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Abstract

This paper presents a new asset pricing model incorporating fundamental uncer-
tainties by choice of a probability measure. This approach is novel in that we in-
corporate uncertainties on Brownian motions describing risks into the existing asset
pricing model. Particularly, we show extensions of interest rate models to the ones with
uncertainties on the Brownian motions, which make the yield curve reflect not only
economic factors but also views of the market participants on the Brownian motions.
Such yield curve models are especially important in yield curve trading of hedge funds
as well as monetary policy making of central banks under low interest rate environ-
ments observed after the global financial crisis, in which yield curves are less affected by
economic factors since they are controlled by the central banks, but are driven mainly
by sentiments of market participants.

Firstly, to model aggressive (positive)/conservative (cautious) attitudes towards
such fundamental uncertainties, we consider a sup-inf/inf-sup problem on the utility of
a representative agent with respect to uncertainties over Brownian motions, i.e. fun-
damental market risks, by choice of a probability measure. Secondly, we show that the
problem is solved via a backward-stochastic differential equations (BSDEs) approach.
Then, under a probability measure determined by solving the sup-inf/inf-sup problem,
we propose interest rate models with those uncertainties and explicitly obtain their
term structures of interest rates. Particularly, we present two approaches to solving
the relevant coupled forward-backward stochastic differential equations (FBSDEs) to
obtain expressions of the equilibrium interest rate and the term structure of interest
rates. In detail, the first approach is by comparison theorems, and the second approach
is to predetermine the signs of the volatilities of the BSDE in the coupled system and
confirm them by explicitly solving the separated BSDE. Finally, we present concrete
examples with numerical experiments.

1 Introduction

This paper presents a new asset pricing model incorporating fundamental uncertainties by
choice of a probability measure. This approach is novel in that we incorporate uncertainties
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on Brownian motions describing risks into the existing asset pricing model. Particularly,
we show extensions of interest rate models to the ones with uncertainties on the Brownian
motions, which make the yield curve reflect not only economic factors but also views on the
Brownian motions of the market participants. Such yield curve models are especially impor-
tant in yield curve trading of hedge funds as well as monetary policy making of central banks
under low interest rate environments observed after the global financial crisis, in which yield
curves are less affected by economic factors since they are controlled by the central banks, but
are driven mainly by sentiments of market participants. Specifically, we model the market
participants’ aggressive (positive)/conservative (cautious) attitudes towards uncertainties by
a sup-inf/inf-sup problem on an agent’s utility by choice of a probability measure. The prob-
lem reduces to solving a forward-backward stochastic differential equations. In the theory of
asset pricing with ambiguity, such as the methods of robust control in Hansen and Sargent
[9] and the pricing with ambiguity in Chen and Epstein [5], only conservative attitudes of
the agent towards risks has been considered. However, in practice, aggressive attitudes of
the market about some risks are also reflected in asset prices. Moreover, the term structure
of interest rates in the recent global low interest environments are driven by those optimistic
and pessimistic sentiment of the market (e.g. see Nishimura-Sato-Takahashi [20]). As far
as we know, there has not been an asset pricing model considering both conservative and
aggressive sides. Our approach is also new in taking the both sides into account by means
of the change in probability measures.

“Market sentiment”, which is modeled as attitudes towards fundamental uncertainties,
that is, uncertainties about fundamental market risks represented by Brownian motions
in this paper, is frequently considered as an important factor for a determinant of asset
market prices. After the global financial crisis in 2007-2009, the financial markets have been
more driven by market sentiment rather than economic events. Particularly, in the global
recession after the crisis, central banks, such as Federal Reserve, European Central Bank,
and Bank of Japan, conducted monetary easing to lower interest rates (see Joyce et al. [11],
Szczerbowicz [25], and Ueda [26] for instance). Bank of Japan started yield curve control as
a monetary easing policy in 2016, which aims to control long-end interest rates, which had
been untouched by the central bank and determined solely by supply and demand in the bond
market (e.g. Bank of Japan [1]). The quantitative and qualitative monetary easing with yield
curve control by Bank of Japan gathered attention from other central banks as a new method
of monetary easing in low interest rate environments. In the low interest rate environments
in which the short-end of the yield curve is flat, the long-end of the yield curve is driven by
market sentiment and hedge funds actively trade betting on movements of the long-end of
the yield curve (e.g. McGeever [15]). Thus, it is important for central banks as well as hedge
funds to use interest rate models incorporating such sentiment, which is not explicitly utilized
in traditional term structure models of interest rates. This paper develops a foundation and
provides concrete examples of term structure models of interests with market sentiment, i.e.
conservative or aggressive attitudes towards fundamental uncertainties (uncertainties over
fundamental market risks).

Particularly, an idea behind the models is as follows: In an economic model where
risks are expressed by Brownian motions (a multi-dimensional Brownian motion), there may
exist a fundamental uncertainty, which is an uncertainty about a risk of each Brownian
motion and is represented by a stochastic process λj for the uncertainty corresponding to
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the j-th risk (Brownian motion Bj). When there is a fundamental uncertainty about the
j-th risk, we only know the true j-th risk is one of {Bλ

j ;λj ∈ Λj} with Bλ
j,t := Bj,t −∫ t

0
λj,sds, 0 ≤ t < ∞ given some set Λj, and we cannot tell which is the true one. In

contrast, if λj ≡ 0 (i.e. Bλ
j = Bj), there is no fundamental uncertainty about the j-th risk.

Here, Bλ
j is a Brownian motion under a new probability measure induced by (λj)j through

a change of a probability measure. (See the details for the following sections.) Further,
in order to model aggressive/conservative attitudes towards fundamental uncertainties, we
consider a sup-inf/inf-sup problem on a representative agent’s utility, who optimally choses
its probability measure through minimizing the utility with respect to the fundamental
uncertainty (λ1) for the first Brownian motion (B1) while maximizing it with respect to
the fundamental uncertainty (λ2) for the second Brownian motion (B2). Here, we assume
that the agent has a conservative (cautious) attitude towards taking a risk of one Brownian
motion say B1 and an aggressive (positive) attitude towards a risk of a different Brownian
motion B2, while there are no fundamental uncertainties about the risks associated with
the other Brownian motions. Hereafter, we call these two independent Brownian motions
market risks, and also refer to the fundamental uncertainties λj, j = 1, 2, as uncertainties
over the market risks.

For example, B1 and B2 can be taken as Brownian motions associated with foreign
and domestic news, respectively. In such a case, the market, which is deemed to be the
agent, is cautious about taking risks related to the foreign news, while it has strong views on
risks associated with the domestic news, therefore is willing to take those risks aggressively.
Nishimura-Sato-Takahashi [20] estimates a term structure model with explicit sentiment
factors in a period including the global financial crisis, in which market confidence was
substantially eroded. In particular, it makes use of a large text data of market news to
obtain observations associated with sentiment factors. In the work, the market is cautious
about foreign risks, such as news on fiscal conditions of foreign countries and foreign exchange
rates, while it is aggressive about domestic risks, such as domestic business conditions. In
another instance, B1 and B2 can be taken as Brownian motions related to foreign exchange
and stock news, respectively. This implies that the market is bearish about the views on
foreign exchange risks, however is bullish about taking equity risks.

Specifically, we take a BSDE approach to solve a sup-inf/inf-sup problem arising from
a model that incorporates conservative and aggressive attitudes towards risks. Then, we
consider asset pricing under the probability measure of the agent, which is described as a
result of the sup-inf/inf-sup problem, and show that the interest rate is obtained by solving
a system of FBSDEs. To the best of our knowledge, this is the first attempt to rigorously
develop interest rate models with fundamental uncertainties based on a BSDE approach.
Also, we provide cases in which the system of FSBDEs reduces to a combination of a BSDE
and forward SDEs.

Furthermore, we present an example of the interest rate model with fundamental uncer-
tainties, which is deterministic without these uncertainties. In this case, the uncertainties are
the only sources of the randomness in the short rate and the yield curve movements. Such a
model is particularly important in low interest rate environments, in which the yield curve
moves mainly by uncertainties over market risks. For instance, Bank of Japan introduced
yield curve control in their monetary policy in 2016 for further monetary easing in a low
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interest rate environment (e.g. Bank of Japan [1]). Also, in low interest rate environments,
hedge funds actively trade on yield curves (e.g. McGeever[15]). This model helps central
banks effectively control yield curves and hedge funds trade on the movements of the curves.

While the theories of robust control (e.g. Hansen and Sargent [9]) and ambiguity in Chen
and Epstein [5] consider the conservative side in their utility maximization problems, our
study takes both aggressive (positive) and conservative (cautious) attitudes of the represen-
tative agent into pricing and derive expressions of an equilibrium interest rate and its yield
curve under uncertainties over different market risks. Moreover, we present conditions with
which the system of FBSDEs reduces to a combination of a BSDE and forward SDEs, and
solve the system to obtain explicit expressions of the equilibrium interest rate and market
price of risks for concrete utilities. Furthermore, we consider cases in which fundamental
uncertainties increase as the market risks grow, which is expressed by the ranges of the
representative agent’s uncertainties about Brownian motions varying in accordance with the
state-variable processes describing the risks.

For other financial applications of optimal control, Gao et al.[7] consider a problem of
hedging risk exposure to imperfectly liquid stock by investing in put options. Chronopoulos
et al.[2] propose an analytical real options framework that incorporates major components
relevant to cybersecurity practice. Gao et al.[6] investigate an uncertain stock model by
uncertain differential equations involved by a Liu process. Wu and Chung [27] propose a
new approach for options trading based on Kelly criterion. Calafiore [3] deals with optimal
allocation of a portfolio by a data-driven approach computing the portfolio composition di-
rectly from historical data by a min-max based portfolio selection rule. Mukuddem-Petersen
and Petersen [17] consider optimal risk management of banks in a stochastic dynamic set-
ting. Yiu et al. [28] investigate an optimal portfolio selection problem with regime switching
and value-at-risk constraint. Zhang et al. [30] study American option pricing by applying
augmented Lagrangian method to the corresponding variational inequality problem. Saito
and Takahashi [22] examine derivatives pricing under market impact through a stochastic
control problem solved by an asymptotic method. Saito and Takahashi [23] consider a lin-
ear quadratic stochastic differential game to investigate trading behaviors of three types of
players in high frequency stock markets.

This paper is organized as follows. After Section 2 introduces a model with fundamental
uncertainties, which is a sup-inf/inf-sup problem on a stochastic differential utility. Section
3 proves existence and uniqueness of a solution of BSDEs associated with the sup-inf/inf-
sup problem. Section 4 shows that the sup-inf/inf-sup problem reduces to solving of the
associated BSDE with stochastic Lipschitz coefficients. Section 5 presents expressions of
an equilibrium interest rate and yield curve. Section 6 provides a case with numerical
experiments, in which explicit expressions of the equilibrium interest rate are obtained by
comparison theorems. Section 7 shows that coupled FBSDEs under the agent’s probability
measure are separated into forward SDEs and a BSDE under certain conditions, and the
expressions of the equilibrium interest rate and the term structure of interest rates are
obtained for three types of stochastic differential utilities. Finally, Section 8 concludes.
Appendix shows the proofs and derivations omitted in the main text.
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2 Sup-inf/inf-sup problem with respect to fundamen-

tal uncertainties

This section introduces a sup-inf problem arising from a model with fundamental uncertain-
ties, which incorporates conservative and aggressive attitudes towards risks.

First, we suppose that a filtered probability space (Ω,F , {Ft}0≤t≤T , P ) and a d-dimensional
Brownian motion B = (B1, . . . , Bd) (d ≥ 2) are given, where {Ft}0≤t≤T is the augmentation
of the natural filtration generated by B, and we call P the physical measure, hereafter. Next,
for a R2-valued {Ft}-progressively measurable processes λ = (λ1, λ2), where Zt(λ) defined
by

Zt(λ) := exp

{
2∑

j=1

∫ t

0

λj,sdBj,s −
2∑

j=1

1

2

∫ t

0

λ2
j,sds

}
(1)

is a martingale, we define a probability measure P λ1,λ2 by

P λ1,λ2(A) := E[ZT (λ)1A]; A ∈ FT , (2)

where, λ1 and λ2 stand for uncertainties over the risks associated with Brownian motions
B1 and B2, respectively. We also define a set Λ as

Λ = {(λ1, λ2);Z(λ) is a martingale and |λj,t| ≤ |λ̄j(t,Xt)|, 0 ≤ t ≤ T, j = 1, 2}, (3)

where λ̄j : [0, T ] × Rl → R (l ≥ d), j = 1, 2, are measurable functions and Rl-valued
stochastic process X is a state variable satisfying a stochastic differential equation (SDE):
with µx, σx,j : Rl → Rl, j = 1, 2, . . . , d,

dXt = µx(Xt)dt+
d∑

j=1

σx,j(Xt)dBj,t. (4)

Hereafter, we assume that λ̄j (j = 1, 2) and X are exogenously given and that SDE (4) has
a unique strong solution.

Then, a representative agent who has a conservative (aggressive) view on Brownian mo-
tion B1(B2) supposes the worst (best) case. Thus, the agent implements optimization with
respect to λj (j = 1, 2), that is, minimize (maximize) its utility with respect to λ1(λ2).
In contrast, the agent has no uncertainties over risks represented by Brownian motions Bj,

j = 3, · · · , d, so that we have λj ≡ 0. Then, Bλ1,λ2

1,t = B1,t−
∫ t

0
λ1,sds, B

λ1,λ2

2,t = B2,t−
∫ t

0
λ2,sds

and Bλ1,λ2

j = Bj for j = 3, · · · , d are Brownian motions under the probability measure P λ1,λ2

generated by a martingale Z(λ) with λ = (λ1, λ2, 0, · · · , 0).
More concretely, given a consumption process c, an agent with a standard utility solves

the following problem:

sup
λ2∈Λ2

inf
λ1∈Λ1(λ2)

EPλ1,λ2

[∫ T

0

e−βtu(ct)dt

]
, (β > 0), (5)
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or

inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

EPλ1,λ2

[∫ T

0

e−βtu(ct)dt

]
, (β > 0), (6)

where conservative and aggressive attitudes are expressed by infλ1 and supλ2
, respectively.

Here, for (j, k = 1, 2, k ̸= j) we define Λj and Λj(λk) respectively as

Λj = {λj; |λj,t| ≤ |λ̄j,t(Xt)|, 0 ≤ t ≤ T}, j = 1, 2, (7)

and

Λj(λk) = {λj; |λj,t| ≤ |λ̄j,t(Xt)|, 0 ≤ t ≤ T , and Z((λ1, λ2)) is a martingale for given λk ∈ Λk}
for (j, k) = (1, 2), (2, 1). (8)

More generally, let us define a representative agent’s stochastic differential utility (SDU,
continuous-time version of recursive utility. For an introduction of SDU, see Section 1.3 in
Ma and Yong [14] for instance) Y λ1,λ2 as follows: with an aggregator g : [0, T ]× C([0, T ] →
Rd)×Rl ×R → R,

Y λ1,λ2
t = EPλ1,λ2

[
ξ +

∫ T

t

g(s,B,Xs, Y
λ1,λ2
s )ds

∣∣∣∣Ft

]
, (9)

where ξ is a bounded FT -measurable random variable.
Next, let us set J(λ1, λ2) as

J(λ1, λ2) = Y λ1,λ2

0 , (λ1, λ2) ∈ Λ. (10)

Then, we consider the following sup-inf and inf-sup problems:

• (sup-inf problem)

sup
λ2∈Λ2

inf
λ1∈Λ1(λ2)

J(λ1, λ2)

= sup
λ2∈Λ2

inf
λ1∈Λ1(λ2)

EPλ1,λ2

[
ξ +

∫ T

0

g(s,B,Xs, Y
λ1,λ2
s )ds

]
, (11)

• (inf-sup problem)

inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

J(λ1, λ2)

= inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

EPλ1,λ2

[
ξ +

∫ T

0

g(s,B,Xs, Y
λ1,λ2
s )ds

]
, (12)

where the representative agent is conservative about the uncertainty about B1 and minimizes
the stochastic differential utility J(λ1, λ2) with respect to λ1, and is aggressive about the
uncertainty about B2 and maximizes J(λ1, λ2) with respect to λ2.
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3 BSDEs for the model with fundamental uncertain-

ties

In this section, we discuss backward stochastic differential equations (BSDEs) associated with
a model with fundamental uncertainties introduced in the previous section. Particularly, we
provide existence and uniqueness of solutions of those BSDEs under certain conditions in
Propositions 1 and 2.

First, since Zλ1,λ2 , (λ1, λ2) ∈ Λ is a P -martingale, applying Girsanov’s theorem, we can
define a d-dimensional Brownian motion under P λ1,λ2 , Bλ1,λ2 = (Bλ1,λ2

1 , . . . , Bλ1,λ2

d ), by

Bλ1,λ2

1,t = B1,t −
∫ t

0

λ1,sds,

Bλ1,λ2

2,t = B2,t −
∫ t

0

λ2,sds,

Bλ1,λ2

j,t = Bj,t (3 ≤ j ≤ d). (13)

Then, Y λ1,λ2 in (9) is characterized as a unique solution of the following BSDE:

dY λ1,λ2
t = −g(t, B,Xt, Y

λ1,λ2
t )dt+

d∑
j=1

Zλ1,λ2

j,t dBλ1,λ2

j,t

= −
(
g(t, B,Xt, Y

λ1,λ2
t ) + λ1,tZ

λ1,λ2

1,t + λ2,tZ
λ1,λ2

2,t

)
dt+

d∑
j=1

Zλ1,λ2

j,t dBj,t, Y λ1,λ2

T = ξ.

(14)

Namely, Y λ1,λ2
t is expressed as

Y λ1,λ2
t = ξ +

∫ T

t

g(s,B,Xs, Y
λ1,λ2
s )ds−

d∑
j=1

∫ T

t

Zλ1,λ2

j,s dBλ1,λ2

j,s

=

∫ T

t

(
g(s,B,Xs, Y

λ1,λ2
s ) + λ1,sZ

λ1,λ2

1,s + λ2,sZ
λ1,λ2

2,s

)
ds−

d∑
j=1

∫ T

t

Zλ1,λ2

j,s dBj,s. (15)

In particular, we note that by taking a conditional expectation under P λ1,λ2 in both sides
of the first equality in (15), we obtain (9) if the Itô integral is a martingale.

The next proposition states that BSDE (14) ((15)) with stochastic Lipschitz coefficients
λ1 and λ2 has a unique solution under certain conditions.

Proposition 1. Suppose that SDE (4) has a unique strong solution and g : [0, T ]×C([0, T ] →
Rd)×Rl ×R → R satisfies the following conditions: (i) g(t, ω, x, 0) is bounded. (ii) There
exists a constant L > 0 such that

|g(t, ω, x, y)− g(t, ω, x, y′)| ≤ L|y − y′|,
∀y, y′ ∈ R, x ∈ Rl, ω ∈ C([0, T ] → Rd), t ∈ [0, T ]. (16)
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Suppose also that an exponential local martingale with progressively measurable processes λj

(j = 1, 2),

exp

(
−1

2

2∑
j=1

∫ T

0

λ2
j,sds+

2∑
j=1

∫ T

0

λj,sdBj,s

)
(17)

is a martingale and

E

[
sup

0≤s≤T
|λs|4

]
< ∞. (18)

Then, BSDE

dY λ1,λ2
t = −

(
g(t, B,Xt, Y

λ1,λ2
t ) + λ1,tZ

λ1,λ2

1,t + λ2,tZ
λ1,λ2

2,t

)
dt+

d∑
j=1

Zλ1,λ2

j,t dBj,t,

Y λ1,λ2

T = ξ, (19)

has a unique solution (Y λ1,λ2 , Zλ1,λ2) such that

E

[∫ T

0

|Zλ1,λ2
s |2ds

]
< ∞ (20)

and Y λ1,λ2 is uniformly bounded with respect to (t, ω) ∈ [0, T ]× C([0, T ] → Rd).

