴) ≥ 0, 

which implies EAIR. 

Q.E.D. 

 

 The following proposition calculates the maximal expected revenues (i.e., the least upper-

bounds of the central planner’s expected revenues): 

 

Proposition 4: Suppose that (𝑏, 𝑔) is fully efficient, 𝐵 is rich at 𝑏, and we have private values. 

Then, the maximal expected revenue from (𝑏, (𝑔, 𝑥)) in terms of 𝑥 ∈×௜∈ே 𝑋௜(𝑏, 𝑔) that satisfies 

EPIR, IIR, EAIR, and IIR and EAIR are given by 

(C2) 𝑅ா௉ூோ ≡ 𝑛 ⋅ min
ఠ∈ஐ

෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ − (𝑛 − 1)𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏, 

(C3) 

𝑅ூூோ ≡ ෍ min
ఠ೔∈ஐ೔

௜∈ே

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜ , 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝑏, 𝜔௜቏

− (𝑛 − 1)𝐸 ቎ ෍ ൫𝑔(𝜔), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

ቮ 𝑏቏, 

(C4) 𝑅ா஺ூோ ≡ 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ − ෍ 𝑐௝൫𝑏௝൯

௝∈ே

, 
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(C5) 

𝑅ா஺ூோ,ூூோ ≡ 𝐸[𝑣଴(𝑔(𝜔), 𝜔଴)|𝑏]

+ ෍ min ቐ𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜)|𝑏] − 𝑐௜(𝑏௜),

௜∈ே

min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝑏, 𝜔௜቏

− 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ ቑ, 

respectively. 

 

Proof: By Theorem 4, we can focus on pure-VCG payment rules, where the constraint for EPIR 

is equivalent to 

(C6) min
ఠ∈ஐ

෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ ≥ 𝑧௜  for all 𝑖 ∈ 𝑁. 

We can maximize the expected revenue by letting 𝑧௜ satisfy (C6) with equality for each 𝑖 ∈ 𝑁. 

Accordingly, the central planner can receive from each agent 𝑖 the expected value given by 

 min
ఠ∈ஐ

෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ − 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏, 

which implies (C2), where we add 𝐸[𝑣଴(𝑔(𝜔), 𝜔଴)|𝑏]. 

 Similarly, the constraint for IIR is equivalent to 

(C7) min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝜔௜, 𝑏቏ ≥ 𝑧௜  

for all 𝑖 ∈ 𝑁  and 𝜔௜ ∈ Ω௜ . We can maximize the expected revenue by letting 𝑧௜  satisfy (C7) 

with equality for each 𝑖 ∈ 𝑁. Accordingly, the central planner can receive from each agent 𝑖 the 

expected value given by 
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 min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝)ቮ 𝜔௜, 𝑏቏ − 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏, 

which implies (C3), where we add 𝐸[𝑣଴(𝑔(𝜔), 𝜔଴)|𝑏]. 

 The constraint for EAIR is equivalent to 

(C8) 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

(𝑔(𝜔), 𝜔଴, 𝜔௝)ቮ 𝑏቏ − 𝑐௜(𝑏௜) ≥ 𝑧௜ 

for all 𝑖 ∈ 𝑁. We can maximize the expected revenue by letting 𝑧௜ satisfy (C8) with equality for 

each 𝑖 ∈ 𝑁. Accordingly, the central planner can receive from each agent 𝑖 the expected value 

given by 

 
𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ − 𝑐௜(𝑏௜) − 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ 

= 𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜)|𝑏] − 𝑐௜(𝑏௜), 

which implies (C4), where we add 𝐸[𝑣଴(𝑔(𝜔), 𝜔଴)|𝑏]. 

 The constraint for IIR and EAIR is equivalent to 

(C9) 

min ቐ𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ − 𝑐௜(𝑏௜),

min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

(𝑔(𝜔௜ , 𝜔ି௜), 𝜔଴, 𝜔௝)ቮ 𝑏, 𝜔௜቏ቑ ≥ 𝑧௜ . 

We can maximize the expected revenue by letting 𝑧௜ satisfy (C9) with equality for each 𝑖 ∈ 𝑁. 