Proof. See Appendix A.
Also, in the next proposition, we prove existence and uniqueness of a solution for a

BSDE that contains |Zλ1,λ2

1 | and |Zλ1,λ2

2 | in the driver. The BSDE appears in solving sup-inf
problem (11) and inf-sup problem (12) in Section 4, where λ1 and λ2 in (14) ((15)) are given
by −|λ̄1(X)|sgn(Zλ1,λ2

1 ) and |λ̄2(X)|sgn(Zλ1,λ2

2 ), respectively,

Proposition 2. Suppose that SDE (4) has a unique strong solution and g : [0, T ]×C([0, T ] →
Rd)×Rl ×R → R satisfies the following conditions: (i) g(t, ω, x, 0) is bounded. (ii) There
exists a constant L > 0 such that

|g(t, ω, x, y)− g(t, ω, x, y′)| ≤ L|y − y′|,
∀y, y′ ∈ R, x ∈ Rl, ω ∈ C([0, T ] → Rd), t ∈ [0, T ].

If a weak version of Novikov’s condition (e.g. Corollary 3.5.14 in Karatzas and Shreve [12]);
there exists a partition of [0, T ], 0 = t0 < t1 < · · · < tN = T , such that

E

[
exp

(
2∑

j=1

1

2

∫ tn

tn−1

λ̄j,s(Xs)
2ds

)]
< ∞, for all 1 ≤ n ≤ N. (21)

is satisfied for λ̄1 and λ̄2 and

E

[
sup

0≤s≤T
|λ̄s|4

]
< ∞, (22)
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BSDE

dY
λ∗
1,λ

∗
2

t = −
(
g(t, B,Xt, Y

λ∗
1,λ

∗
2

t )− |λ̄1,t(Xt)||Z
λ∗
1,λ

∗
2

1,t |+ |λ̄2,t(Xt)||Z
λ∗
1,λ

∗
2

2,t |)
)
dt+

d∑
j=1

Z
λ∗
1,λ

∗
2

j,t dBj,t,

Y
λ∗
1,λ

∗
2

T = ξ, (23)

has a unique solution (Y λ∗
1,λ

∗
2 , Zλ∗

1,λ
∗
2) such that

E

[∫ T

0

|Zλ∗
1,λ

∗
2

s |2ds
]
< ∞ (24)

and Y λ∗
1,λ

∗
2 is uniformly bounded with respect to (t, ω) ∈ [0, T ]× C([0, T ] → Rd).

Proof. See Appendix B.

3.1 Examples of the state-variable process

In the following, we present two examples of a state-variable process in which the assumptions
(17) & (18) in Proposition 1 and (21) & (22) in Proposition 2 are satisfied.

Example 1. (Ornstein-Uhlenbeck process)
Suppose that λ̄j(t,Xt) = λ̃j,tXt, j = 1, 2 for some R1×l-valued bounded deterministic

functions λ̃j,t = (λ̃
(1)
j,t . . . λ̃

(l)
j,t), where λ̃

(1)
j,t , . . . , λ̃

(l)
j,t > 0, and Xt is a Rl-valued Ornstein-

Uhlenbeck process following a SDE:

dXt = (K1,tXt +K2,t)dt+ Σx,tdBt, (25)

where K1,t, K2,t,Σx,t are bounded deterministic functions on [0, T ] taking their values on
Rl×l,Rl×1,Rl×d, respectively. Then, the moment conditions (18) and (22) are clearly sat-
isfied. Moreover, an exponential local martingale (17) is a martingale, which is proved as
follows.

First, Xt is expressed as (e.g. Eq. 5.6.6 in p.354 in Karatzas and Shreve [12])

Xt = Φt

[
X0 +

∫ t

0

Φ−1(s)K2,sds+

∫ t

0

Φ−1(s)Σx(s)dBs

]
, (26)

where Φ(t) is the fundamental solution of the l × l matrix ODE:

Φ̇(t) = K1,tΦ(t), Φ(0) = I. (27)

Let Ht(ω) = (λ1,t(ω) λ2,t(ω)). Note that

|Ht(ω)|
≤ |λ1,t(ω)|+ |λ2,t(ω)|
≤ |λ̃1,t||Xt|+ |λ̃2,t||Xt|

≤
(
|λ̃1,t|+ |λ̃2,t|

)
sup
0≤s≤t

|Xs|. (28)
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Since

sup
0≤s≤t

|Xs| ≤ sup
0≤s≤t

(
|ΦsX0|+

∣∣∣∣Φs

∫ s

0

Φ−1(v)K2,vdv

∣∣∣∣)+ sup
0≤s≤t

∣∣∣∣Φs

∫ s

0

Φ−1(v)σx(v)dBv

∣∣∣∣
≤ sup

0≤s≤t

(
|ΦsX0|+

∣∣∣∣Φs

∫ s

0

Φ−1(v)K2,vdv

∣∣∣∣)
+ sup

0≤s≤t

∑
1≤i,j≤n

|Φs,i,j| sup
0≤s≤t

∣∣∣∣∫ s

0

Φ−1(v)σx(v)dBv

∣∣∣∣ , (29)

setting

k =
(
|λ̃1,t|+ |λ̃2,t|

)
max

(
sup
0≤s≤t

(
|ΦsX0|+

∣∣∣∣Φs

∫ s

0

Φ−1(v)K2,vdv

∣∣∣∣) , sup
0≤s≤t

∑
1≤i,j≤n

|Φs,i,j|

)
,

(30)

we have

|Ht(ω)| ≤ k

(
1 + sup

0≤s≤t

∣∣∣∣∫ s

0

Φ−1(v)σx(v)dBv

∣∣∣∣) . (31)

Since Φ−1(t)σx(t) is a bounded deterministic function on [0, T ], by Lemma 15.5.7 in
Cohen and Elliott [4], for each 0 ≤ s ≤ T , there exists a positive constant a(s) such that

E

[
exp

(
a(s)

∣∣∣∣∫ s

0

Φ−1(v)σx(v)dBv

∣∣∣∣2
)]

< ∞. (32)

Together with the fact that {
∫ s

0
Φ−1(v)σx(v)dBv}0≤s≤T is a martingale, by Example 15.5.6

in Cohen and Elliott [4], the exponential local martingale (17) is a martingale. We also
remark that a weak version of Novikov’s condition (21) is satisfied. (See Examples 15.5.6
and 15.5.3 in Cohen and Elliott [4].)

Example 2. (Square-root process)
Suppose that |λj| ≤ λ̄j(t,Xt) = λ̃j,t

√
Xj,t, j = 1, 2 for some bounded deterministic

functions λ̃j,t > 0, and Xt is a R2-valued square root process following a SDE:

dXj,t = (aj,t − bj,tXj,t)dt+ σx,j,t

√
Xj,tdBj,t, Xj,0 = xj > 0, j = 1, 2, (33)

where aj,t, bj,t, σx,j,t : [0, T ] → R are bounded functions with aj,t, bj,t > 0, σx,j,t > c0, 0 ≤
t ≤ T, j = 1, 2 for some c0 > 0, and B1, B2 are independent. Then, a weak version of
Novikov’s condition (21) is satisfied and exponential local martingale (17) is a martingale,
which follows from Theorem 3.2 in Shirakawa [24]. Moreover, the moment conditions (18)
and (22) are satisfied by Eq. 5.3.17 in Problem 5.3.15 in Karatzas and Shreve [12]. Notice
that existence and uniqueness of a strong solution of SDE (33) follow from Theorems 4.1.1,
4.2.3, and 4.2.4 in Ikeda and Watanabe [10] and Proposition 5.2.13 in Karatzas and Shreve
[12].
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4 Solution of sup-inf/inf-sup problem

We recall that λ1 and λ2 represent deviation of the representative agent’s probability measure
P λ1,λ2 from the physical measure P . Specifically, the relation between Brownian motions B1

and B2 under the physical measure P and Brownian motions Bλ1,λ2

1 and Bλ1,λ2

2 under the
probability measure P λ1,λ2 is

dB1,t = dBλ1,λ2

1,t + λ1,tdt,

dB2,t = dBλ1,λ2

2,t + λ2,tdt, (34)

as described in (13).
Taking the conditional expectations under P λ1,λ2 with respect to Ft in both sides of (34),

we obtain

EPλ1,λ2 [dB1,t|Ft] = λ1,tdt,

EPλ1,λ2 [dB2,t|Ft] = λ2,tdt, (35)

which implies that under the probability measure P λ1,λ2 , dB1,t and dB2,t are expected as
λ1,tdt and λ2,tdt, respectively.

Thus, the sup-inf (inf-sup) problem in (11)((12)) is considered to be an optimization to
determine the views on Brownian motions B1 and B2 so that the SDU is minimized with
respect to λ1 for given λ2, and maximized with respect to λ2 for given λ1. In other words,
the representative agent is most conservative through the view λ1 on B1 for given λ2, and
at the same time, most aggressive through the view λ2 on B2 for given λ1.

For example, X1 and X2 can be taken as foreign and domestic market news, respectively.
In this case, the market, which is considered to be the representative agent, is cautious about
risks related to the foreign news and becomes conservative about taking those risks, while the
market has a strong view on risks related to the domestic news and is willing to take those
risks aggressively. Similarly, X1 and X2 can be taken as foreign exchange and stock news,
respectively, which implies that the market is cautious about the foreign exchange risks,
however is bullish on the stock news. In either case, the representative agent becomes most
conservative through the view λ1 on Brownian motion B1 driving X1, but most aggressive
through the view λ2 on Brownian motion B2 driving X2.

This section shows that under certain conditions, sup-inf problem (11) is equivalent to
inf-sup problem (12), and these problems are solved by finding a solution of BSDE (23),
which is summarized in the following theorem.

Theorem 1. Let

λ∗
j,t = (−1)j|λ̄j,t(Xt)|sgn(Z

λ∗
1,λ

∗
2

j,t ), (j = 1, 2), (36)

and Y
λ∗
1,λ

∗
2

t be a unique solution of BSDE (23). Suppose that a weak version of Novikov’s
condition (21) is satisfied for λ̄j(X), j = 1, 2, and

E

[
sup

0≤s≤T
|λ̄s|4

]
< ∞. (37)

Then, (λ∗
1, λ

∗
2) attains the sup-inf in the problem (11), as well as the inf-sup in the problem

(12).

11



Remark 1. In Examples 1 & 2 and Theorem 1, a weak version of Novikov’s condition (21)
is satisfied for λ̄j(X), j = 1, 2. This condition guarantees that for all λ = (λ1, λ2) with
|λj,t| ≤ |λ̄j(t,Xt)|, 0 ≤ t ≤ T, j = 1, 2, {Zt(λ)}0≤t≤T is a martingale. Thus, by (7) and (8),
Λ1(λ2) = Λ1, Λ2(λ1) = Λ2. Also, for Λ defined by (3), we have Λ = Λ1 × Λ2.

Moreover, by Girsanov’s theorem, P λ1,λ2 in (2) is well-defined as a probability measure
and Bλ1,λ2 in (13) is a d-dimensional Brownian motion under P λ1,λ2 for all λ ∈ Λ = Λ1×Λ2.

We also note that, in Example 1, the control sets Λ1 and Λ2 are driven by the common
stochastic process X, while in Example 2, Λ1 and Λ2 depend on stochastic processes X1 and
X2, which are independent, respectively.

Remark 2. Suppose that there are two agents C and D with a common utility function.
The agent C is conservative on B1 with no fundamental uncertainty on B2, i.e. λ̄2 ≡ 0,
while the agent D is aggressive on B2 with no fundamental uncertainty on B1, i.e. λ̄1 ≡ 0.
Then, Theorem 1 can be considered to guarantee a Nash equilibrium for a two-person game,
in which each agent reflects his/her own view on the risk associated with a Brownian motion
B1 or B2 through optimally choosing the process λ1 or λ2:

inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

J(λ1, λ2) = sup
λ2∈Λ2(λ1)

inf
λ1∈Λ1

J(λ1, λ2).

Proof.
Since Λ1(λ2) = Λ1 and Λ2(λ1) = Λ2 by a weak version of Novikov’s condition (21) as in

Remark 1, in the following, we show that

Y
λ∗
1,λ

∗
2

0 = sup
λ2∈Λ2

inf
λ1∈Λ1

Y λ1,λ2

0 = inf
λ1∈Λ1

sup
λ2∈Λ2

Y λ1,λ2

0 . (38)

To prove this, it suffices to show that (λ∗
1, λ

∗
2) is a saddle point of J(λ1, λ2), meaning that

J(λ∗
1, λ2) ≤ J(λ∗

1, λ
∗
2) ≤ J(λ1, λ

∗
2),∀λ1 ∈ Λ1, λ2 ∈ Λ2, (39)

since if (λ∗
1, λ

∗
2) is a saddle point,

inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) ≤ sup
λ2∈Λ2

J(λ∗
1, λ2) = J(λ∗

1, λ
∗
2) = inf

λ1∈Λ1

J(λ1, λ
∗
2) ≤ sup

λ2∈Λ2

inf
λ1∈Λ1

J(λ1, λ2),

(40)

and combined with the opposite relation

inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) ≥ sup
λ2∈Λ2

inf
λ1∈Λ1

J(λ1, λ2), (41)

(40) holds as an equality.
(41) is proved as follows.
For all (λ1, λ2) ∈ Λ = Λ1 × Λ2,

sup
λ2∈Λ2

J(λ1, λ2) ≥ J(λ1, λ2) ≥ inf
λ1∈Λ1

J(λ1, λ2). (42)
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For any ϵ > 0, there exists λ̂1 ∈ Λ1 such that

inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) + ϵ ≥ sup
λ2∈Λ2

J(λ̂, λ2). (43)

Then, by (42), we have

inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) + ϵ ≥ inf
λ1∈Λ1

J(λ1, λ2), ∀λ2 ∈ Λ2, (44)

and thus

inf
λ1∈Λ1

sup
λ2∈Λ2

J(λ1, λ2) + ϵ ≥ sup
λ2∈Λ2

inf
λ1∈Λ1

J(λ1, λ2). (45)

Since (45) holds for all ϵ > 0, we obtain (41).
Next, we show the second inequality in (39),

J(λ∗
1, λ

∗
2)− J(λ1, λ

∗
2) = Y

λ∗
1,λ

∗
2

0 − Y
λ1,λ∗

2
0 ≤ 0. (46)

Note that BSDE (23) is rewritten as

dY
λ∗
1,λ

∗
2

t = −
(
g(t, B,Xt, Y

λ∗
1,λ

∗
2

t ) + λ∗
1,tZ

λ∗
1,λ

∗
2

1,t + λ∗
2,tZ

λ∗
1,λ

∗
2

2,t

)
dt+

d∑
j=1

Z
λ∗
1,λ

∗
2

j,t dBj,t,

Y
λ∗
1,λ

∗
2

T = ξ. (47)

Here, uniqueness and existence of a solution of BSDE (47) are guaranteed by Proposition 2.

Also note that Y
λ1,λ∗

2
t is a unique solution of a BSDE

dY
λ1,λ∗

2
t = −

(
g(t, B,Xt, Y

λ1,λ∗
2

t ) + λ1,tZ
λ1,λ∗

2
1,t + λ∗

2,tZ
λ1,λ∗

2
2,t

)
dt+

d∑
j=1

Z
λ1,λ∗

2
j,t dBj,t,

Y
λ1,λ∗

2
T = ξ, (48)

in which existence and uniqueness of a solution are guaranteed by Proposition 1 as in the
following discussion. For any (λ1, λ

∗
2) ∈ Λ, Zλ1,λ∗

2 is a P -martingale since a weak version
of Novikov’s condition holds for (λ1, λ

∗
2), which is due to a weak Novikov’s condition (21)

on (λ̄1(X), λ̄2(X)) and the fact that |λ1,t| ≤ |λ̄1(Xt)| and |λ∗
2,t| ≤ |λ̄2(Xt)| for 0 ≤ t ≤ T .

Similarly, the condition (18) in Proposition 1 holds for any (λ1, λ
∗
2) ∈ Λ due to the assumption

(37) on the moment of (λ̄1(X), λ̄2(X)).
By (47) and (48), we have

d(Y
λ∗
1,λ

∗
2

t − Y
λ1,λ∗

2
t )

= −bt(Y
λ∗
1,λ

∗
2

t − Y
λ1,λ∗

2
t )dt− (λ∗

1,t − λ1,t)Z
λ∗
1,λ

∗
2

1 dt

+ (Z
λ∗
1,λ

∗
2

1,t − Z
λ1,λ∗

2
1,t )(dB1,t − λ1,tdt) + (Z

λ∗
1,λ

∗
2

1,t − Z
λ1,λ∗

2
1,t )(dB2,t − λ∗

2,tdt)

+
d∑

j=3

(Z
λ∗
1,λ

∗
2

j,t − Z
λ1,λ∗

2
j,t )dBj,t

= −bt(Y
λ∗
1,λ

∗
2

t − Y
λ1,λ∗

2
t )dt− (λ∗

1,t − λ1,t)Z
λ∗
1,λ

∗
2

1,t dt+
d∑

j=1

(Z
λ∗
1,λ

∗
2

j,t − Z
λ1,λ∗

2
j,t )dB

λ1,λ∗
2

j,t , (49)
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where

bt = −g(t, B,Xt, Y
λ∗
1,λ

∗
2

t )− g(t, B,Xt, Y
λ1,λ∗

2
t )

Y
λ∗
1,λ

∗
2

t − Y
λ1,λ∗

2
t

1
{Y

λ∗1,λ
∗
2

t −Y
λ1,λ

∗
2

t ̸=0}
, (50)

Bλ1,λ∗
2 = (B

λ1,λ∗
2

1 , . . . , B
λ1,λ∗

2
d ) is a d-dimensional Brownian motion under P λ1,λ∗

2 defined as in
(13).

Set Ȳt = e
∫ t
0 budu(Y

λ∗
1,λ

∗
2

t − Y
λ1,λ∗

2
t ), Z̄j,t = e

∫ t
0 budu(Z

λ∗
1,λ

∗
2

j,t − Z
λ1,λ∗

2
j,t ), j = 1, . . . , d.

Then, we have

dȲt = −(λ∗
1,t − λ1,t)Z

λ∗
1,λ

∗
2

1,t e
∫ t
0 bududt+

d∑
j=1

Z̄j,tdB
λ1,λ∗

2
j,t , (51)

and thus

Ȳ0 =

∫ T

0

(λ∗
1,s − λ1,s)Z

λ∗
1,λ

∗
2

1 e
∫ s
0 bududs−

d∑
j=1

∫ T

0

Z̄j,sdB
λ1,λ∗

2
j,s . (52)

Next, we note that {
d∑

j=1

∫ t

0

Z̄j,sdB
λ1,λ∗

2
j,s

}
0≤t≤T

(53)

is a P λ1,λ∗
2-martingale by the following discussion.

Firstly,

d∑
j=1

∫ t

0

Z̄j,sdB
λ1,λ∗

2
j,s = Ȳt − Ȳ0 +

∫ t

0

(λ1,s − λ1,s)Z
λ∗
1,λ

∗
2

1,s e
∫ s
0 bududs. (54)

We first take the increasing sequence of stopping times {τn}n∈N such that τn = T for
sufficiently large n, P λ1,λ∗

2-a.s. and local martingale (53) stopped by τn is a martingale for
all n ∈ N. More concretely, we set

τn = inf

{
0 ≤ t ≤ T ;

d∑
j=1

∫ t

0

Z̄2
j,sds ≥ n

}
, n ∈ N. (55)

Here, if {0 ≤ t ≤ T ;
∑d

j=1

∫ t

0
Z̄j,s(ω)

2ds ≥ n} = ∅, we set τn(ω) = T .
Since

Eλ1,λ∗
2

[
d∑

j=1

∫ t

0

Z̄2
j,s∧τnds

]
= Eλ1,λ∗

2

[
d∑

j=1

∫ t∧τn

0

Z̄2
j,sds

]
≤ n (56)

and

d∑
j=1

∫ t

0

Z̄j,s∧τndB
λ1,λ∗

2
j,s =

d∑
j=1

∫ t∧τn

0

Z̄j,sdB
λ1,λ∗

2
j,s , (57)
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{
d∑

j=1

∫ t∧τn

0

Z̄j,sdB
λ1,λ∗

2
j,s

}
0≤t≤T

(58)

is a P λ1,λ∗
2-martingale.

Then, we observe that for all 0 ≤ t1 ≤ t2 ≤ T ,

lim
n→∞

Eλ1,λ∗
2

[
d∑

j=1

∫ t2∧τn

0

Z̄j,sdB
λ1,λ∗

2
j,s

∣∣∣∣Ft1

]
= lim

n→∞

d∑
j=1

∫ t1∧τn

0

Z̄j,sdB
λ1,λ∗

2
j,s

=
d∑

j=1

∫ t1

0

Z̄j,sdB
λ1,λ∗

2
j,s , (59)

and

lim
n→∞

Eλ1,λ∗
2

[
d∑

j=1

∫ t2∧τn

0

Z̄j,sdB
λ1,λ∗

2
j,s

∣∣∣∣Ft1

]

= lim
n→∞

Eλ1,λ∗
2

[
Ȳt2∧τn − Ȳ0 +

∫ t2∧τn

0

(λ∗
1,s − λ1,s)Z

λ∗
1,λ

∗
2

1,s e
∫ s
0 bududs

∣∣∣∣Ft1

]
= Eλ1,λ∗

2

[
Ȳt2 − Ȳ0 +

∫ t2

0

(λ∗
1,s − λ1,s)Z

λ∗
1,λ

∗
2

1,s e
∫ s
0 bududs

∣∣∣∣Ft1

]
= Eλ1,λ∗

2

[
d∑

j=1

∫ t2

0

Z̄j,sdB
λ1,λ∗

2
j,s

∣∣∣∣Ft1

]
, (60)

where Eλ1,λ∗
2 denotes the expectation under P λ1,λ∗

2 . In the second equality in (60), we used
the dominated convergence theorem and the monotone convergence theorem, since Ȳ is

uniformly bounded and
∫ t

0
(λ∗

1,s−λ1,s)Z
λ∗
1,λ

∗
2

1,s e
∫ s
0 bududs is a negative decreasing process, which

is due to the following inequality

λ∗
1,sZ

λ∗
1,λ

∗
2

1,s = −|λ̄1,s||Z
λ∗
1,λ

∗
2

1,s | ≤ −|λ1,s||Z
λ∗
1,λ

∗
2

1,s | = −|λ1,sZ
λ∗
1,λ

∗
2

1,s | ≤ λ1Z
λ∗
1,λ

∗
2

1,s . (61)

Thus, we have

Eλ1,λ∗
2

[
d∑

j=1

∫ t2

0

Z̄j,sdB
λ1,λ∗

2
j,s

∣∣∣∣Ft1

]
=

d∑
j=1

∫ t1

0

Z̄j,sdB
λ1,λ∗

2
j,s (62)

Taking the expectation with respect to P λ1,λ∗
2 in both sides in (52), we have

Ȳ0 = Eλ1,λ∗
2

[∫ T

0

(λ∗
1,s − λ1,s)Z

λ∗
1,λ

∗
2

1,s e
∫ s
0 bududs

]
. (63)

Thus, Ȳ0 ≤ 0 and

Y
λ∗
1,λ

∗
2

0 ≤ Y
λ1,λ∗

2
0 . (64)

The first inequality in (39) also follows in the same manner.
Therefore, (λ∗

1, λ
∗
2) is a saddle point of J(λ1, λ2).
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5 Asset pricing under fundamental uncertainties

In this section, as an application of sup-inf/inf-sup problem (11)(or (12)) in Section 1, we
briefly discuss asset pricing under the probability measure of the representative agent, which
is given by the optimal solution of the sup-inf/inf-sup problem.

Let Rd-valued stochastic process X be a state-variable process satisfying

dXt = µx(Xt)dt+
d∑

j=1

σx,j(Xt)dBj,t, (65)

and e be an endowment process of the representative agent, which is a R-valued stochastic
process satisfying a SDE

det = µe(Xt)etdt+ et

d∑
j=1

σe,j(Xt)dBj,t, (66)

where µx, σx,j, σe,j : Rd → Rd, µe : Rd → R, j = 1, 2, . . . , d.
First of all, in equilibrium for an exchange economy with a single (representative) agent,

c = e, where c is a consumption process of the agent. In our model with fundamental
uncertainties, given the representative agent’s aggregator (f) and c = e in equilibrium, we
solve the corresponding sup-inf/inf-sup problem (11)(or (12)) replacing g in (9) with f ,
where f : [0, T ] × R+ × Rd × R → R satisfies the following conditions: (i) f(t, e, x, 0) is
bounded, (ii) There exists a constant L > 0 such that

|f(t, e, x, y)− f(t, e, x, y′)| ≤ L|y − y′|,
∀y, y′ ∈ R, e ∈ R+, x ∈ Rd, t ∈ [0, T ], (67)

and (iii) f is continuously differentiable with respect to e and y.
Then, by Theorem 1, the optimal solution of the sup-inf/inf-sup problem (λ∗

1, λ
∗
2) is

expressed as

λ∗
1 = −|λ̄1(Xt)|sgn(Z

λ∗
1,λ

∗
2

1,t ),

λ∗
2 = |λ̄2(Xt)|sgn(Z

λ∗
1,λ

∗
2

2,t ), (68)

where Z
λ∗
1,λ

∗
2

t is a part of a unique solution (Y λ∗
1,λ

∗
2 , Zλ∗

1,λ
∗
2) of a BSDE:

dY
λ∗
1,λ

∗
2

t = −
(
f(t, et, Xt, Y

λ∗
1,λ

∗
2

t ) + λ∗
1,sZ

λ∗
1,λ

∗
2

1,t + λ∗
2,sZ

λ∗
1,λ

∗
2

2,t

)
dt+

d∑
j=1

Z
λ∗
1,λ

∗
2

j,t dBj,t,

= −
(
f(t, et, Xt, Y

λ∗
1,λ

∗
2

t )− |λ̄1,t(Xt)||Z
λ∗
1,λ

∗
2

1,t |+ |λ̄2,t(Xt)||Z
λ∗
1,λ

∗
2

2,t |)
)
dt+

d∑
j=1

Z
λ∗
1,λ

∗
2

j,t dBj,t,

Y
λ∗
1,λ

∗
2

T = ξ. (69)

As a result, we have

Y
λ∗
1,λ

∗
2

t = EPλ∗1,λ
∗
2

[
ξ +

∫ T

t

f(s, es, Xs, Y
λ∗
1,λ

∗
2

s )ds

∣∣∣∣Ft

]
, (70)
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where for all A ∈ FT ,

P λ∗
1,λ

∗
2(A) := E

[
Zλ∗

1,λ
∗
2

T 1A

]
,

Zλ∗
1,λ

∗
2

t = exp

(
2∑

j=1

∫ t

0

λ∗
j,sdBj,s −

2∑
j=1

1

2

∫ t

0

λ∗2
j,sds

)
, 0 ≤ t ≤ T, (71)

since

dY
λ∗
1,λ

∗
2

t = −f(t, et, Xt, Y
λ∗
1,λ

∗
2

t )dt+
d∑

j=1

Z
λ∗
1,λ

∗
2

j,t dB
λ∗
1,λ

∗
2

j,t , Y
λ∗
1,λ

∗
2

T = ξ. (72)

Let π be a state-price density process under P λ∗
1,λ

∗
2 . In equilibrium, it holds that

dπt

πt

= −rtdt+ σπ
t · dBλ∗

1,λ
∗
2

t , π0 = 1, (73)

and

πt = exp

(∫ t

0

fy(s, es, Xs, Y
λ∗
1,λ

∗
2

s )ds

)
fe(t, et, Xt, Y

λ∗
1,λ

∗
2

t )/fe(0, e0, X0, Y
λ∗
1,λ

∗
2

t ), (74)

where r is a risk-free interest rate and −σπ is a market price of risk in equilibrium. (See Eq.
(3.5) and (3.6) in Nakamura et al. [19], for instance.) Here, a subscript of f describes taking
a partial derivative of f with respect to the variable, i.e. fy and fe are partial derivatives of
f with respect to y and e, respectively with an assumption of fe > 0. Hence, the equilibrium
interest rate r and the market price of risk are obtained by applying Ito’s formula to (309).

Next, let D be a cumulative dividend process which is RCLL (right-continuous with left
limits) and a R-valued {Ft}-progressively measurable process.

Then, a risky asset (claim for dividend streams) price St is described under the measure
P λ∗

1,λ
∗
2 as

St = EPλ∗1,λ
∗
2

[∫ T

t

πs

πt

dDs

∣∣∣∣Ft

]
. (75)

In particular, the zero-coupon bond price P (t, T ) is expressed as

P (t, T ) = EPλ∗1,λ
∗
2

[
πT

πt

∣∣∣∣Ft

]
= EP

[
πTZ

λ∗
1,λ

∗
2

T

πtZ
λ∗
1,λ

∗
2

t

∣∣∣∣Ft

]
. (76)

We also note that P (t, T ) in (313) is rewritten as

P (t, T ) = EQλ∗
[
exp

(
−
∫ T

t

rsds

) ∣∣∣∣Ft

]
, (77)

where Qλ∗
is a risk-neutral measure with respect to P λ∗

1,λ
∗
2 :

Qλ∗
(A) = Eλ∗

1,λ
∗
2 [ZQλ∗

T 1A]; A ∈ FT ,

ZQλ∗

T = exp

(
−1

2

∫ T

0

|σπ
s |2ds+

∫ T

0

σπ
s · dBλ∗

1,λ
∗
2

s

)
. (78)
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6 Deterministic endowment volatility (Method by com-

parison theorems)

In this section, we deal with the case in which the signs of Z
λ∗
1,λ

∗
2

1 and Z
λ∗
1,λ

∗
2

2 in the system of
forward SDEs (65), (66) and BSDE (69) are determined by comparison theorems. According

to the uniquely determined signs of Z
λ∗
1,λ

∗
2

1 and Z
λ∗
1,λ

∗
2

2 in λ∗
1 and λ∗

2, we can obtain an explicit
expression of the short rate r by (308) and (309). As an example, we calculate the short
rate r in the case of the stochastic differential/standard power utility with a log-normal
endowment process and square-root state-variable processes in Section 6.1.

We consider the following SDEs for the state-variable process X and the endowment
process e, as a specific case of (65) and (66). Let the dimension of Brownian motion d = 3
and the state-variable processX = (X1, X2, X3). We assume that under the physical measure
P , X1, X2, X3 and the endowment process e satisfy SDEs

dX1,t = µ1(X1,t)dt+ σ1(X1,t)dB1,t, X1,0 = x1,

dX2,t = µ2(X2,t)dt+ σ2(X2,t)dB2,t, X2,0 = x2,

dX3,t = µ3(X3,t)dt+ σ3(X3,t)dB3,t, X3,0 = x3,

det = µe(X1,t, X2,t, X3,t)etdt+ σe,1etdB1,t + σe,2etdB2,t + σe,3(X3,t)etdB3,t, e0 = e,

(79)

where µ1, µ2, σ1, σ2 : R → R, µe : R3 → R, µe(x1, x2, x3) is decreasing with respect to x1 and
increasing with respect to x2, e > 0, σe,1, σe,2 ∈ R, and σe,3 : R → R. Moreover, we assume

that
∫ T

0
|µe(X1,t, X2,t, X3,t)|dt < ∞. Let f : [0, T ] × R+ × Rd × R → R be an aggregator

satisfying conditions (i)-(iii), and ξ is a bounded FT -measurable random variable.

The next proposition shows that sgn(Z
λ∗
1,λ

∗
2

1 ) and sgn(Z
λ∗
1,λ

∗
2

2 ) in the expressions of λ∗
1 and

λ∗
2 in (68) are uniquely determined under certain conditions.

Proposition 3. Let X1, X2, X3 and e satisfy SDEs (79). Let v : [0,∞)×R3 ×R+ → R be
a value function defined by

v(t, x1, x2, x3, e) = Y t,x1,x2,x3,e
t , (80)

where (Y t,x1,x2,x3,e
s , Zt,x1,x2,x3,e

s ) is a solution of a BSDE

dYs = −(f(s, et,es , X t,x1

1,s , X t,x2

2,s , X t,x3

3,s , Ys)− |λ̄1,s(X
t,x1

1,s )||Z1,s|+ |λ̄2,s(X
t,x2

2,s )||Z2,s|)ds
+Z1,sdB1,s + Z2,sdB2,s + Z3,sdB3,s, YT = ξ, t ≤ s ≤ T. (81)

We assume that fe > 0, f is decreasing with respect to x1 and increasing with respect to x2,
and |λ̄1,s(x1)| and |λ̄2,s(x2)| are increasing with regard to x1, x2, respectively. Also, we assume
that v(t, x1, x2, x3, e) is continuously differentiable with respect to t and twice continuously
differentiable with respect to x1, x2, x3 and e. Moreover, we suppose σe,1 > 0, σe,2 > 0,
σ1(X1,t) ≤ 0, σ2(X2,t) ≥ 0.

Then, we have

sgn(Z
λ∗
1,λ

∗
2

1,t ) = +1, sgn(Z
λ∗
1,λ

∗
2

2,t ) = +1. (82)
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Proof. By a comparison theorem on SDEs (see Proposition 5.2.18 in Karatzas and Shreve
[12], for example), when x1 increases, X t,x1

1,s increases. Since µe is decreasing with respect
to the first variable, et,es decreases (see Remark 3). As a result, by a slight modification
of the proof of Theorem 1, a comparison theorem on a stochastic Lipschitz BSDE holds
and it follows that Y t,x1,x2,x3,e

t decreases. In detail, when x1 increases, et,es decreases, and
consequently, the driver f(s, et,es , X t,x1

1,s , X t,x2

2,s , X t,x3

3,s , y) − |λ̄1,s(X
t,x1

1,s )||z1| + |λ̄2,s(X
t,x2

2,s )||z2| in
(81) decreases since fe > 0 and −|λ̄1,s(X

t,x1

1,s )| also decreases.

Similarly, when x2 increases, both X t,x2

2,s and et,es increase, and then Y t,x1,x2,x3,e
t increases.

When e increases, et,es increases, and then Y t,x1,x2,x3,e
t increases.

Since v(t, x1, x2, x3, e) is continuously differentiable with respect to t and twice continu-
ously differentiable with respect to x1, x2, x3 and e, we have

∂x1v(t, x1, x2, x3, e) ≤ 0,

∂x2v(t, x1, x2, x3, e) ≥ 0,

∂ev(t, x1, x2, x3, e) ≥ 0. (83)

Also, by applying Ito’s formula to v(t,X1,t, X2,t, X3,t, et) and comparing the result with
(81), we haveZ

λ∗
1,λ

∗
2

1,t

Z
λ∗
1,λ

∗
2

2,t

Z
λ∗
1,λ

∗
2

3,t

 =

 σ1(X1,t)∂x1v(t,X1,t, X2,t, X3,t, et) + σe,1et∂ev(t,X1,t, X2,t, X3,t, et)
σ2(X2,t)∂x2v(t,X1,t, X2,t, X3,t, et) + σe,2et∂ev(t,X1,t, X2,t, X3,t, et)

σ3(X3,t)∂x3v(t,X1,t, X2,t, X3,t, et) + σe,3(X3,t)et∂ev(t,X1,t, X2,t, X3,t, et)

 .

(84)

By (83),

Z
λ∗
1,λ

∗
2

1,t = σ1(X1,t)∂x1v(t,X1,t, X2,t, X3,t, et) + σe,1et∂ev(t,X1,t, X2,t, X3,t, et) ≥ 0,

Z
λ∗
1,λ

∗
2

2,t = σ2(X2,t)∂x2v(t,X1,t, X2,t, X3,t, et) + σe,2et∂ev(t,X1,t, X2,t, X3,t, et) ≥ 0, (85)

and

sgn(Z
λ∗
1,λ

∗
2

1,t ) = +1, sgn(Z
λ∗
1,λ

∗
2

2,t ) = +1. (86)

Remark 3. When x1 increases, et decreases by the following reasons. Let x1 < x̃1, and Xx1
1,t

and X x̃1
1,t be X1,t with initial values x1 and x̃1, respectively. Also, let ẽ and e be unique strong

solutions of SDEs

dẽt = µe(X
x̃1
1,t, X2,t, X3,t)ẽtdt+ σe,1,tẽtdB1,t + σe,2,tẽtdB2,t + σe,3(X3,t)ẽtdB3,t, (87)

det = µe(X
x1
1,t, X2,t, X3,t)etdt+ σe,1,tetdB1,t + σe,2,tetdB2,t + σe,3(X3,t)etdB3,t, (88)

with ẽ0 = e0 > 0.
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Then, setting ∆et = ẽt − et, we have

d(∆et) =
(
µe(X

x̃1
1,t, X2,t, X3,t)∆et + {µe(X

x̃1
1,t, X2,t, X3,t)− µe(X

x1
1,t, X2,t, X3,t)}et

)
dt

+σe,1∆etdB1,t + σe,2∆etdB2,t + σe,3(X3,t)∆etdB3,t. (89)

Let Γt be a unique strong solution of a SDE

dΓt = Γt(−σe · dBt − µe(X
x̃1
1,t, X2,t, X3,t)dt+ |σe|2dt). (90)

Then, by Ito’s formula, we have

d(Γt∆et) = (µe(X
x̃1
1,t, X2,t, X3,t)− µe(X

x1
1,t, X2,t, X3,t))etΓtdt. (91)

Therefore, since Γt, et > 0, 0 ≤ ∀t ≤ T and µe is decreasing with respect to the first
variable,

∆et =
Γ0

Γt

∆e0 +
1

Γt

∫ t

0

{µe(X
x̃1
1,s, X2,s, X3,s)− µe(X

x1
1,s, X2,s, X3,s)}esΓsds ≤ 0, (92)

which indicates that when x1 increases, e decreases.

6.1 Equilibrium interest rate without fundamental uncertainties

In this subsection, we present expressions of equilibrium interest rate without fundamental
uncertainties in the cases of a SDU with four different patterns of parameters with the log-
normal endowment process, which correspond to stochastic differential/standard power/log-
utility.

Particularly, we show that in the cases without fundamental uncertainties, the short
interest rate r calculated by (308) and (309) becomes a deterministic process. We also
confirm that under the model with fundamental uncertainties, a stochastic term is added to
the interest rate expression in the case of the standard power utility. In other words, the
fundamental uncertainties play a role in stochastic movements in the model.

Let β > 0, ρ < 1 and α < 1. We consider the following SDU V that satisfies the BSDE
with an aggregator f : R×R → R:

dVt = −f(ct, Vt)dt+ σV,tdBt, VT = ξ, (93)

where

f(ct, Vt) =



β
cρt
ρ
(1 + αVt)

(α−ρ)/α − β
ρ
(1 + αVt)

(stochastic differential power utility, ρ, α ̸= 0, ρ ̸= α)
β
ρ
(cρt − 1)− βVt

(standard power utility, ρ = α ̸= 0)

β(1 + αVt)
[
log ct − log(1+αVt)

α

]
(stochastic differential log-utility, ρ = 0, α ̸= 0)

β [log ct − Vt]

(standard log-utility, ρ = 0, α = 0),

(94)
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ξ =



cαT−1

α

(stochastic differential power utility, standard power utility,

stochastic differential log-utility)

log cT

(standard log-utility),

(95)

where B is a d-dimensional Brownian motion (d ≥ 1) under the physical measure P , and
c and V are R-valued {Ft}-progressively measurable processes. σV is a Rd-valued {Ft}-
progressively measurable process. For the four types of stochastic differential utilities, see
Appendix C. Also, for the equilibrium short rate and the term structure of interest rates
without fundamental uncertainties under the stochastic differential log-utility, see Nakamura
et al. [18].

Let us suppose that the endowment process e is given as

det
et

= µedt+ σe · dBt (96)

with a constant µe ∈ R and a constant vector σe ∈ Rd.
Since in equilibrium, ct = et for all t, BSDE (93) becomes

dVt = −f(et, Vt)dt+ σV,tdBt, VT = ξ. (97)

Here, we note that the Brownian motion B in (97) corresponds to Bλ∗
1,λ

∗
2 in (69) where there

are no with fundamental uncertainties.