Accordingly, the central planner can receive from each agent 𝑖 the expected value given by 
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min ቐ𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜)|𝑏] − 𝑐௜(𝑏௜),

min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝑏, 𝜔௜቏

− 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(𝜔), 𝜔଴, 𝜔௝)ቮ 𝑏቏ ቑ, 

which implies (C5), where we add 𝐸[𝑣଴(𝑔(𝜔), 𝜔଴)|𝑏]. 

Q.E.D. 

 

 Clearly, 𝑅ா஺ூோ is equal to the maximized expected social welfare. From the relative strength 

of the incentive compatibility constraints, it is also clear that 

 𝑅ா௉ூோ ≤ 𝑅ூூோ,ா஺ூோ ≤ 𝑅ூூோ, 

and 

 𝑅ூூோ,ா஺ூோ ≤ 𝑅ா஺ூோ . 

Whether 𝑅ூூோ or 𝑅ா஺ூோ is larger depends on the situation. 

 The following proposition indicates that, with the constraints of EPIR, it is generally difficult 

for the central planner to achieve full efficiency without deficits: 

 

Proposition 5: Suppose that (𝑏, 𝑔) is fully efficient, 𝐵 is rich at 𝑏, and we have private values. 

Suppose also that ∑ 𝑐௜(𝑏௜) > 0௜∈ே   and there exists a null state �̱� = (�̱�଴, . . . , �̱�௡) ∈ Ω  in the 

sense that 𝑣଴(𝑎, �̱�଴) = 0 for all 𝑎 ∈ 𝐴, and for every 𝑖 ∈ 𝑁, 𝑣௜(𝑎, 𝜔଴, �̱�௜) = 0 for all 𝑎 ∈ 𝐴 

and 𝜔଴ ∈ Ω଴. Then, with EPIR, the central planner has a deficit in expectation: 𝑅ா௉ூோ < 0. 

 

Proof: If 𝑅ா஺ூோ < 0 , the conclusion would be immediate from the fact that 𝑅ா௉ூோ ≤ 𝑅ா஺ூோ . 

Suppose 𝑅ா஺ூோ ≥ 0. Because for (�̱�଴, �̱�ଵ, ⋯ , �̱�௡), ∑ 𝑣௜(𝑎, �̱�଴, �̱�௜)௜∈ே∪{଴} = 0 holds for all 𝑎 ∈

𝐴, we have 



37 
 

 min
ఠ∈ஐ

෍ 𝑣௜

௜∈ே∪{଴}

(𝑔(𝜔), 𝜔଴, 𝜔௜) ≤ 0. 

It follows from 𝑅ா஺ூோ ≥ 0 and ∑ 𝑐௜௜∈ே (𝑏௜) > 0 that we have 

 𝐸 ቎ ෍ 𝑣௜

௜∈ே∪{଴}

(𝑔(𝜔), 𝜔଴, 𝜔௜)ቮ 𝑏቏ ≥ ෍ 𝑐௜

௜∈ே

(𝑏௜) > 0. 

From these observations, 

𝑅ா௉ூோ = 𝑛min
ఠ∈ஐ

෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔௝൯ − (𝑛 − 1)𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ 

< 0. 

Q.E.D. 

 

 If 𝑅ா஺ூோ < 0 , the conclusion is immediate from 𝑅ா௉ூோ ≤ 𝑅ா஺ூோ . Suppose 𝑅ா஺ூோ ≥ 0 . It 

follows from ∑ 𝑐௜(𝑏௜) > 0௜∈ே   that the second term of 𝑅ா௉ூோ  in (C2) is negative. Due to the 

presence of the null state, the first term of 𝑅ா௉ூோ in (C2) is non-positive. Accordingly, 𝑅ா௉ூோ is 

negative. 

 By replacing EPIR with weaker participation constraints, such as IIR and EAIR, and adding 

some restrictions, it becomes much easier for the central planner to achieve full efficiency without 

deficits. 

 We say that we have conditionally independent types if for every 𝑏෨ ∈ 𝐵 , there exists a 

marginal type distribution of agent 𝑖, 𝑓௜(⋅ |𝑏௜) such that for all 𝜔 ∈ Ω, we have 

 𝑓൫𝜔ห𝑏෨൯ = ෑ 𝑓௜൫𝜔௜ห𝑏෨൯

௜∈ே∪{଴}

, 

When we have conditionally independent types, once we fix an action profile, 𝜔௜ provides no 

information for predicting 𝜔ି௜. 