λ̄1(x) = λ̄2(x) = 0. (98)

Thus,

λ∗
1,t = λ∗

2,t = 0, 0 ≤ t ≤ T, (99)

and

det
et

= µedt+ σe · dBt = µedt+ σe · dB
λ∗
1,λ

∗
2

t . (100)

By applying Ito’s formula to (309), in which Y λ∗
1,λ

∗
2 is replaced with V , and comparing the

drift term with (308), we obtain the equilibrium interest rate r as

rt = β + (1− ρ)µe −
|σe|2

2
(1− α)(2− ρ) (101)

and the market price of risk −σπ as (1−α)σe in the stochastic differential power utility case,
that is, when α, ρ ̸= 0 (see Appendix C for details).

Similarly, we obtain the following expressions for the remaining three cases.

• For the standard power utility case (ρ = α ̸= 0),

rt = β + (1− ρ)µe −
|σe|2

2
(1− ρ)(2− ρ). (102)
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• For the stochastic differential log-utility case (ρ = 0, α ̸= 0),

rt = β + µe − |σe|2(1− α). (103)

• For the standard log-utility case (ρ = α = 0),

rt = β + µe − |σe|2. (104)

As we observe in (101)-(104), in the cases of the log-normal endowment process, when
there is no effect of fundamental uncertainties, the short rate r is a deterministic process, in
particular, with the constant coefficients for e in (96), r is a constant.

However, as we will observe in the next section, r is stochastic process even for standard
utilities when there are fundamental uncertainties, since random variables λ∗

1, λ
∗
2 appear in

the drift term of the endowment process under P λ∗
1,λ

∗
2 :

det
et

= (µe + σe,1λ
∗
1 + σe,2λ

∗
2)dt+ σe · dB

λ∗
1,λ

∗
2

t . (105)

Particularly, in the case of standard power utility, if we incorporate the effect of fundamental
uncertainties, by applying Ito’s formula to (309) as we did in (101)-(104), we obtain the term
(1− ρ)(σe,1λ̃1

√
X2,t+σe,2λ̃2

√
X2,t) in r in (121) which contributes as a stochastic term in r.

Thus, in the case of the log-normal endowment process, the fundamental uncertainties gives
the sole stochastic effect on the short interest rate.

6.2 Equilibrium interest rate with fundamental uncertainties

As an application of Proposition 3, we calculate the expression of the short rate r by (308)
and (309) when f is an aggregator for the standard power utility. Let ρ < 1 with ρ ̸= 0, and
β > 0. We consider the case of a standard power utility

f(e, y) =
β

ρ
(eρ − 1)− βy, (106)

with an endowment process e satisfying

det
et

= µedt+ σe,1dB1,t + σe,2dB2,t, e0 > 0, (107)

where σe,1 > 0, σe,2 > 0, and state-variable processes X1 and X2 satisfying{
dX1,t = (µ1,1X1,t + µ1,0)dt+ σ1

√
X1,tdB1,t, X1,0 = x1 > 0,

dX2,t = (µ2,1X2,t + µ2,0)dt+ σ2

√
X2,tdB2,t, X2,0 = x2 > 0,

(108)

where µ1,0, µ2,0 > 0, µ1,1, µ2,1 < 0, σ1 < 0σ2 > 0, .

We also assume ξ =
eρT−1

ρ
for the terminal condition, and

λ̄1(X1) = λ̃1

√
X1,t, λ̄2(X2) = λ̃2

√
X2,t, (109)
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where λ̃1 < 0, λ̃2 > 0.
Then, we obtain an explicit expression of the short rate r in (308) as follows.
Let

σe =

(
σe,1

σe,2

)
,

σx(x) =

(
σ1
√
x1 0

0 σ2
√
x2

)
, (110)

µ∗
e(x) = µe + σe,1λ̃1

√
x1 + σe,2λ̃2

√
x2,

µ∗
x(x) =

(
(µ1,1 + σ1λ̃1)x1 + µ1,0

(µ2,1 + σ2λ̃2)x2 + µ2,0

)
. (111)

Firstly, we note that fe > 0 and |λ̄j(xj)| is increasing with respect to xj. With some
necessary modifications on the endowment process e and the state-variable process X in
(107) and (108) or the aggregator f in (106) and the terminal condition ξ as in Remark 4,

by applying Proposition 3, we obtain sgn(Z
λ∗
1,λ

∗
2

1 ) = +1, sgn(Z
λ∗
1,λ

∗
2

2 ) = +1.

Remark 4. In the above example, without any modifications, the boundedness on f(e, 0)
and ξ, and the continuous differentiability of the value function v, which are assumptions
in Proposition 3, are not necessarily satisfied. One possible adjustment is that we consider
bounded modifications of e and X in SDEs (107) and (108), in particular so that X does
not take values in a neighborhood of 0. Then, the boundedness on f(e, 0) and ξ, as well as
a uniform Lipschitz condition on the driver of BSDE (81), follows, and by Lemma 5.2.3 in
Zhang [29], the continuous differentiability of v is obtained. Another approach is that we
consider bounded modifications of f(e, 0) in (106) and ξ as functionals of e, and assume
existence of a classical solution of PDE (A.14) without the jump component in Theorem
A.9.22 in Cohen and Elliott [4], which also yields the continuous differentiability of v.

Then, by (68), we have

λ∗
1,t = λ̃1

√
X1,t, λ∗

2,t = λ̃2

√
X2,t, (112)

and

dB
λ∗
1,λ

∗
2

1,t = dB1,t − λ̃1

√
X1,tdt,

dB
λ∗
1,λ

∗
2

2,t = dB2,t − λ̃2

√
X2,tdt. (113)

Then, (107) and (108) are rewritten as

det
et

= (µe,t + σe,1λ̃1

√
X1,t + σe,2λ̃2

√
X2,t)dt+ σe,1dB

λ∗
1,λ

∗
2

1,t + σe,2dB
λ∗
1,λ

∗
2

2,t , e0 > 0, (114)

{
dX1,t = ((µ1,1 + σ1λ̃1)X1,t + µ1,0)dt+ σ1

√
X1,tdB

λ∗
1,λ

∗
2

1,t , X1,0 = x1 > 0,

dX2,t = ((µ2,1 + σ2λ̃2)X2,t + µ2,0)dt+ σ2

√
X2,tdB

λ∗
1,λ

∗
2

2,t , X2,0 = x2 > 0,
(115)
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with µ1,0, µ2,0 > 0, µ1,1 + σ1λ̃1 < 0 and µ2,1 + σ2λ̃2 < 0.
Also, Y λ∗

1,λ
∗
2 in (72) is written as

dY
λ∗
1,λ

∗
2

t = −
[
β

ρ
(eρt − 1)− βY

λ∗
1,λ

∗
2

t

]
dt+ σV,t · dB

λ∗
1,λ

∗
2

t ,

Y
λ∗
1,λ

∗
2

T =
eρT − 1

ρ
, (116)

where

σV,t =

(
Z

λ∗
1,λ

∗
2

1,t

Z
λ∗
1,λ

∗
2

2,t

)
, B

λ∗
1,λ

∗
2

t =

(
B

λ∗
1,λ

∗
2

1,t

B
λ∗
1,λ

∗
2

2,t

)
. (117)

Next, applying Ito’s formula to (309), the interest rate r in (308) is given by

rt = −fy(et, Y
λ∗
1,λ

∗
2

t )− Lfe(et, Y
λ∗
1,λ

∗
2

t )

fe(et, Y
λ∗
1,λ

∗
2

t )
. (118)

where Lfe denotes the drift part of fe, that is

Lfe
fe

=
feeeµ

∗
e − feyf + feeyeσeσV + 1

2
feeee

2|σe|2 + 1
2
feyy|σV |2

fe
. (119)

Thus, we obtain

r = β + (1− ρ)µ∗
e(Xt)−

1

2
(1− ρ)(2− ρ)|σe|2. (120)

In particular, the short rate r in (308) is expressed as with ρ < 1, λ̃1 < 0, λ̃2 > 0, σe,1 > 0
and σe,2 > 0,

rt = β + (1− ρ)µe −
1

2
(1− ρ)(2− ρ)|σe|2

+(1− ρ)(σe,1λ̃1

√
X1,t + σe,2λ̃2

√
X2,t). (121)

By (313), the zero-coupon bond price P (t, T ) for maturity T at time t is given by

P (t, T ) = EPλ∗1,λ
∗
2

[
πT

πt

∣∣∣Ft

]
= EPλ∗1,λ

∗
2

[
exp

(
−
∫ T

t

rsds

)
exp

(
−1

2

∫ T

t

|σπ
s |2ds+

∫ T

t

σπ
s · dBλ∗

1,λ
∗
2

s

) ∣∣∣Ft

]
= exp

(
−
{
β + (1− ρ)

(
µe −

(2− ρ)

2
|σe|2

)}
(T − t)

)
× EPλ∗1,λ

∗
2

[
exp

(
−
∫ T

t

(1− ρ)
(
σe,1λ̃1

√
X1,s + σe,2λ̃2

√
X2,s

)
ds

)
× exp

(
−1

2

∫ T

t

(1− ρ)2|σe|2ds−
∫ T

t

(1− ρ)σe · dBλ∗
1,λ

∗
2

s

) ∣∣∣Ft

]
. (122)
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Let Y (t, t+ τ) be a continuously compounded zero yield defined as

Y (t, t+ τ) = −1

τ
logP (t, t+ τ), (123)

where 0 < τ ≤ T − t.
Firstly, as we observe in (121), since (1−ρ) > 0 and σe,1λ̃1 < 0, if X1 increases, the short

interest rate r decreases. This implies that under the risk-averse representative agent, if the
factor the agent is conservative about increases, then the interest rate falls. Similarly, since
σe,2λ̃2 > 0, if X2 increases, then the short rate r increases, which indicates that if the factor
the agent is aggressive about increases, then the interest rate rises.

Moreover, as in (122) and (123), since the continuously compounded zero yield Y (t, t+τ)
depends on the movement of the short rate r in the future, which is also driven by the future
movement of X, the shape of the yield curve is determined by X. In detail, if there is an
exogenous shock to the factor X1, which changes the parameters of the SDE driving X1 in
(108), and X1 takes higher values as time passes, then the short interest rate r in the future
decreases, hence, the long-end yield curve goes down, which means that there is a flattening
effect to the term structure of interest rates. Conversely, if X2 takes higher values toward
the future, then the short interest rate r in the future increases, and the long-end yield
curve goes higher, which means that there is a steepening effect to the term structure of
interest rates. We will confirm these observations in numerical examples in the next section
by shifting the mean-reversion levels and initial values of X1 and X2.

Remark 5. We remark that BSDE (116) is solved as follows. Let us suppose a functional

form of Y
λ∗
1,λ

∗
2

t as

Y
λ∗
1,λ

∗
2

t =
A(Xt, t)e

ρ
t − 1

ρ
, (124)

where A : R2× [0, T ] → R is twice and once continuously differentiable with regard to x and
t, respectively.

Then, applying Ito’s formula to (124) and comparing the diffusion and the drift term with
(116), we have

σV,t = A(Xt, t)e
ρ
t

[
1

ρ

∂xA(Xt, t)

A(Xt, t)
σx(Xt) + σe

]
, (125)

and

β + ∂tA(x, t)− A(x, t)

[
β +

ρ(1− ρ)

2
|σe|2 − ρµ∗

e(x)

]
+

2∑
i=1

∂xi
A(x, t)

[
µ∗
xi
(x) + ρ

2∑
k=1

σk
e (x)σ

k
xi
(x)

]
+

1

2

2∑
i,j=1

∂2
xixj

A(x, t)
2∑

k=1

σk
xi
(x)σk

xj
(x) = 0,

AT = 1, (126)

with ∂xA(x, t) ∈ R2. With some necessary modifications in Remark 6, the linear parabolic
PDE (126) has a unique solution with the following stochastic expression by Feynman-Kac
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formula

A(x, t) = EA
t

[
e−

∫ T
t rAs ds + β

∫ T

t

e−
∫ u
t rAs dsdu

]
> 0 (β > 0), (127)

where

rAt = rA(xt) = β +
ρ(1− ρ)

2
|σe|2 − ρµ∗

e(xt). (128)

Here, the conditional expectation EA
t [·] is taken under a probability measure PA with the

following SDE for x:

dxt = µA(xt)dt+ σx(xt)dB
A
t , (129)

where BA is a d-dimensional Brownian motion under PA and

µA(xt) =

[
µ∗
xi
(xt) + ρ

2∑
k=1

σk
eσ

k
xi
(xt)

]
i=1,2

. (130)

Remark 6. The unique existence of a classical solution of PDE (126) is guaranteed by
Theorem 2.9.10 in Krylov [13] if µ∗

x(x) and σx(x) are smoothly modified so that those first
and second derivatives satisfy a polynomial growth condition as |x| tends to ±∞ and are
bounded around x = 0 and rA(x) ≥ 0.

7 Numerical examples

This section presents numerical examples of the term structure of interest rates with funda-
mental uncertainties. Particularly, we provide the case of the log-normal endowment process
with the standard power utility case in Section 6.1. We show changes in the yield curve when
parameters of the uncertainties related factors shift, which gives implications on yield curve
trading by hedge funds and yield curve controls for monetary policies by central banks.

In the following numerical examples, we set the base case parameters as β = 0.01, ρ = 0.5,
µe = 0.01, σe,1 = 0.10, σe,2 = 0.10, σe,3 = 0.10, x1 = 0.10, x2 = 0.10, b1 = −µ1,1 = 0.10,
b2 = −µ2,1 = 0.10, m1 = −µ1,0

µ1,1
= 0.20, m2 = −µ2,0

µ2,1
= 0.20. σ1 = −0.10, σ2 = 0.10,

λ̃1 = −0.10, λ̃2 = 0.10, t = 0, T = 30, in (106)-(109), where we rewrite SDEs of X1 and X2

in (108) as mean-reverting processes

dXj,t = (µj,1Xj,t + µj,0)dt+ σj

√
Xj,tdBj,t

= bj(mj −Xj,t)dt+ σj

√
Xj,tdBj,t,

Xj,0 = xj > 0, j = 1, 2. (131)

Particularly, we note that σe,1λ̃1 < 0, σe,2λ̃2 > 0 in (121). Hereafter, we call X1, which
is driven by the market risk source B1 the agent is conservative about, as the conservative
factor, and X2, which is driven by the market risk source B2 the agent is aggressive about,
as the aggressive factor.
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Firstly, Table 1 shows that if the mean-reverting level m2 for the aggressive factor X2

in (131) shifts from 0.20 to 1.00, the long-end yields move higher, since the higher mean-
reverting level makes the future short interest rate r higher as observed in (121), which leads
to a yield curve steepening effect.

Spot 2y 5y 10y 20y 30y

Mean-reversion level m2 for X2: 0.20 0.38% 0.37% 0.37% 0.37% 0.36% 0.36%
Mean-reversion level m2 for X2: 1.00 0.38% 0.42% 0.46% 0.51% 0.55% 0.58%

Change in zero yields 0.00% 0.05% 0.09% 0.14% 0.19% 0.22%

Table 1: Change in the zero yield curve when the mean-reverting level m2 for X2 shifts

Next, Table 2 shows that if the parameter on the degree of aggressiveness λ̃2 in (109)
increases from 0.10 to 1.00, the whole yield curve moves up, since the change in λ̃2 increases
the effect of the aggressive factor X2 on rising the equilibrium short rate r as in (121).
Moreover, as Tables 3 indicate, if λ̃2 shifts from 0.10 to 1.00, the steepening effect by the
change in the mean-reverting level m2 intensify.

Spot 2y 5y 10y 20y 30y

Degree of aggressiveness λ̃2 : 0.1 0.38% 0.37% 0.37% 0.37% 0.36% 0.36%

Degree of aggressiveness λ̃2 : 1.0 1.80% 1.91% 2.07% 2.30% 2.67% 2.98%

Change in zero yields 1.42% 1.54% 1.70% 1.93% 2.31% 2.62%

Table 2: Change in the yield curve when λ̃2 shifts from 0.10 to 1.00

Spot 2y 5y 10y 20y 30y

Mean-reversion level m2 for X2: 0.20 1.80% 1.91% 2.07% 2.30% 2.67% 2.98%
Mean-reversion level m2 for X2: 1.00 1.80% 2.40% 3.05% 3.86% 5.06% 5.99%

Change in zero yields 0.00% 0.49% 0.98% 1.56% 2.39% 3.02%

Table 3: Change in the yield curve when the mean-reverting levelm2 forX2 shifts (λ̃2 = 1.00)

Then, we can interpret the effects of the shifts in the parameters λ̃2 and m2 as follows. (i)
((ii)) An increase (a decrease) in λ̃2, which implies that the agent has more (less) aggressive
economic views as observed in (114), makes the equilibrium interest rate higher (lower). (a)
((b)) An increase (a decrease) in m2, which implies that the aggressive factor becomes larger
(smaller) as time passes as in (131), makes the future equilibrium interest rate higher (lower).

Thus, four patterns of the yield curve movements are described by shifts in the aggres-
siveness parameters as follows. If we assume an upward sloping yield curve as a default curve
shape, (i)-(a): the whole yield curve moves up (bond prices decline = bear) while the curve
steepens (bear-steepening). (i)-(b): The whole yield curve moves up while the curve flattens
(bear-flattening). (ii)-(a): The whole yield curve moves down (bond prices increase = bull)
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while the curve steepens (bull-steepening). (ii)-(b): The whole yield curve moves down while
the curve flattens (bull-flattening). We remark that the same (opposite) effects are observed
by the opposite (same) changes in the parameters of the conservative factor X1. Net effect
of those two factors results in the movements of yield curves observed in reality.

For example, Figure 1 shows changes in the yield curve of Japanese government bond
(JGB) from 2009/1/5 to 2019/9/30, in which the data are obtained from the website of
Ministry of Finance, Japan [16]. As observed in Figure 1, the yield curve moved considerably
lower and flattened from 2009 to 2019. Such bull-flattening of a yield curve can be explained
by (ii)-(b), that is, the market’s aggressiveness in the economic view shrinks and an aggressive
factor decreases as time passes. It can also be explained that the market’s conservativeness
in the economic view grows and a conservative factor increases as time passes, in terms of
the conservativeness. Estimation of parameters and identification of the two factors are one
of our future research topics.

Figure 1: Changes in JGB yield curve from 2009/1/5 to 2019/9/30

As we observed, for central banks, who aims to control the long-end yields lower, it could
try to control the uncertainties related factors by effectively making public statements to
flatten the yield curve. Similarly, the hedge funds could trade on the yield curve movements
by estimating the factors in the model from market data. For example, if they predict that
the yield curve flattens, which means that long-end interest rates could go lower compared
to the short-end interest rates, then they can buy the long-end bonds and sell the short-end
bonds to earn profits.

8 Stochastic endowment volatility

In the following, we consider the cases in which sgn(Z
λ∗
1,λ

∗
2

1 ) and sgn(Z
λ∗
1,λ

∗
2

2 ) in the expressions
of λ∗

1 and λ∗
2 in (68) are not determined by the comparison theorems as in Section 6, but

are obtained by solving BSDE (72) explicitly. Particularly, in Sections 8.1-8.3, we consider
three cases, the standard power, the standard log, and the stochastic differential log-utility
under random volatility endowment process. Also, we present the expressions of the short
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rate r. In Section 8.4, we present the explicit expression of the continuously compounded
zero yield Y (t, t+ τ) for the standard power and the standard log-utility.