The following proposition states that, when we have conditionally independent types, the 

central planner can earn the same expected revenue as in the case of observable actions: 
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Proposition 6: Suppose that (𝑏, 𝑔) is fully efficient, 𝐵 is rich at 𝑏, and we have private values 

and conditionally independent types. Then, the expected revenue achieved by any VCG mechanism 

that satisfies IIR and EAIR is less than or equal to 𝑅ூூோ,ா஺ூோ. Furthermore, there exists a pure-

VCG mechanism that satisfies IIR and EAIR and achieves 𝑅ூூோ,ா஺ூோ. 

 

Proof: We have already shown that there is a pure-VCG mechanism that achieves 𝑅ூூோ,ா஺ூோ . 

Assuming conditionally independent types and private values, we consider an arbitrary VCG 

mechanism (𝑔, 𝑥) such that for each 𝑖 ∈ 𝑁, there exists 𝑦௜ : Ωି௜ → 𝑅 such that 

 𝑥௜(𝜔) = − ෍ 𝑣௝൫𝑔(𝜔), 𝜔଴, 𝜔௝൯ + 𝑦௜(𝜔ି௜)

௝∈ே∪{଴}∖{௜}

 for all 𝜔 ∈ Ω. 

EAIR implies 

 𝐸[𝑦௜(𝜔ି௜)|𝑏] ≤ 𝐸 ቎ ෍ 𝑣௝൫𝑔(𝜔), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

ቮ 𝑏቏ − 𝑐௜(𝑏௜), 

while IIR requires 

 𝐸[𝑦௜(𝜔ି௜)|𝑏, 𝜔௜] ≤ 𝐸ఠష೔
቎ ෍ 𝑣௝(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝)

௝∈ே∪{଴}

ቮ 𝑏, 𝜔௜቏ 

for all 𝜔௜ ∈ Ω௜, or, equivalently, 

 𝐸[𝑦௜(𝜔ି௜)|𝑏] ≤ min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

ቮ 𝑏, 𝜔௜቏. 

Here, we used the fact that 𝐸[𝑦௜(𝜔ି௜)|𝑏] = 𝐸[𝑦௜(𝜔ି௜)|𝑏, 𝜔௜]  because of conditional 

independence. Accordingly, we have 
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𝐸[𝑦௜(𝜔ି௜)|𝑏] 

≤ min ቐ𝐸 ቎ ෍ 𝑣௝൫𝑔(𝜔), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

ቮ 𝑏቏ − 𝑐௜(𝑏௜),

min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝൫𝑔(𝜔௜ , 𝜔ି௜), 𝜔଴, 𝜔௝൯

௝∈ே∪{଴}

ቮ 𝑏, 𝜔௜቏ቑ, 

which implies 

 𝐸 ൥𝑣଴(𝑔(𝜔), 𝜔଴) + ෍ 𝑥௜(𝜔)

௜∈ே

อ 𝑏൩ ≤ 𝑅ூூோ,ா஺ூோ. 

Q.E.D. 

 

One may expect that the central planner will receive a greater expected revenue than 

𝑅ூூோ,ா஺ூோ once we assume that the actions are fixed or publicly observable. However, Proposition 

6 indicates that, with conditionally independent types, no VCG mechanism is able to achieve the 

expected revenue greater than 𝑅ூூோ,ா஺ூோ. This implies that 𝑅ூூோ,ா஺ூோ is the upper-bound of the 

expected revenue irrespective of the requirement of inducibility.20 

 Proposition 6 is related to the observation from a classical principal–agent model. When both 

the principal and the agent are risk-neutral, one of the revenue-maximizing contracts (which 

achieves the first-best of the principal) is to sell the company to that agent—that is, to give the 

entire outcome (externalities to the principal) in exchange for a fixed constant fee (Harris and 

Raviv, 1979). By regarding pure-VCG mechanisms as an extension of such selling-out contracts, 

Proposition 6 indicates that selling the company is the unique revenue-maximizing contract when 

the action space is rich at the efficient action profile and the agent has unlimited liability (which 

corresponds to EAIR and IIR). 