Firstly, we restate SDEs (65), (66) and BSDE (69) in Section 5 in a more general setting
under P λ∗

1,λ
∗
2 . Let us assume the endowment process, which is equivalent to the consumption

process in equilibrium, and the state-variable process as follows:

det
et

= µ∗
edt+ σe(xt, t) · dB

λ∗
1,λ

∗
2

t , (132)

dxt = µ∗
xdt+ σx(xt, t) · dB

λ∗
1,λ

∗
2

t , (133)

where Bλ∗
1,λ

∗
2 ∈ Rd, σe(x, t) ∈ Rd, σx(x, t) ∈ Rl×d (3 ≤ d ≤ l) and with λ∗ ∈ Rd,

µ∗
e = µe(xt, t) + λ∗ · σe(xt, t), (134)

µ∗
x = µx(xt, t) + λ∗ · σx(xt, t). (135)

In particular, as in (68), the stochastic process of λ∗ is given as follows: for j = 1, 2,

λ∗
j,t = (−1)j|λ̄j(xt, t)|sgn(σj

V (t)), (136)

and λ∗
j,t ≡ 0 for j = 3, · · · , d.

Here, σj
V is the j-th element of σV ∈ Rd, the volatility of the following SDU:

dVt = −f(et, Vt)dt+ σV (t) · dB
λ∗
1,λ

∗
2

t , VT = ξ. (137)

where f : R+ ×R → R be an aggregator satisfying conditions (i)-(iii) in Section 5, and ξ is
a bounded FT -measurable random variable.

Since the forward SDEs (132) and (133) include σj
V , j = 1, 2, we note that the system

consisting of (132)-(137) is considered to be coupled FBSDEs.
In the subsequent subsections, we solve coupled FBSDEs (132)-(137) for the standard

power and the standard/stochastic differential log-utility in (94) in the following way. We
first suppose sgn(σj

V (t)) = (−1)j, j = 1, 2, which indicates λ∗
j = |λ̄j(xt, t)|, j = 1, 2, and

make coupled FBSDEs (132)-(137) separated into forward SDEs and a BSDE, since

µ∗
e = µ∗

e(x, t); µ∗
x = µ∗

x(x, t) (138)

by (134) and (135). Then, we confirm that sgn(σj
V (t)) = +1, j = 1, 2 by explicitly solving

BSDE (137) under certain conditions. If these conditions are met, we observe that x and
(V, σV ) also satisfy the original coupled FBSDEs (132)-(137).

Remark 7. In the following subsections 8.1-8.3, without any modifications, the boundedness
on f(e, 0) and ξ is not necessarily satisfied. In the same way as in Remark 4, we can consider
bounded modifications of e and X in SDEs (132) and (133), in particular so that X does
not take values in a neighborhood of 0. Then, the boundedness on f(e, 0) and ξ is satisfied.
Also, we can consider bounded modifications of f(e, 0) and ξ as functionals of e.

We also remark that even without those modifications, the FBSDEs with f and ξ in
Sections 8.1-8.3 are explicitly solved and the expressions of the equilibrium interest rate are
obtained. If we further restrict Λ in (3) so that BSDE (24) for (λ1, λ2) has a unique solution,
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and
{∑d

j=1

∫ t

0
Z̄j,sdB

λ1,λ∗
2

j,s

}
0≤t≤T

in (53) becomes a P λ1,λ∗
2-martingale for any λ1 in (λ1, λ2) in

the set, then the optimality of (λ∗
1, λ

∗
2) for the sup-inf/inf-sup problem (11)/(12) is guaranteed

as in the proof of Theorem 1. For instance, in the standard log-utility in Section 8.2, if we
restrict the set of λ to λ of the form λj = λ̂j

√
Xj, j = 1, 2, λ̂1 < 0 λ̂2 > 0, then the BSDE

(24) for (λ1, λ2) is solvable. In this case, the martingale property
{∑d

j=1

∫ t

0
Z̄j,sdB

λ1,λ∗
2

j,s

}
0≤t≤T

in (53) holds and the result of Theorem 1 follows (see Section 8.2 for details).

8.1 Standard power utility case with random endowment volatil-
ity

Firstly, we consider the standard power utility with the aggregator f in (94), which is defined
as

f(et, Vt) =
β

ρ
(eρt − 1)− βVt. (139)

Then, BSDE (137) becomes

dVt = −
[
β

ρ
(eρt − 1)− βVt

]
dt+ σV · dBλ∗

1,λ
∗
2

t , VT =
eρT − 1

ρ
. (140)

Let us further suppose a functional form of V as

Vt =
A(xt, t)e

ρ
t − 1

ρ
, (141)

where A : Rl × [0, T ] → R and A ∈ C2,1.
Then, by applying Ito’s formula to (141) and comparing the diffusion and the drift term

with (140), we have

σV = ∂xA(x, t) · σx(x, t)
eρ

ρ
+ A(x, t)eρσe(x, t) (142)

= A(x, t)eρ
[
1

ρ

∂xA(x, t)

A(x, t)
σx(x, t) + σe(x, t)

]
(143)

with ∂xA(x, t) ∈ Rl and σx(x, t) ∈ Rl×d, and

β + ∂tA(x, t)− A(x, t)

[
β +

ρ(1− ρ)

2
|σe(x, t)|2 − ρµ∗

e(x, t)

]
+

l∑
i=1

∂xi
A(x, t)

[
µ∗
xi
(x, t) + ρ

d∑
k=1

σk
e (x, t)σ

k
xi
(x, t)

]
+

1

2

l∑
i,j=1

∂2
xixj

A(x, t)
d∑

k=1

σk
xi
(x, t)σk

xj
(x, t) = 0,

AT = 1. (144)

By Feynman-Kac formula, A(x, t) is expressed as

A(x, t) = EA
t

[
e−

∫ T
t rAs ds + β

∫ T

t

e−
∫ u
t rAs dsdu

]
> 0 (β > 0), (145)
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where

rAt = rA(xt, t) = β +
ρ(1− ρ)

2
|σe(xt, t)|2 − ρµ∗

e(xt, t), (146)

with

µ∗
e = µe(x, t) + λ∗ · σe(x, t). (147)

The conditional expectation EA
t [·] is taken under a probability measure PA with the

following SDE for x:

dxt = µA(xt, t)dt+ σx(xt, t)dB
A
t , (148)

where BA is a d-dimensional Brownian motion under PA and

µA(xt, t) =

[
µ∗
xi
(xt, t) + ρ

d∑
k=1

σk
e (xt, t)σ

k
xi
(xt, t)

]
i=1,··· ,l

. (149)

Then,

∂xi
A(x, t) = −EA

t

[(∫ T

t

∂xi
rAs ds

)
e−

∫ T
t rAs ds + β

∫ T

t

(∫ u

t

∂xi
rAs ds

)
e−

∫ u
t rAs dsdu

]
.

(150)

Hence, since β > 0, the sign of ∂xi
rAs determines the sign of ∂xi

A(x, t).
Since A(x, t) > 0 and e > 0,

• When ρ ∈ (0, 1) and k = 1, 2,

if σk
e (x, t) > 0 and

l∑
i=1

∂xi
A(x, t)σk

x,i(x, t) > 0, (151)

then σk
V > 0.

• When ρ < 0 and k = 1, 2,

if σk
e (x, t) > 0, and

l∑
i=1

∂xi
A(x, t)σk

x,i(x, t) < 0, (152)

then σk
V > 0.
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This indicates that if the above conditions are satisfied, then sgn(σj
V ) = (−1)j, j = 1, 2,

and thus (x, V, σV ), which is obtained by explicitly solving the separated forward SDEs and
BSDE with the predetermined values on sgn(σj

V ), is also a solution of the original coupled
FBSDEs (132)-(137).

By applying Ito’s formula to (309) and comparing the drift term with (308), we obtain
the short interest rate r as

r = −fv −
Lfe
fe

(153)

where Lfe denotes the drift part of fe, that is

Lfe
fe

=
feeeµe − fevf + feeveσeσV + 1

2
feeee

2|σe|2 + 1
2
fevv|σV |2

fe
. (154)

Then, we have

r = β + (1− ρ)µ∗
e(x, t)−

1

2
(ρ− 1)(ρ− 2)|σe(x, t)|2. (155)

The market price of risk θ is given as the minus of the coefficient of Brownian motion in
dfe
fe
:

θ = (1− ρ)σe(x, t). (156)

Example 3. (Random endowment volatility with a square-root state-variable process)
If e and x in (132)-(135) are stochastic processes with coefficients

µ∗
x1
(xt, t) = (µ̃x1,1 + λ̄1,tσ̃x,1)x1,t + µx1,0, (157)

µ∗
x2
(xt, t) = (µ̃x2,1 + λ̄2,tσ̃x,2)x2,t + µx2,0, (158)

µ∗
x3
(xt, t) = µ̃x3,1x3,t + µx3,0, (159)

µ∗
e = (µ̃e,1 + λ̄1,tσ̃e,1)x1 + (µ̃e,2 + λ̄2,tσ̃e,2)x2 + µ̃e,3x3 + µ̃e,0, (160)

σk
x,i(x, t) = σ̃x,i

√
xi,t, i = 1, 2, i = k, (161)

σk
x,3(x, t) = σ̃x,3, i = 3, i = k, (162)

σk
x,i(x, t) = 0, i = 1, 2, 3, i ̸= k, (163)

σ1
e(x, t) = σ̃e,1

√
x1,t, (164)

σ2
e(x, t) = σ̃e,2

√
x2,t, (165)

σ3
e(x, t) = σ̃e,3, (166)

with d = l = 3, then

sgn
(
∂xk

A(x, t)σk
x,i(x, t)

)
= sgn

([
−ρ(1− ρ)

2
σ̃2
e,k + ρ(µ̃e,k + λ̄k,sσ̃e,k)

]
σ̃x,k

)
(167)
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holds in (151) and (152) (see Appendix D for details).
Particularly, when λ̄j,t ≡ λ̄j, j = 1, 2, the expressions of the short interest rate r and the

market price of risk θ in (155) and (156) become

r = β + (1− ρ)[(µ̃e,1 + λ̄1σ̃e,1)x1,t + (µ̃e,2 + λ̄2σ̃e,2)x2,t + µ̃e,3x3,t + µ̃e,0]

− 1

2
(ρ− 1)(ρ− 2)[σ̃2

e,1x1,t + σ̃2
e,2x2,t + σ̃2

e,3], (168)

and

θj,t =

{
(1− ρ)σ̃e,j

√
xj,t, j = 1, 2,

(1− ρ)σ̃e,j, j = 3.
(169)

8.2 Standard log-utility case with random endowment volatility

Next, we consider the standard log-utility with the aggregator f in (94), which is defined as

f(et, Vt) = β(log et − Vt), (170)

with the terminal condition ξ = log eT . Particularly, we consider the case of the random
volatility endowment and state-variable processes with coefficients (157)-(166) of SDEs (132)-
(135) as in Example 3 with λ̄j,t ≡ λ̄j, j = 1, 2.

In a similar way as in Section 8.1, we first suppose a functional form of V as

Vt = m1(t)x1,t +m2(t)x2,t +m3(t)x3,t + n(t) + log et, (171)

where mi, i = 1, 2, 3, n : [0, T ] → R are differentiable.
Then, applying Ito’s formula to (171) and comparing the drift and the diffusion term

with (137), we observe the following.
mi(t), i = 1, 2, 3, and n(t) are solutions of linear ODEs{

−βmi(t) + ṁi(t) + µ̄e,i − 1
2
σ̃2
e,i +mi(t)µ̄xi,1 = 0, mi(T ) = 0, i = 1, 2,

−βmi(t) + ṁi(t) + µ̄e,i +mi(t)µ̄xi,1 = 0, mi(T ) = 0, i = 3,
(172)

and

−βn(t) + ṅ(t) + µe,0 −
1

2
σ̃2
e,3 +

3∑
i=1

mi(t)µxi,0 = 0, n(T ) = 0, (173)

where

µ̄e,i =

{
µe,i + λ̄iσ̃e,i, i = 1, 2,

µe,i, i = 3,

µ̄xi,1 =

{
µxi,1 + λ̄iσ̃x,i, i = 1, 2,

µxi,1, i = 3.
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Also, we have

σj
V =

√
xj,t(σ̃x,jmj(t) + σ̃e,j), j = 1, 2. (174)

We note that ODEs (172) and (173) are solved as

mi(t) =


(
µ̄e,i − 1

2
σ̃2
e,i

){
1

−(β−µ̄xi,1
)
(e−(β−µ̄xi,1

)(T−t) − 1)
}
, i = 1, 2,

µ̄e,i

{
1

−(β−µ̄xi,1
)
(e−(β−µ̄xi,1

)(T−t) − 1)
}
, i = 3,

(175)

and

n(t) =

∫ T

t

(
µe,0 −

1

2
σ̃e,3 +

3∑
i=1

mi(s)µ̄xi,0

)
e−β(s−t)ds. (176)

Hence, by (174), for k = 1, 2, if

σ̃x,kmk(t) + σ̃e,k > 0, (177)

then σk
V > 0.

Thus, if this condition is satisfied, sgn(σk
V ), k = 1, 2 agree with the ones predetermined

and x and (V, σV ) satisfy the original coupled FBSDEs (132)-(137).
In the same way as in (155) and (156) in Section 8.1, the short rate r and the market

price of risk θ are given by

r = β + µ∗
e(x, t)− |σe(x, t)|2

= β + [(µ̃e,1 + λ̄1σ̃e,1)x1,t + (µ̃e,2 + λ̄2σ̃e,2)x2,t + µ̃e,3x3,t + µ̃e,0]

− [σ̃2
e,1x1,t + σ̃2

e,2x2,t + σ̃2
e,3], (178)

and

θj,t = σj
e(x, t) =

{
σ̃e,j

√
xj,t, j = 1, 2,

σ̃e,j, j = 3.
(179)

8.2.1 Optimality of (λ∗
1, λ

∗
2) in sup-inf/inf-sup problem

As in Remark 7, in the case of standard log-utility in (170) with the random volatility
endowment and the state-variable process, if we restrict λ ∈ Λ in the sup-inf/inf-sup problem
(11)/(12) to λ of the form λj = λ̂j

√
xj, j = 1, 2, λ̄1 < 0, λ̄2 > 0, |λ̂j| ≤ |λ̄j| (j = 1, 2) ,

BSDE (24) for (λ1, λ2) is solved in the same manner without any further modifications, and
it is proved that the optimality of (λ∗

1, λ
∗
2) on the sup-inf/inf-sup problem (11)/(12) holds.

Let us assume the endowment process, which is equivalent to the consumption process
in equilibrium, and the state-variable process as follows:

det
et

= µedt+ σe(x, t) · dBt, (180)

dxt = µxdt+ σx(xt, t)dBt, (181)

34



where Bλ1,λ2 ∈ R3, σe(x, t) ∈ R3, σx(x, t) ∈ R3×3 with the coefficients

µe = µ̃e,1x1 + µ̃e,2x2 + µ̃e,3x3 + µ̃e,0, (182)


µx1(xt, t) = µ̃x1,1x1,t + µx1,0,

µx2(xt, t) = µ̃x2,1x2,t + µx2,0,

µx3(xt, t) = µ̃x3,1x3,t + µx3,0,

(183)


σ1
e(x, t) = σ̃e,1

√
x1,t,

σ2
e(x, t) = σ̃e,2

√
x2,t,

σ3
e(x, t) = σ̃e,3,

(184)


σk
x,i(x, t) = σ̃x,i

√
xi,t, i = 1, 2, i = k,

σk
x,3(x, t) = σ̃x,3, i = 3, i = k,

σk
x,i(x, t) = 0, i = 1, 2, 3, i ̸= k,

(185)

By Girsanov’s theorem, under P λ1,λ2 , SDEs (252) and (253) are rewritten as

det
et

= µλ
edt+ σe(x, t) · dBλ1,λ2

t , (186)

dxt = µλ
xdt+ σx(xt, t)dB

λ1,λ2
t , (187)

where

µλ
e = µe(x, t) + λ · σe(x, t), (188)

µλ
x = µx(x, t) + σx(x, t)λ, (189)

λ =

λ1

λ2

λ3

 =

λ̂1
√
x1

λ̂2
√
x2

0

 . (190)

In detail, µλ
e and µλ

x in (188) and (189) are expressed as

µλ
e = (µ̃e,1 + λ̂1σ̃e,1)x1 + (µ̃e,2 + λ̂2σ̃e,2)x2 + µ̃e,3x3 + µ̃e,0, (191)


µλ
x1
(xt, t) = (µ̃x1,1 + λ̂1σ̃x,1)x1,t + µx1,0,

µλ
x2
(xt, t) = (µ̃x2,1 + λ̂2σ̃x,2)x2,t + µx2,0,

µλ
x3
(xt, t) = µ̃x3,1x3,t + µx3,0.

(192)
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Let us define (V λ1,λ2 , σλ1,λ2

V ) as{
V λ1,λ2
t = mλ1,λ2

1 (t)x1,t +mλ1,λ2

2 (t)x2,t +mλ1,λ2

3 (t)x3,t + n(t)λ1,λ2 + log et,

σλ1,λ2,j
V =

√
xj,t(σ̃x,jm

λ1,λ2

j (t) + σ̃e,j), j = 1, 2,
(193)

where

mλ1,λ2

i (t) =


(
µ̄e,i − 1

2
σ̃2
e,i

){
1

−(β−µ̄xi,1
)
(e−(β−µ̄xi,1

)(T−t) − 1)
}
, i = 1, 2,

µ̄e,i

{
1

−(β−µ̄xi,1
)
(e−(β−µ̄xi,1

)(T−t) − 1)
}
, i = 3,

(194)

n(t)λ1,λ2 =

∫ T

t

(
µe,0 −

1

2
σ̃e,3 +

3∑
i=1

mλ1,λ2

i (s)µ̄xi,0

)
e−β(s−t)ds, (195)

with

µ̄e,i =

{
µe,i + λ̂iσ̃e,i, i = 1, 2,

µe,i, i = 3,

µ̄xi,1 =

{
µxi,1 + λ̂iσ̃x,i, i = 1, 2,

µxi,1, i = 3.

Note that mλ1,λ2

i (t) and nλ1,λ2(t) satisfy ODEs{
−βmλ1,λ2

i (t) + ṁλ1,λ2

i (t) + µ̄e,i − 1
2
σ̃2
e,i +mλ1,λ2

i (t)µ̄xi,1 = 0, mλ1,λ2

i (T ) = 0, i = 1, 2,

−βmλ1,λ2

i (t) + ṁλ1,λ2

i (t) + µ̄e,i +mλ1,λ2

i (t)µ̄xi,1 = 0, mλ1,λ2

i (T ) = 0, i = 3,

(196)

and

−βnλ1,λ2(t) + ṅλ1,λ2(t) + µe,0 −
1

2
σ̃2
e,3 +

3∑
i=1

mλ1,λ2

i (t)µxi,0 = 0, n(T ) = 0. (197)

Particularly when λ̂j = λ̄j, j = 1, 2, we write (λ1, λ2) as (λ
∗
1, λ

∗
2), that is,

λ∗
1,t = λ̄1

√
x1,t,

λ∗
2,t = λ̄2

√
x2,t. (198)

The next proposition shows that (V λ1,λ2 , σV λ1,λ2 ) is a solution of a BSDE under P λ1,λ2

and a stochastic Lipschitz BSDE under P .

Proposition 4. (V λ1,λ2 , σV λ1,λ2 ) is a solution of a BSDE

dV λ1,λ2
t = −f(ct, V

λ1,λ2
t )dt+ σV λ1,λ2dB

λ1,λ2
t

= −

[
f(ct, V

λ1,λ2
t ) +

2∑
j=1

λ̂j
√
xj,tσV λ1,λ2 ,j

]
dt+ σV λ1,λ2dBt, V λ1,λ2

T = log cT . (199)
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Particularly, when λ̂j = λ̄j, j = 1, 2, (V λ1,λ2 , σV λ1,λ2 ) is a solution of a BSDE

dV
λ∗
1,λ

∗
2

t = −

[
f(ct, V

λ∗
1,λ

∗
2

t ) +
2∑

j=1

λ̄j
√
xj,tσV λ∗1,λ

∗
2 ,j

]
dt+ σ

V λ∗1,λ
∗
2
dBt, V

λ∗
1,λ

∗
2

T = log cT . (200)

Proof. By applying Ito’s formula to V λ1,λ2 in (193) and using (196) and (197), we obtain
(199).