 
20

 In the main body of this paper, we assume finite state spaces. Accordingly, some non-VCG mechanisms may 
be allocatively efficient and incentive compatible. However, if we take a fine grid of the states to make the state 
space closer to the continuum (with which the regularity condition of the Green–Laffont–Holmström theorem is 
satisfied), only the mechanisms that are close to VCG can be incentive compatible. In such a case, the maximum 
possible revenue is also close to 𝑅ூூோ,ா஺ூோ. 
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 It is widely accepted that efficiency is achievable through a VCG mechanism without running 

expected deficits if inducibility is not required. With conditionally independent types and some 

moderate restrictions, the non-negativity of 𝑅ூூோ,ா஺ூோ is guaranteed as follows: 

 

Proposition 7: Assume the hypotheses of Proposition 4, conditionally independent types, and the 

following conditions: 

Non-Negative Valuation: For every 𝑖 ∈ 𝑁 ∪ {0} and 𝜔 ∈ Ω, 

 𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜) ≥ 0. 

Non-Negative Expected Payoff: For every 𝑖 ∈ 𝑁, 

(C10) 𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௝)|𝑏] − 𝑐௜(𝑏௜) ≥ 0. 

With IIR and EAIR, the central planner has non-negative expected revenue: 𝑅ூூோ,ா஺ூோ ≥ 0. 

 

Proof: From conditionally independent types, non-negative valuations, and null state, it follows 

that, for every 𝑖 ∈ 𝑁 and 𝜔௜ ∈ Ω௜, 

 

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝑏቏ 

= 𝐸ఠష೔
቎max

௔∈ே
෍ 𝑣௝

௝∈ே∪{଴}

൫𝑎, 𝜔଴, 𝜔௝൯ቮ 𝑏቏ 

≥ 𝐸ఠష೔
቎max

௔∈ே
෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

൫𝑎, 𝜔଴, 𝜔௝൯ቮ 𝑏቏ 

= 𝐸ఠష೔
቎𝑣௜(𝑔(�̱�௜, 𝜔ି௜), 𝜔଴, �̱�௜) + ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(�̱�௜, 𝜔ି௜), 𝜔଴, 𝜔௝)ቮ 𝑏቏, 

which implies 
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 min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝)ቮ 𝑏቏ = 𝐸ఠష೔
቎max

௔∈஺
෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑎, 𝜔଴, 𝜔௝)ቮ 𝑏቏. 

Therefore, we have 

 min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

(𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝)ቮ 𝑏቏ − 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(𝜔), 𝜔଴, 𝜔௝)ቮ 𝑏቏ ≥ 0 

From the assumption of non-negative expected payoffs, we have 

 𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜)|𝑏] − 𝑐௜(𝑏௜) ≥ 0 

From these observations, for every 𝑖 ∈ 𝑁 

 

min ቐ𝐸[𝑣௜(𝑔(𝜔), 𝜔଴, 𝜔௜)|𝑏] − 𝑐௜(𝑏௜),

min
ఠ೔∈ஐ೔

𝐸ఠష೔
቎ ෍ 𝑣௝

௝∈ே∪{଴}

൫𝑔(𝜔௜, 𝜔ି௜), 𝜔଴, 𝜔௝൯ቮ 𝑏቏

− 𝐸 ቎ ෍ 𝑣௝

௝∈ே∪{଴}∖{௜}

(𝑔(𝜔), 𝜔଴, 𝜔௝)ቮ 𝑏቏ቑ ≥ 0, 

which, along with non-negative valuations, implies 𝑅ூூோ,ா஺ூோ ≥ 0. 

Q.E.D. 

 

 Non-negative valuation excludes the case of bilateral bargaining addressed by Myerson and 

Satterthwaite (1983), where it is impossible for the central planner to achieve allocative efficiency 

without deficits. Non-negative expected payoff excludes the case of opportunism in the hold-up 

problem, where the sunk cost 𝑐௜(𝑏௜) is so large that it violates inequality (C10). By eliminating 

these cases and replacing EPIR with IIR and EAIR, we can derive the possibility result in liability 

implied by Proposition 7. 
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