We further assume the condition{
σ̃x,km

λ1,λ2

k (t) + σ̃e,k > 0, k = 1,

σ̃x,km
λ1,λ2

k (t) + σ̃e,k > 0, k = 2.
(201)

Then, σλ1,λ2,1
V > 0 and σλ1,λ2,2

V > 0 by (193), and in particular,

λ̄1
√
x1,tσV λ∗1,λ

∗
2 ,1

= −λ̄1
√
x1,t|σV λ∗1,λ

∗
2 ,1
| ≤ λ̂1

√
x1,tσV λ∗1,λ

∗
2 ,1
,

λ̄2
√
x2,tσV λ∗1,λ

∗
2 ,2

= λ̄2
√
x2,t|σV λ∗1,λ

∗
2 ,2
| ≥ λ̂2

√
x2,tσV λ∗1,λ

∗
2 ,2
, (202)

for all |λ̂j| ≤ |λ̄j|, j = 1, 2, in (200).

Theorem 2. Let λ ∈ Λ in the sup-inf/inf-sup problem (11)/(12) be λ of the form λj =

λ̂jxj, j = 1, 2, |λ̄j| ≥ |λ̂j| > 0. Suppose that c and x are solutions of SDEs (252) and (253),
respectively, with their coefficients (183) - (184). We also suppose f in (170) and assume
that the condition (201) is satisfied.

Then, (λ∗
1, λ

∗
2) attains the sup-inf in the problem (11), as well as the inf-sup in the problem

(12).

Proof. We show that (λ∗
1, λ

∗
2) is a saddle point. In particular, we show

V
λ∗
1,λ

∗
2

t − V
λ1,λ∗

2
t ≤ 0. (203)

We first note that under P λ∗
1,λ

∗
2 , SDE (200) becomes

dV
λ∗
1,λ

∗
2

t = −
[
f(ct, V

λ∗
1,λ

∗
2

t ) + (λ̄1 − λ̂1)xj,tσV λ∗1,λ
∗
2 ,1

]
dt+ σ

V λ∗1,λ
∗
2
dB

λ1,λ∗
2

t , V
λ∗
1,λ

∗
2

T = log cT ,

(204)

Let

V̄t = V
λ∗
1,λ

∗
2

t − V
λ1,λ∗

2
t . (205)

Then, by Ito’s formula, we have

dV̄t = −
[
f(ct, V

λ∗
1,λ

∗
2

t )− f(ct, V
λ1,λ∗

2
t ) + (λ̄1 − λ̂1)x1,tσV λ∗1,λ

∗
2 ,1

]
dt

+ (σ
V λ∗1,λ

∗
2
− σ

V λ1,λ
∗
2
)dB

λ1,λ∗
2

t

= +βV̄tdt− (λ̄1 − λ̂1)x1,tσV λ∗1,λ
∗
2 ,1
dt+ (σ

V λ∗1,λ
∗
2
− σ

V λ1,λ
∗
2
)dB

λ1,λ∗
2

t , V̄T = 0, (206)
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and

d(e−βtV̄t) = −(λ̄1 − λ̂1)x1,tσV λ∗1,λ
∗
2 ,1
e−βtdt+ (σ

V λ∗1,λ
∗
2
− σ

V λ1,λ
∗
2
)e−βtdB

λ1,λ∗
2

t . (207)

Thus,

−e−βtV̄t =

∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗1,λ
∗
2 ,1
e−βsds+

∫ T

t

(σ
V λ∗1,λ

∗
2
− σ

V λ1,λ
∗
2
)e−βsdBλ1,λ∗

2
s , (208)

and by taking the conditional expectation E
λ1,λ∗

2
t [·] in both sides of (288), we have

−e−βtV̄t = E
λ1,λ∗

2
t

[∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗1,λ
∗
2 ,1
e−βsds

]
≥ 0. (209)

Hence, V̄t ≤ 0. Here, we used the fact that{∫ t

0

(σ
V λ∗1,λ

∗
2 ,s

− σ
V λ1,λ

∗
2 ,s
)e−βsdBλ1,λ∗

2
s

}
0≤t≤T

(210)

is a martingale under P λ1,λ∗
2 , which is proved in the following lemma.

Lemma 1. {∫ t

0

(σ
V λ∗1,λ

∗
2 ,s

− σ
V λ1,λ

∗
2 ,s
)e−βsdBλ1,λ∗

2
s

}
0≤t≤T

(211)

is a P λ1,λ∗
2-martingale.

Proof. As in the proof of Theorem 1 in Section 4, by (202) and (288), it suffices to show

that Eλ1,λ∗
2

[
sup0≤t≤T |V λ∗

1,λ
∗
2

t |
]
and Eλ1,λ∗

2

[
sup0≤t≤T |V λ1,λ∗

2
t |

]
< ∞.

Firstly, Eλ1,λ∗
2 [sup0≤t≤T |V λ1,λ∗

2
t |] < ∞ is proved as follows. Under P λ1,λ∗

2 , SDEs (252) and
(253) become

det
et

= µ̂∗
edt+ σe(xt, t) · dB

λ1,λ∗
2

t , (212)

dxt = µ̂∗
xdt+ σx(xt, t) · dB

λ1,λ∗
2

t , (213)

where

µ̂∗
x1
(xt, t) = (µ̃x1,1 + λ̂1σ̃x1)x1,t + µx1,0, (214)

µ̂∗
x2
(xt, t) = (µ̃x2,1 + λ̄2σ̃x2)x2,t + µx2,0, (215)

µ̂∗
x3
(xt, t) = µ̃x3,1x3,t + µx3,0, (216)

µ̂∗
e = (µ̃e,1 + λ̂1σ̃e,1)x1 + (µ̃e,2 + λ̄2σ̃e,2)x2 + µ̃e,3x3 + µ̃e,0, (217)
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σk
x,i(x, t) = σ̃x,i

√
xi,t, i = 1, 2, i = k, (218)

σk
x,3(x, t) = σ̃x,3, i = 3, i = k, (219)

σk
x,i(x, t) = 0, i = 1, 2, 3, i ̸= k, (220)

σ1
e(x, t) = σ̃e,1

√
x1,t, (221)

σ2
e(x, t) = σ̃e,2

√
x2,t, (222)

σ3
e(x, t) = σ̃e,3. (223)

By (193), we have

sup
0≤t≤T

|V λ∗
1,λ

∗
2

t | =
3∑

i=1

sup
0≤t≤T

|mλ∗
1,λ

∗
2

i (t)| sup
0≤t≤T

|xi,t|+ sup
0≤t≤T

|nλ∗
1,λ

∗
2(t)|+ sup

0≤t≤T
| log et|. (224)

Since log et is written as

log et = log e0 +

∫ t

0

(
3∑

i=1

αixi,s + β)ds+

∫ t

0

(
σ̃e,1

√
x1,tdB

λ1,λ∗
2

1,s + σ̃e,2
√
x2,tdB

λ1,λ∗
2

2,s + σ̃e,3dB
λ1,λ∗

2
3,s

)
,

(225)

where αi, i = 1, 2, 3, β ∈ R, we have

sup
0≤t≤T

| log et| ≤ log e0 +

(
β +

3∑
i=1

|αi| sup
0≤t≤T

|xi,s|

)
T +

2∑
i=1

|σ̃e,i| sup
0≤t≤T

∣∣∣∣∫ t

0

√
xi,sdB

λ1,λ∗
2

i,s

∣∣∣∣
+ |σ̃e,3| sup

0≤t≤T
|Bλ1,λ∗

2
3,t |. (226)

By Burkholder’s inequality, we have

Eλ1,λ∗
2

[
sup

0≤t≤T

∣∣∣∣∫ t

0

√
xi,sdB

λ1,λ∗
2

s

∣∣∣∣] ≤ KEλ1,λ∗
2

[(∫ t

0

|xi,s|ds
) 1

2

]

≤ K

(
Eλ1,λ∗

2

[(∫ t

0

|xi,s|ds
)]) 1

2

≤ KT

(
Eλ1,λ∗

2

[
sup

0≤t≤T
|xi,t|

]) 1
2

, i = 1, 2. (227)

Since Eλ1,λ∗
2 [sup0≤t≤T |xi,t|] < ∞, i = 1, 2, 3, and Eλ1,λ∗

2 [sup0≤t≤T |Bλ1,λ∗
2

3,t |] < ∞ (for instance,
see Problem 5.3.15 in Karatzas and Shreve [12]), we have Eλ1,λ∗

2 [sup0≤t≤T | log et|] < ∞.

Hence, Eλ1,λ∗
2 [sup0≤t≤T |V λ∗

1,λ
∗
2

t |] < ∞. Eλ1,λ∗
[
sup0≤t≤T |V λ1,λ∗

2
t |

]
< ∞ is also proved in the

same manner.
V

λ∗
1,λ

∗
2

t − V
λ∗
1,λ2

t ≥ 0. is also proved in the same manner. Hence, (λ∗
1, λ

∗
2) is a saddle point

and the optimality of (λ∗
1, λ

∗
2) on the sup-inf/inf-sup problem (11)/(12) holds.
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8.3 Stochastic differential log-utility case with random endow-
ment volatility

Finally, we consider the case of the stochastic differential log-utility f in (94), which is
defined as

f(et, Vt) = β(1 + αVt)

[
log et −

log(1 + αVt)

α

]
, (228)

with the terminal condition ξ =
eαT−1

α
in BSDE (137). As in Section 8.2, we consider the case

of the random volatility endowment and state-variable processes with coefficients (157)-(166)
and λ̄j,t ≡ λ̄j, j = 1, 2 of their SDEs (132)-(135). Also, for the equilibrium short rate and
the term structure of interest rates without fundamental uncertainties under the stochastic
differential log-utility, see Nakamura et al. [18].

We suppose

Vt =
A(xt, t)e

α
t − 1

α
, (229)

where

A(xt, t) = exp(α{m1(t)x1 +m2(t)x2 +m3(t)x3 + n(t)}),

and mi, i = 1, 2, 3, n : [0, T ] → R are differentiable.
Then, by applying Ito’s formula to (229) and comparing the drift and the diffusion term

with (137), we observe the following.
m1(t),m2(t),m3(t), n(t) are obtained by solving Riccati equations

−βmi(t) + ṁi(t) + µ̄e,i −
1

2
(1− α)σ̃2

e,i +mi(t)µ̄xi,1 + αmi(t)σ̃e,iσ̃x,i + αm2
i (t)σ̃

2
x,i = 0,

mi(T ) = 0, i = 1, 2, 3, (230)

and

−βn(t) + ṅ(t) +m1(t)µx1,0 +m2(t)µx2,0 +m3(t)µx3,0 = 0, n(T ) = 0, (231)

where

µ̄e,1 = µe,1 + λ̄1σ̃e,1,

µ̄e,2 = µe,2 + λ̄2σ̃e,2,

µ̄e,3 = µe,3,

µ̄x1,1 = µx1,1 + λ̄1σ̃x,1,

µ̄x2,1 = µx2,1 + λ̄2σ̃x,2,

µ̄x3,1 = µx3,1. (232)

Next, let

Ai = ασ̃2
x,i,

Bi = (ασ̃e,iσ̃x,i + µ̄xi,1 − β),

Ci = µ̄e,i −
1

2
(1− α)σ̃2

e,i, (233)
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and assume that B2
i − 4AiCi ≥ 0, and set γi as a solution of

Aiγ
2
i +Biγi + Ci = 0. (234)

Then, the solution of Riccati equations (230) is obtained as

mi(t) =
1

−Aiγi−Bi

γi(2Aiγi+Bi)e−(2Aiγi+Bi)(T−t)− Ai
2Aiγi+Bi

+ γi. (235)

Moreover, we have

σi
V (t) = eαt A

√
xi,t(σ̃x,imi(t) + σ̃e,i). (236)

Hence, when 0 < α < 1, sgn(σ1
V ) = +1 as long as m1(t)σ̃x,1+σe,1 > 0 and sgn(σ2

V ) = +1
as long asm2(t)σ̃x,2+σe,2 > 0. Also, when α < 0, sgn(σ1

V ) = +1 as long asm1(t)σ̃x,1+σe,1 < 0
and sgn(σ2

V ) = +1 as long as m2(t)σ̃x,2 + σe,2 < 0.
If these conditions are satisfied, the signs of σj

V , j = 1, 2 agree with the predetermined
ones, and x and (V, σV ) also satisfy the original coupled FBSDEs (132)-(137).

In the same way as in (155) and (156) in Section 8.1, the short rate r and the market
price of risk θ are given by

r = β + µ∗
e(x, t)− |σe(x, t)|2 + ασe(x, t)[σe(x, t) + σx(x, t)m(t)]

= +β + ((µ̃e,1 + λ̄1,tσ̃e,1)x1,t + (µ̃e,2 + λ̄2,tσ̃e,2)x2,t + µ̃e,3x3,t + µ̃e,0)

− (1− α)(σ̃2
e,1x1,t + σ̃2

e,2x2,t + σ̃2
e,3)

+ α{m1(t)σ̃e,1σ̃x,1x1,t +m2(t)σ̃e,2σ̃x,2x2,t +m3(t)σ̃e,3σ̃x,3}, (237)

where

σe(x, t) + σx(x, t)m(t) =

(
σk
e (x, t) +

3∑
i=1

mi(t)σ
k
xi
(x, t)

)
k=1,2,3

, (238)

and

θt = σe(x, t)− α[σe(x, t) + σx(x, t)m(t)]

= (1− α)σe(x, t)− ασx(x, t)m(t)

=

{
{(1− α)σ̃e,j − ασ̃x,jmj(t)}

√
xj,t, j = 1, 2,

(1− α)σ̃e,j − ασ̃x,jmj(t), j = 3.
(239)

8.4 Term structure of interest rates for the random endowment
process

As we observed in (168),(178) and (237) in Sections 8.1-8.3, in the case of the square-root
state-variable process and the random volatility endowment process with coefficients (157)-
(166) of SDEs (132)-(135) with λ̄j,t ≡ λ̄j, j = 1, 2, r becomes a linear functional with respect
to x. Moreover, under the risk-neutral measure Qλ∗

in (315), x also remains a square-root
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process, which is observed by the expressions of the market price of risk θ = −σπ calculated
as (169),(179), and (239). In particular, when f is the standard power or the standard
log-utility as in Sections 8.1 and 8.2, we can calculate the zero yield Y (t, t + τ) explicitly
as follows. We remark that in the case of the stochastic differential log-utility in Section
8.3, since the coefficients of the SDE for x are time-dependent, we calculate the zero yield
Y (t, t+ τ) by Monte Carlo simulations.

To obtain a time-t zero yield with maturity T under a square-root model, we evaluate
the following zero-coupon bond price:

P (t, T ) = EQλ∗

[e−
∫ T
t rudu|Ft] = EQλ∗

[e
∫ T
t x1,udu|Ft]E

Qλ∗

[e−
∫ T
t x2,udu|Ft], (240)

where

rt = x2,t − x1,t, (241)

dxj,t = bj(θj − xj,t)dt+ σj
√
xj,tdB

Qλ∗

j,t ; xj,0 > 0, (242)

= (aj − bjxj,t)dt+ σj
√
xj,tdB

Qλ∗

j,t , j = 1, 2, (243)

with independent Brownian motions BQλ∗

j under a risk-neutral probability, and with con-
stants σ1 < 0, σ2 > 0 , θj > 0, bj > 0, aj = bjθj,j = 1, 2, such that b21 > 2σ2

1. Then, we

obtain with τ = T − t, γ1 =

√
b21−2σ2

1

2
(b21 > 2σ2

1), γ2 =

√
b22+2σ2

2

2
,

P1(t, T ) = EQλ∗

[e
∫ T
t x1,udu|Ft] = ex1,tB1(t,T )+A1(t,T ), (244)

P2(t, T ) = EQλ∗

[e−
∫ T
t x2,udu|Ft] = e−x2,tB2(t,T )−A2(t,T ), (245)

Bj(t, T ) =
sinh(γjτ)

γj cosh(γjτ) +
bj
2
sinh(γjτ)

(j = 1, 2), (246)

A1(t, T ) =
2a1
σ2
1

log

{
γ1 exp(

b1τ
2
)

γ1 cosh(γ1τ) +
b1
2
sinh(γ1τ)

}
, (247)

A2(t, T ) =
−2a2
σ2
2

log

{
γ2 exp(

b2τ
2
)

γ2 cosh(γ2τ) +
b2
2
sinh(γ2τ)

}
, (248)

where sinh(y) = ey−e−y

2
and cosh(y) = ey+e−y

2
.

Thus, a time-t zero yield with term τ is given by

Y (t, t+ τ) =
−1

τ
logP (t, T ) =

1

τ
[−{x1,tB1(t, T ) + A1(t, T )}+ {x2,tB2(t, T ) + A2(t, T )}] .

(249)

Remark 8. If r = α2x2 − α1x1, αj > 0, j = 1, 2, we define x̂j = αjxj

dx̂j,t = (âj − bjx̂j,t)dt+ σ̂j

√
x̂j,tdB

Qλ∗

t ; âj = αjxj; σ̂j =
√
αjσj, (250)

and then, the same formula as above is applied.
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8.5 Gaussian quadratic-Gaussian interest rate model

This section explains a Gaussian quadratic-Gaussian interest rate model in which the state-
variable process is Gaussian and the equilibrium short rate is expressed as a quadratic
function of the state-variable process. Particularly, we consider a case of the standard log-
utility.

8.5.1 Optimality of (λ∗
1, λ

∗
2) in sup-inf/inf-sup problem

Firstly, let us specify the consumption (endowment) process as follows:

dct
ct

= µcdt+ σc(x, t) · dBt, (251)

(252)

dxt = µxdt+ σx(xt, t)dBt, (253)

with Bλ∗
1,λ

∗
2 ∈ Rd, σc(x, t) ∈ Rd, σx(x, t) ∈ Rl×d (d = l = 3), where

µc(x, t) = µ0 + l1(t)x1 + l2(t)x2 + µ1x
2
1 + µ2x

2
2 + µ3x3, (254)

σj
c(x, t) = σc,jxj, (j = 1, 2), σc,j, (j = 3), (255)

µx,j(x, t) = aj − bjxj, (256)

σx,j(x, t) =

σx,1 0 0
0 σx,2 0
0 0 σx,3

 . (257)

Next, let us define for given λ̄1 < 0, λ̄2 > 0, λ1,t = λ̂1x1,t, λ2,t = λ̂2x2,t, |λ̂1| ≤ |λ̄1|,
|λ̂2| ≤ λ̄2. Since x1,t, x2,t are Gaussian process under P , a probability measure P λ1,λ2 in (2)
is well defined. Also, let

λ∗
1,t = λ̄1x1,t, (258)

λ∗
2,t = λ̄2x2,t, (259)

(260)

and then, P λ∗
1,λ

∗
2 is well defined by (2), too.

By Girsanov’s theorem, Bλ1,λ2 in (13) is a Brownian motion under P λ1,λ2 . (252) and
(253) are rewritten as

dct
ct

= µλ
cdt+ σc(x, t) · dBλ1,λ2

t , (261)

dxt = µλ
xdt+ σx(xt, t)dB

λ1,λ2
t , (262)

where

µλ
c = µc(x, t) + λ · σc(x, t), (263)

µλ
x = µx(x, t) + σx(x, t)λ. (264)
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λ =

λ1

λ2

λ3

 =

λ̂1x1

λ̂2x2

0

 . (265)

Now, we specify the function f as the following standard log-utility:

f(c, V ) = β(log c− V ), β > 0. (266)

Let us define (V λ1,λ2 , σV λ1,λ2 ) as
V λ1,λ2
t = mλ̂1,λ̂2

1 (t)x2
1,t +mλ̂1,λ̂2

2 (t)x2
2,t +m3(t)x3,t

+nλ̂1,λ̂2(t) + log ct,

σ
V λ̂1,λ̂2 ,j

=

{
xj,t(σc,j + 2mλ̂1,λ̂2

j (t)σx,j), j = 1, 2,

σc,j +mλ̂1,λ̂2

j (t)σx,j, j = 3.

(267)

where

mλ̂1,λ̂2

j (t) =

(
µλ̂1,λ̂2

j − 1

2
σ2
c,j

)∫ T

t

e−(β+2b
λ̂1,λ̂2
j )(s−t)ds, j = 1, 2, (268)

m3(t) = µ3

∫ T

t

e−(β+b3)(s−t)ds, (269)

nλ̂1,λ̂2(t) =

∫ T

t

(
µ0 +

2∑
j=1

mλ̂1,λ̂2

i (s)σ2
x,j +m3a3 −

1

2
σ2
c,3

)
e−β(s−t)ds, (270)

and

lj(t) = −2mλ̂1,λ̂2

j (t)aj, j = 1, 2, (271)

with

µλ̂1,λ̂2

j = µj + λ̂jσc,j, j = 1, 2,

bλ̂1,λ̂2

j = bj − λ̂jσx,j, j = 1, 2. (272)

Note that mλ̂1,λ̂2

j (t), j = 1, 2, m3(t), and nλ̂1,λ̂2(t) in (268)-(270) satisfy a system of ODEs
below:

ṁλ̂1,λ̂2

j (t)−mλ̂1,λ̂2

j (t)(β + 2bλ̂1,λ̂2

j ) + µλ̂1,λ̂2

j − 1

2
σ2
c,j = 0; mλ̂1,λ̂2

j (T ) = 0, j = 1, 2,(273)

ṁ3(t)−m3(t)(β + b3) + µ3 = 0; m3(T ) = 0, (274)

and

ṅλ̂1,λ̂2(t)− βnλ̂1,λ̂2(t) + µ0 +
2∑

j=1

mλ̂1,λ̂2

j (t)σ2
x,j +m3(t)a3 −

1

2
σ2
c,3 = 0; nλ̂1,λ̂2(T ) = 0. (275)

The next proposition shows that (V λ1,λ2 , σV λ1,λ2 ) in (267) satisfies two BSDEs:
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Proposition 5. (V λ1,λ2 , σV λ1,λ2 ) in (267) is a solution of BSDE:

dV λ1,λ2
t = −f(ct, V

λ1,λ2
t )dt+ σV λ1,λ2dB

λ1,λ2
t , V λ1,λ2

T = log cT . (276)

Moreover, (V λ1,λ2 , σV λ1,λ2 ) satisfies a stochastic Lipschitz BSDE:

dV λ1,λ2
t = −

[
f(ct, V

λ1,λ2
t ) +

2∑
j=1

λ̂jxj,tσV λ1,λ2 ,j

]
dt+ σV λ1,λ2dBt, V λ1,λ2

T = log cT . (277)

Particularly, when λ̂1 = λ̄1, λ̂2 = λ̄2, (V
λ∗
1,λ

∗
2 , σ

V λ∗1,λ
∗
2
) defined as

V
λ∗
1,λ

∗
2

t = mλ̄1,λ̄2

1 (t)x2
1,t +mλ̄1,λ̄2

2 (t)x2
2,t +m3(t)x3,t

+nλ̄1,λ̄2(t) + log ct,

σ
V λ∗1,λ

∗
2 ,j

=

{
xj,t(σ

j
c + 2mλ̄1,λ̄2

j (t)σx,j), j = 1, 2,

σj
c +mλ̄1,λ̄2

j (t)σx,j, j = 3,

(278)

is a solution of BSDE

dV
λ∗
1,λ

∗
2

t = −

[
f(ct, V

λ∗
1,λ

∗
2

t ) +
2∑

j=1

λ̄jxj,tσV λ∗1,λ
∗
2 ,j

]
dt+ σ

V λ∗1,λ
∗
2
dBt, V

λ∗
1,λ

∗
2

T = log cT . (279)

Remark 9. This implies that V λ1,λ2
t satisfies (9).

Proof. By applying Ito’s formula to V λ1,λ2
t in (267) and using (274) and (275), we obtain

BSDEs (276) and (277).
Moreover, if conditions,

σj
c + 2mλ̄1,λ̄2

j (t)σx,j > 0, j = 1,

σj
c + 2mλ̄1,λ̄2

j (t)σx,j > 0, j = 2 (280)

are satisfied, then the equation for σ
V λ∗1,λ

∗
2 ,j

in (278) implies that

sgn(σ
V λ∗1,λ

∗
2 ,j
) = sgn(xj,t). (281)

Then,

λ̄jxj,tσV λ∗1,λ
∗
2 ,j

=

{
λ̄1|x1,t||σV λ∗1,λ

∗
2 ,1
| ≤ λ̂1x1,tσV λ∗1,λ

∗
2 ,1

, j = 1

+λ̄2|x2,t||σV λ∗1,λ
∗
2 ,2
| ≥ λ̂2x2,tσV λ∗1,λ

∗
2 ,2

, j = 2
(282)

holds in stochastic Lipschitz BSDE (279).
The next theorem shows the optimality of V λ∗

1,λ
∗
2 on the sup-inf/inf-sup problem.

Theorem 3. Let λ ∈ Λ in the sup-inf/inf-sup problem (11)/(12) be of the form λj =

λ̂jxj, j = 1, 2, λ̄j ≥ |λ̂j| > 0, and assume f in the problem as (266). Suppose that the
condition (280) is satisfied. Suppose also that c and x are solutions of SDEs (261) and
(262), respectively, with their coefficients (254) - (257). Then, (λ∗

1, λ
∗
2) attains the sup-inf in

problem the (11), as well as the inf-sup in the problem (12).
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Proof.
We show that (λ∗

1, λ
∗
2) is a saddle point. Particularly, we show

V
λ∗
1,λ

∗
2

t − V
λ1,λ∗

2
t ≤ 0. (283)

Set

V̄t = V
λ∗
1,λ

∗
2

t − V
λ1,λ∗

2
t . (284)

Since SDE (279) is rewritten as

dV
λ∗
1,λ

∗
2

t = −
[
f(ct, V

λ∗
1,λ

∗
2

t ) + (λ̄1 − λ̂1)x1,tσV λ∗1,λ
∗
2 ,1

]
dt+ σ

V λ∗1,λ
∗
2
dB

λ1,λ∗
2

t , V
λ∗
1,λ

∗
2

T = log cT ,

(285)

we have

dV̄t = −
[
f(ct, V

λ∗
1,λ

∗
2

t )− f(ct, V
λ1,λ∗

2
t ) + (λ̄1 − λ̂1)x1,tσV λ∗1,λ

∗
2 ,1

]
dt

+ (σ
V λ∗1,λ

∗
2
− σ

V λ1,λ
∗
2
)dB

λ1,λ∗
2

t

= +βV̄tdt− (λ̄1 − λ̂1)x1,tσV λ∗1,λ
∗
2 ,1
dt+ (σ

V λ∗1,λ
∗
2
− σ

V λ1,λ
∗
2
)dB

λ1,λ∗
2

t , V̄T = 0. (286)

By Ito’s formula, we have

d(e−βtV̄t) = −(λ̄1 − λ̂1)x1,tσV λ∗1,λ
∗
2 ,1
e−βtdt+ (σ

V λ∗1,λ
∗
2
− σ

V λ1,λ
∗
2
)e−βtdB

λ1,λ∗
2

t , (287)

and thus

−e−βtV̄t =

∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗1,λ
∗
2 ,1
e−βsds+

∫ T

t

(σ
V λ∗1,λ

∗
2
− σ

V λ1,λ
∗
2
)e−βsdBλ1,λ∗

2
s . (288)

Taking the conditional expectation E
λ1,λ∗

2
t [·] in both sides of (288), we have

−e−βtV̄t = E
λ1,λ∗

2
t

[∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗1,λ
∗
2 ,1
e−βsds

]
≥ 0. (289)

Thus, by (282), we have V̄t ≤ 0.
Here, we used the fact that{∫ t

0

(σ
V λ∗1,λ

∗
2 ,s

− σ
V λ1,λ

∗
2 ,s
)e−βsdBλ1,λ∗

2
s

}
0≤t≤T

(290)

is a martingale under P λ1,λ∗
2 , which is proved in the following Lemma.

Lemma 2. {
∫ t

0
(σ

V λ∗1,λ
∗
2 ,s

− σ
V λ1,λ

∗
2 ,s
)e−βsdB

λ1,λ∗
2

s }0≤t≤T is a martingale under P λ1,λ∗
2 .
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Proof.
To confirm the martingale property, it suffices to show that

Eλ1,λ∗
[
sup

0≤t≤T
|V λ∗

1,λ
∗
2

t |
]
, Eλ1,λ∗

[
sup

0≤t≤T
|V λ1,λ∗

2
t |

]
< ∞. (291)

Firstly, Eλ1,λ∗
2 [sup0≤t≤T |V λ∗

1,λ
∗
2

t |] < ∞ is proved as follows.
Under P λ1,λ∗

2 , SDEs become

dct
ct

= µ̂∗
cdt+ σc(xt, t) · dB

λ1,λ∗
2

t , (292)

dxt = µ̂∗
xdt+ σx(xt, t) · dB

λ1,λ∗
2

t , (293)

where

µ̂∗
x1
(xt, t) = a1 − (b1 − λ̂1σx1)x1,t, (294)

µ̂∗
x2
(xt, t) = a2 − (b2 − λ̄2σx2)x2,t, (295)

µ̂∗
x3
(xt, t) = a3 − b3x3,t, (296)

µ̂∗
c = (µc,1 + λ̂1σc,1)x

2
1,t + (µc,2 + λ̄2σc,2)x

2
2,t + µc,3x3,t + l1(t)x1,t + l2(t)x2,t + µe,0, (297)

σk
x,i(x, t) = σx,i, i = 1, 2, 3, i = k, (298)

σk
x,i(x, t) = 0, i = 1, 2, 3, i ̸= k, (299)

σ1
c,1(x, t) = σc,1x1,t, (300)

σ2
c,2(x, t) = σc,2x2,t, (301)

σ3
c,3(x, t) = σc,3, (302)

.

sup
0≤t≤T

|V λ∗
1,λ

∗
2

t | ≤
2∑

i=1

sup
0≤t≤T

|mi(t)| sup
0≤t≤T

|xi,t|2 + sup
0≤t≤T

|m3(t)| sup
0≤t≤T

|x3,t|

+ sup
0≤t≤T

|n(t)|+ sup
0≤t≤T

| log et|. (303)

Since log et is written as

log et = log e0 +

∫ t

0

(
3∑

i=1

αix
2
i,s + βixi,s + γ)ds

+

∫ t

0

(
σc,1x1,tdB

λ1,λ∗
2

1,s + σc,2x2,tdB
λ1,λ∗

2
2,s + σc,3x3,tdB

λ1,λ∗
3

3,s

)
, (304)
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where αi, βi, i = 1, 2, 3, γ ∈ R, we have

sup
0≤t≤T

| log et| ≤ log e0 +

(
γ +

3∑
i=1

(
|αi| sup

0≤t≤T
|xi,s|2 + |βi| sup

0≤t≤T
|xi,s|

))
T

+
2∑

i=1

|σc,i| sup
0≤t≤T

∣∣∣∣∫ t

0

xi,sdB
λ1,λ∗

2
i,s

∣∣∣∣+ |σc,3| sup
0≤t≤T

∣∣∣Bλ1,λ∗
2

3,t

∣∣∣ . (305)

By Burkholder’s inequality, we have

Eλ1,λ∗
2

[
sup

0≤t≤T

∣∣∣∣∫ t

0

xi,sdBs

∣∣∣∣] ≤ KEλ1,λ∗
2

[(∫ t

0

|xi,s|2ds
) 1

2

]

≤ K

(
Eλ1,λ∗

2

[(∫ t

0

|xi,s|2ds
)]) 1

2

≤ KT

(
Eλ1,λ∗

2

[
sup

0≤t≤T
|xi,t|2

]) 1
2

, i = 1, 2. (306)

Since Eλ1,λ∗
2 [sup0≤t≤T |xi,t|2] < ∞, i = 1, 2 and Eλ1,λ∗

2 [sup0≤t≤T |Bλ1,λ∗
2

3,t |] < ∞ (for in-
stance, see Problem 5.3.15 in Karatzas and Shreve), we have Eλ1,λ∗

2 [sup0≤t≤T | log et|] < ∞.

Hence, Eλ1,λ∗
2 [sup0≤t≤T |V λ∗

1,λ
∗
2

t |] < ∞. Eλ1,λ∗
[
sup0≤t≤T |V λ1,λ∗

2
t |

]
< ∞ is also proved in the

same manner.
In the same manner, we can prove that

V
λ∗
1,λ

∗
2

t − V
λ∗
1,λ2

t ≥ 0. (307)

Thus, (λ∗
1, λ

∗
2) is a saddle point of J(λ1, λ2), (λ1, λ2) ∈ Λ.

8.5.2 Equilibrium interest rate (Three Factor Gaussian Quadratic-Gaussian in-
terest rate model)

Let π be a state-price density process satisfying a SDE

dπt

πt

= −rtdt+ σπ
t · dBλ∗

1,λ
∗
2

t , π0 = 1, (308)

where r is a risk-free interest rate and −σπ is called a market price of risk in equilibrium.
We denote the market price of risk −σπ by θ.

The state-price density process π is given by

πt = exp

(∫ t

0

fy(cs, V
λ∗
1,λ

∗
2

s )ds

)
fc(ct, V

λ∗
1,λ

∗
2

t ). (309)

in equilibrium where the consumption process c is equivalent to the endowment. Here,
subscripts y and c of f describe the partial derivatives of f with respect to those variables.

By applying Ito’s formula to (309) and compare its drift and diffusion terms with (308),
we obtain

r = β + µ∗
c(x, t)− |σc(x, t)|2

= β +

{
µ0 + l1(t)x1,t + l2(t)x2,t +

2∑
i=1

(µi + λ̄iσc,i)x
2
i,t + µ3x3,t

}
−

{
2∑

i=1

σ2
c,ix

2
i,t + σ2

c,3

}
,

(310)
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and

θ = σc(x, t) =

σc,1x1

σc,2x2

σc,3

 . (311)

Let D be a cumulative dividend process which is RCLL (right-continuous with left limits)
and R-valued {Ft}-progressively measurable process.

It is well known that under a complete market assumption, a risky asset with the dividend
stream D is priced as

St = EPλ∗1,λ
∗
2

[∫ T

t

πs

πt

dDs

∣∣∣∣Ft

]
. (312)

Particularly, the zero-coupon bond price P (t, T ) becomes

P (t, T ) = EPλ∗1,λ
∗
2

[
πT

πt

∣∣∣∣Ft

]
= EP

[
πTZ

λ∗
1,λ

∗
2

T

πtZ
λ∗
1,λ

∗
2

t

∣∣∣∣Ft

]
. (313)

We note that P (t, T ) in (313) is also rewritten as

P (t, T ) = EQλ∗
[
exp

(
−
∫ T

t

rsds

) ∣∣∣∣Ft

]
, (314)

where Qλ∗
is a risk-neutral measure with respect to P λ∗

1,λ
∗
2 :

Qλ∗
(A) = Eλ∗

1,λ
∗
2 [ZQλ∗

T 1A]; A ∈ FT ,

ZQλ∗

T = exp

(
−1

2

∫ T

0

|σπ
s |2ds+

∫ T

0

σπ
s · dBλ∗

1,λ
∗
2

s

)
. (315)

Thus, under Qλ∗
,

dBQλ∗

i,t =

{
dB

λ∗
1,λ

∗
2

i,t + σc,ixidt, (i = 1, 2)

dB
λ∗
1,λ

∗
2

i,t + σc,idt, i = 3.
(316)

is a Brownian motion, so, for i = 1, 2,

dxi,t = (ai − b∗ixi,t)dt+ σx,idB
λ∗
1,λ

∗
2

i,t = (ai − b∗ixi,t)dt+ σx,i(dB
Qλ∗

i,t − σc,ixi,tdt)

= (ai − (b∗i + σx,iσc,i)xi,t)dt+ σx,idB
Qλ∗

i,t ,

(317)

where b∗1 + σx,1σc,1 < b∗1 due to σc,1 > 0 and σx,1 < 0, and b∗2 + σx,2σc,2 > b∗2 due to σc,2 > 0
and σx,2 > 0.

Similarly, for i = 3,

dx3,t = ((a3 − σx,3σc,3)− b3x3,t)dt+ σx,3dB
Qλ∗

3,t . (318)

Consequently, evaluation of (314) with (310) under SDEs (317) and (318) provides an
equilibrium yield curve in a three-factor Gaussian Quadratic-Gaussian interest rate model.
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9 Conclusion

In this study, we have proposed a novel asset pricing model incorporating fundamental
uncertainties by choice of a probability measure. Particularly, the model takes into account
both aggressive (positive) and conservative (cautious) attitudes of the agent towards different
market risk sources by a sup-inf/inf-sup problem on the agent’s utility, which reduces to
solving FBSDEs. Moreover, we have applied the result of the sup-inf/inf-sup problem to
asset pricing, in particular, term structures of interest rates. Furthermore, we have presented
numerical examples of the term structure of interest rates with market sentiment. Such term
structure models are important in yield curve trading of hedge funds as well as central banks’
monetary policy making in the global low interest environments, in which the yield curves
are controlled by central banks and less affected by economic factors, but driven mainly by
sentiment of market participants.

Firstly, we have formulated a sup-inf/inf-sup problem of a representative agent’s utility
that describes aggressive (positive)/conservative (cautious) attitudes toward risks of Brown-
ian motions and shown that the optimal solution is obtained by solving the associated BSDE.
Moreover, we have presented expressions of the equilibrium interest rate and the term struc-
ture of interest rates under the probability measure obtained through the sup-inf/inf-sup
problem. Furthermore, we have provided explicit expressions of the equilibrium interest rate
by solving the system of FBSDEs by two approaches. The first approach is by comparison
theorems with which the signs of the volatilities of the BSDE are uniquely determined and
thus, the system of FBSDEs is reduced to a combination of a solvable BSDE and forward
SDEs. The second approach is to predetermine those signs and confirm them by explicitly
solving the separated BSDE. Finally, we have provided numerical examples on the term
structure of interest rates under fundamental uncertainties, which give implications on yield
curve trading by hedge funds and yield curve controls for monetary policies by central banks.
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A Proof of Proposition 1

In this section, we prove Proposition 1 with modifications of the arguments in the proofs of
Theorem 9.20 in Cohen and Elliott [4] and Theorem I-3 in Hamadene and Lepeltier [8].

Hereafter, we suppress the superscript λ1, λ2 of Y and Z.
Let ϕ : [0, T ]×Rl × C([0, T ] → Rd)×R×Rd → R be

ϕ(t, x, ω, y, z) = g(t, ω, x, y) + λ1,t(ω)z1 + λ2,t(ω)z2. (319)

Then,

dYt = −
(
g(s,B,Xs, Ys) + λ1,tZ1,t + λ2,tZ2,t

)
dt+

d∑
j=1

Zj,tdBj,t, YT = 0

= −ϕ(t,Xt, B, Yt, Zt)dt+ ZtdBt, YT = ξ. (320)
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|ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)| = |λ1,t(ω)(z1 − z′1) + λ2,t(ω)(z2 − z′2)|+ L|y − y′|
≤ ∥λ(ω)∥t|z − z′|+ L|y − y′|, (321)

where λ(ω) = (λ1(ω), λ2(ω)) and ∥λ(ω)∥t = sup0≤s≤t |λs(ω)|.
Let

ϕn,m(t, x, ω, y, z) = ϕ(t, x, ω, y, z)1{∥λ(ω)∥t≤n}1{ϕ(t,x,y,ω,z)≥0} + ϕ(t, x, ω, y, z)1{∥λ(ω)∥t≤m}1{ϕ(t,x,ω,y,z)<0}.
(322)

Then, we have

|ϕn,m(t, x, ω, y, z)− ϕn,m(t, x, ω, y′, z′)| ≤ (n+m)|z − z′|+ L|y − y′|. (323)

Hence, ϕn,m(t, x, ω, y, z) satisfies the uniform Lipschitz condition and by Theorem 6.2.1 in
Pham [21] , there exists a unique solution (Y n,m, Zn,m) for a BSDE

dY n,m
t = −ϕn,m(t,Xt, B, Y n,m

t , Zn,m
t )dt+ Zn,m

t dBt, Y n,m
T = ξ, (324)

such that

E

[∫ T

0

(Y n,m
s )2 + |Zn,m

s |2ds
]
< ∞. (325)

Namely,

Y n,m
t = ξ +

∫ T

t

ϕn,m(s,Xs, B, Y n,m
s , Zn,m

s )ds−
∫ T

t

Zn,m
s dBs

= ξ +

∫ T

t

ϕn,m(s,Xs, B, 0, 0)ds

+

(∫ T

t

ϕn,m(s,Xs, B, Y n,m
s , Zn,m

s )ds−
∫ T

t

ϕn,m(s,Xs, B, 0, Zn,m
s )ds

)
+

(∫ T

t

ϕn,m(s,Xs, B, 0, Zn,m
s )ds−

∫ T

t

ϕn,m(s,Xs, B, 0, 0)ds

)
−
∫ T

t

Zn,m
s dBs

= ξ +

∫ T

t

ϕn,m(s,Xs, B, 0, 0)ds+

∫ T

t

an,ms Y n,m
s ds−

∫ T

t

Zn,m
s dBn,m

s , (326)

where

an,ms =
ϕn,m(s,Xs, B, Y n,m

s , Zn,m
s )− ϕn,m(s,Xs, B, 0, Zn,m

s )

Y n,m
s

1{Y n,m
s ̸=0}, (327)

dBn,m
j,s = dBj,s −

ϕn,m(s,Xs, B, 0, Zn,m
s )− ϕn,m(s,Xs, B, 0, 0)

|Zn,m
s |2

Zn,m
j,s 1{Zn,m

s ̸=0}ds. (328)
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Note that by (323), we have

|an,ms | ≤ L. (329)

Let

θn,mj,s =
ϕn,m(s,Xs, B, 0, Zn,m

s )− ϕn,m(s,Xs, B, 0, 0)

|Zn,m
s |2

Zn,m
j,s 1{Zn,m

s ̸=0}, j = 1, . . . , d. (330)

Then,

|θn,ms | = |ϕn,m(s,Xs, B, 0, Zn,m
s )− ϕn,m(s,Xs, B, 0, 0)|
|Zn,m

s |
1{Zn,m

s ̸=0}. (331)

Since

|ϕn,m(t, x, ω, y, z)− ϕn,m(t, x, ω, y, z′)| ≤ (n+m)|z − z′|, (332)

|θn,ms | ≤ (n+m)|Zn,m
s |

|Zn,m
s |

= n+m. (333)

By Girsanov’s theorem, P n,m defined by

P n,m(A) = E

[
exp

(
−1

2

∫ T

0

|θn,ms |2ds+
∫ T

0

θn,ms dBs

)
1A

]
, A ∈ F (334)

is a probability measure, and Bn,m is a Brownian motion under P n,m.
By Ito’s formula, we have

d(e
∫ t
0 an,m

s dsY n,m
t ) = an,mt e

∫ t
0 an,m

s dsY n,m
t + e

∫ t
0 an,m

s dsdY n,m
t

= −e
∫ t
0 an,m

s dsϕn,m(t,Xt, B, 0, 0)dt+ e
∫ t
0 an,m

s dsZn,m
t dBn,m

t , (335)

e
∫ T
0 an,m

s dsξ − e
∫ t
0 an,m

s dsY n,m
t = −

∫ T

t

e
∫ s
0 an,m

u duϕn,m(s,Xs, B, 0, 0)ds+

∫ T

t

e
∫ s
0 an,m

u duZn,m
s dBn,m

s ,

(336)

and

Y n,m
t = e

∫ T
t an,m

s dsξ +

∫ T

t

e
∫ s
t an,m

u duϕn,m(s,Xs, B, 0, 0)ds−
∫ T

t

e
∫ s
t an,m

u duZn,m
s dBn,m

s . (337)

Then, due to the fact that{∫ v

t

e
∫ s
t an,m

u duZn,m
s dBn,m

s

}
0≤v≤T

(338)

is a P n,m- martingale for each 0 ≤ t ≤ T , we have

Y n,m
t = En,m

[
e
∫ T
t an,m

s dsξ +

∫ T

t

e
∫ s
t an,m

u duϕn,m(s,Xs, B, 0, 0)ds

∣∣∣∣Ft

]
. (339)

Let K1 and K2 be positive constants by which |ξ| and |ϕ(s, x, ω, 0, 0)| are bounded,
respectively. Since |ϕn,m(s,Xs, B, 0, 0)| ≤ |ϕ(s,Xs, B, 0, 0)| ≤ K2, we have

|Y n,m
t | ≤ eLT (K1 + T sup

0≤s≤T
|ϕ(s, x, ω, 0, 0)|) ≤ eLT (K1 + TK2). (340)

Here, we used (329) in the first inequality. Thus, Y n,m is uniformly bounded with respect to
t, ω, n,m.
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A.1

The fact that {∫ v

t

e
∫ s
t an,m

u duZn,m
s dBn,m

s

}
t≤v≤T

(341)

is a P n,m- martingale is proved as follows.
We first show

En,m

[{∫ T

0

(Zn,m
s )2ds

}1/2
]
< ∞. (342)

Let

Ln,m
t = exp

(
−1

2

∫ t

0

|θn,ms |2ds+
∫ t

0

θn,ms dBs

)
. (343)

Then,

En,m

[{∫ t

0

(Zn,m
s )2ds

}1/2
]
= E

[
Ln,m

T

{∫ t

0

(Zn,m
s )2ds

}1/2
]

≤ E
[
Ln,m2

T

]1/2
E

[∫ t

0

(Zn,m
s )2ds

]1/2
(344)

Since Ln,m
t satisfies

dLn,m
t = θn,mt Ln,m

t dBt, Ln,m
0 = 1, (345)

where θn,mt is bounded, and thus E[Ln,m2
T ] < ∞.

Hence, noting that E
[∫ t

0
(Zn,m

s )2ds
]
< ∞ in (344), we have

En,m

[{∫ T

0

(Zn,m
s )2ds

}1/2
]
< ∞. (346)

By Burkholder’s inequality,

En,m

[
sup

t≤v≤T

∣∣∣∣∫ v

t

e
∫ s
t an,m

u duZn,m
s dBn,m

s

∣∣∣∣] ≤ KEn,m

[{∫ T

t

e
∫ s
t 2an,m

u du(Zn,m
s )2ds

}1/2
]

≤ KeLTEn,m

[{∫ T

0

(Zn,m
s )2ds

}1/2
]
< ∞. (347)

Hence,
{∫ v

t
e
∫ s
t an,m

u duZn,m
s dBn,m

s

}
t≤v≤T

is a uniformly integrable local martingale and thus a
martingale.
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A.2

Since Y n,m is uniformly bounded, increasing with respect to n and decreasing with respect
to m, we can define Yt as

Yt = lim
m→∞

lim
n→∞

Y n,m
t , P -a.s. (348)

Here, the monotonicity of Y n,m with respect to n,m follows from a comparison theorem (e.g.
see Theorem 6.2.2. in Pham [21]) applied to BSDE (324) with a monotone driver which is
increasing with regard to n and decreasing with respect to m. For each p ≥ 1, we can choose
a subsequence such that

lim
k→∞

E

[∫ T

0

|Y n(k),k
s − Ys|pds

]
= 0. (349)

In fact, we choose a subsequence n(k) as follows.
Let Y ∞,m = limn→∞ Y n,m. Note that by the bounded convergence theorem, for all j ≥ 1,

lim
n→∞

∥Y n,j − Y ∞,j∥Lp([0,T ]×Ω) = 0. (350)

Let

n(1) = min{n ∈ N|∥Y n,1 − Y ∞,1∥Lp([0,T ]×Ω) ≤ ∥Y ∞,1 − Y ∥Lp([0,T ]×Ω)}. (351)

For j ≥ 2,

n(j) = min{n ≥ n(j − 1)|∥Y n,j−1 − Y ∞,j−1∥Lp([0,T ]×Ω) ≤ ∥Y ∞,j−1 − Y ∥Lp([0,T ]×Ω)}. (352)

Then, by the dominated convergence theorem, for all ϵ > 0, there exists N such that, for
all k > N , ∥Y ∞,k − Y ∥Lp([0,T ]×Ω) <

1
2
ϵ.

Moreover, by (351) and (352),

∥Y n(k),k − Y ∞,k∥Lp([0,T ]×Ω) <
1

2
ϵ. (353)

Hence,

∥Y n(k),k − Y ∥Lp([0,T ]×Ω) ≤ ∥Y n(k),k − Y ∞,k∥Lp([0,T ]×Ω) + ∥Y ∞,k − Y ∥Lp([0,T ]×Ω)

< ϵ. (354)

A.3

Then, {Zn(k),k
t }k∈N is a Cauchy sequence in the space

{
Z

∣∣∣∣E [∫ T

0
Z2

sds
]
< ∞

}
, by the fol-

lowing discussion.
Since by Ito’s formula,

d(Y n,m
t − Y n′,m′

t )2 = 2(Y n,m
t − Y n′,m′

t )d(Y n,m
t − Y n′,m′

t ) + d
⟨
Y n,m − Y n′,m′

⟩
t
, (355)
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we have

−(Y n,m
t − Y n′,m′

t )2

=

∫ T

t

2(Y n,m
s − Y n′,m′

s )(−ϕn,m(s,Xs, B, Y n,m
s , Zn,m

s ) + ϕn′,m′
(s,Xs, B, Y n′,m′

s , Zn′,m′

s ))ds

+

∫ T

t

2(Y n,m
s − Y n′,m′

s )(Zn,m
s − Zn′,m′

s )dBs +

∫ T

t

(Zn,m
s − Zn′,m′

s )2ds. (356)

Note that {
∫ t

0
2(Y n,m

s − Y n′,m′
s )(Zn,m

s −Zn′,m′
s )dBs}0≤t≤T is a P -martingale, since Y n,m −

Y n′,m′
is uniformly bounded with respect to ω, n,m, n′,m′ and E[

∫ T

0
(Zn,m−Zn′,m′

)2sds] < ∞.
Taking the expectation with respect to P , we have

E[(Y n,m
t − Y n′,m′

t )2] + E

[∫ T

t

(Zn,m
s − Zn′,m′

s )2ds

]
= E

[∫ T

t

2(Y n,m
s − Y n′,m′

s )(ϕn,m(s,Xs, B, Zn,m
s )− ϕn′,m′

(s,Xs, B, Zn′,m′

s ))ds

]
(357)

Thus, we have

E

[∫ T

t

(Zn,m − Zn′,m′
)2ds

]
≤ E

[∫ T

t

2(Y n,m − Y n′,m′
)(ϕn,m(s,Xs, B, Y n,m, Zn,m

s )− ϕn′,m′
(s,Xs, B, Y n′,m′

, Zn′,m′

s ))ds

]
≤ E

[∫ T

t

2|Y n,m − Y n′,m′ ||ϕn,m(s,Xs, B, Y n,m, Zn,m
s )− ϕn′,m′

(s,Xs, B, Y n′,m′
, Zn′,m′

s )|ds
]

≤ E

[∫ T

t

∥λ(B)∥s2|Y n,m − Y n′,m′|(|Zn,m
s |+ |Zn′,m′

s |)ds
]

+ E

[∫ T

t

2L|Y n,m − Y n′,m′|(|Y n,m
s |+ |Y n′,m′

s |)ds
]

+ E

[
4

∫ T

t

|ϕ(s,Xs, B, 0, 0)||Y n,m − Y n′,m′ |ds
]

≤ E

[∫ T

t

(|Zn,m
s |+ |Zn′,m′

s |)2ds
]1/2

E

[∫ T

t

16∥λ(B)∥4sds
]1/4

E

[∫ T

t

|Y n,m − Y n′,m′ |4ds
]1/4

+ E

[∫ T

t

2L|Y n,m − Y n′,m′|(|Y n,m
s |+ |Y n′,m′

s |)ds
]

+ E

[
4

∫ T

t

|ϕ(s,Xs, B, 0, 0)||Y n,m − Y n′,m′ |ds
]
. (358)

By the assumption on the integrability on λ(B) in (18), and the fact that E
[∫ T

t
|Zn,m

s |2ds
]

and |Y n,m| are uniformly bounded with respect to n,m, taking the subsequence n(k) for
p = 4, we observe that {Zn(k),k}k∈N is a Cauchy sequence in L2([0, T ]× Ω). We define Z as
the limit of {Zn(k),k}k∈N in L2([0, T ]× Ω).
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A.4

The fact that

E

[∫ T

t

|Zn,m
s |2ds

]
(359)

is uniformly bounded with respect to n,m is proved as follows.

ξ2 − (Y n,m
t )2 =

∫ T

t

−2Y n,m
s ϕn,m(s,Xs, B, Y n,m

s , Zn,m
s )ds+

∫ T

t

(Zn,m
s )2ds+

∫ T

t

2(Y n,m
s )Zn,m

s dBs.

(360)

Then,∫ T

t

(Zn,m
s )2ds ≤ ξ2 +

∫ T

t

2Y n,m
s ϕn,m(s,Xs, B, Y n,m

s , Zn,m
s )ds−

∫ T

t

2(Y n,m
s )Zn,m

s dBs. (361)

Taking the expectation with respect to P , we have

E

[∫ T

t

(Zn,m
s )2ds

]
≤ E[ξ2] + E

[∫ T

t

2Y n,m
s ϕn,m(s,Xs, B, Y n,m

s , Zn,m
s )ds

]
≤ E[ξ2] + E

[∫ T

t

2|Y n,m
s ||ϕn,m(s,Xs, B, 0, 0)|ds

]
+ E

[∫ T

t

|Y n,m
s |∥λ(B)∥s|Zn,m

s |ds
]

+ E

[∫ T

t

2L|Y n,m
s |2ds

]
≤ E[ξ2] + E

[∫ T

t

2|Y n,m
s ||ϕn,m(s,Xs, B, 0, 0)|ds

]
+

1

2
E

[∫ T

t

|Y n,m
s |2∥λ(B)∥2sds

]
+ E

[∫ T

t

2L|Y n,m
s |2ds

]
+

1

2
E

[∫ T

t

|Zn,m
s |2ds

]
. (362)

Thus,

1

2
E

[∫ T

t

(Zn,m
s )2ds

]
≤ E[ξ2] + E

[∫ T

t

2|Y n,m
s ||ϕn,m(s,Xs, B, 0, 0)|ds

]
+

1

2
E

[∫ T

t

|Y n,m
s |2∥λ(B)∥2sds

]
+ E

[∫ T

t

2L|Y n,m
s |2ds

]
. (363)

Since Y n,m
s is uniformly bounded with respect to n,m and ϕn,m(s,Xs, B, 0, 0) is bounded,

the right-hand side does not depend on n,m.

A.5

We observe that (Yt, Zt) is a solution of BSDE (14) by the following discussion.
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We consider the limit k → ∞ in L1(Ω) in both sides of

Y
n(k),k
t = ξ +

∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

Zn(k),k
s dBs. (364)

Firstly, by the dominated convergence theorem, we have

lim
k→∞

E[|Y n(k),k
t − Yt|] = 0. (365)

Secondly,

lim
k→∞

E

[∣∣∣∣∫ T

t

Zn(k),k
s dBs −

∫ T

t

ZsdBs

∣∣∣∣] = 0, (366)

since

lim
k→∞

E

[∣∣∣∣∫ T

t

Zn(k),k
s dBs −

∫ T

t

ZsdBs

∣∣∣∣2 ds
]
= lim

k→∞
E

[∫ T

t

|Zn(k),k
s − Zs|2ds

]
= 0. (367)

Finally,

lim
k→∞

E

[∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds

∣∣∣∣] = 0. (368)

This is proved as follows.

∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds

∣∣∣∣
≤
∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

ϕn(k),k(s,Xs, B, Ys, Zs)ds

∣∣∣∣
+

∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Ys, Zs)ds−
∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds

∣∣∣∣ . (369)

Then,

E

[∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

ϕn(k),k(s,Xs, B, Ys, Zs)ds

∣∣∣∣]
≤ E

[∫ T

t

∥λ(B)∥s|Zn(k),k
s − Zs|ds

]
+ E

[∫ T

t

L|Y n(k),k
s − Ys|ds

]
≤ E

[∫ T

t

∥λ(B)∥2sds
]1/2

E

[∫ T

t

|Zn(k),k
s − Zs|2ds

]1/2
+ E

[∫ T

t

L|Y n(k),k
s − Ys|ds

]
→ 0 (k → ∞). (370)

Next, by (322), we have

|ϕn(k),k(s,Xs, B, Ys, Zs)− ϕ(s,Xs, B, Ys, Zs)| ≤ 2|ϕ(s,Xs, B, Ys, Zs)|. (371)
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Also,

E

[∫ T

t

2|ϕ(s,Xs, B, Ys, Zs)|ds
]
≤ 2E

[∫ T

t

∥λ(B)∥2sds
]1/2

E

[∫ T

t

|Zs|2ds
]1/2

+ 2E

[∫ T

t

L|Ys|ds
]
+ 2E

[∫ T

t

|ϕ(s,Xs, B, 0, 0)|ds
]
< ∞.

(372)

Hence, by the dominated convergence theorem, we have

E

[∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Ys, Zs)ds−
∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds

∣∣∣∣]
≤ E

[∫ T

0

∣∣ϕn(k),k(s,Xs, B, Ys, Zs)ds− ϕ(s,Xs, B, Ys, Zs)
∣∣ ds]→ 0 (k → ∞). (373)

Here, we used

lim
k→∞

ϕn(k),k(s,Xs, B, Ys, Zs) = ϕ(s,Xs, B, Ys, Zs), µ× P -a.e., (374)

where µ is Lebesgue measure on [0, T ]. This follows from (322).
Since

E

[∣∣∣∣Yt −
(
ξ +

∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds−
∫ T

t

ZsdBs

)∣∣∣∣]
= E

[∣∣∣∣(Y n(k),k
t −

(∫ T

t

ξ + ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

Zn(k),k
s dBs

))
−
(
Yt −

(
ξ +

∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds−
∫ T

t

ZsdBs

))∣∣∣∣]
≤ E[|Y n(k),k

t − Yt|]

+ E

[∣∣∣∣(∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )ds−
∫ T

t

Zn(k),k
s dBs

)
−
(∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds−
∫ T

t

ZsdBs

)∣∣∣∣]→ 0 (k → ∞), (375)

we have

Yt = ξ +

∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds−
∫ T

t

ZsdBs, P -a.s. (376)

Since Y is continuous P -almost surely as we shall observe in next subsection,

Yt = ξ +

∫ T

t

ϕ(s,Xs, B, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ ∀t ≤ T, P -a.s (377)

holds.
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A.6

The fact that Y is continuous P -almost surely is proved by the following discussion.
If we show

sup
0≤s≤T

|Y n(o(p(k))),o(p(k))
s − Ys| → 0 (k → ∞), (378)

for some subsequence {n(o(p(k)))}k∈N of {n(k)}k∈N, then it follows that Y is continuous,
since Y is a uniform convergence limit of continuous processes {Y n(o(p(k))),o(p(k))}k∈N.

By (364), we have

|Y n(k),k
t − Y

n(l),l
t | ≤

∣∣∣∣∫ T

t

ϕn(k),k(s,Xs, B, Y n(k),k
s , Zn(k),k

s )− ϕn(l),l(s,Xs, B, Y n(l),l
s , Zn(l),l

s )ds

∣∣∣∣
+

∣∣∣∣∫ T

t

(Zn(k),k
s − Zn(l),l

s )dBs

∣∣∣∣ . (379)

Since (Y
n(l),l
t ,

∫ T

t
ϕn(l),l(s,Xs, B, Z

n(l),l
s )ds,

∫ T

t
Z

n(l),l
s dBs) converges to

(Yt,
∫ T

t
ϕ(s,Xs, B, Zs)ds,

∫ T

t
ZsdBs) in L1(Ω), which follows from (365),(366), and (373),

there exists a subsequence {o(l)}l∈N of {l}l∈N such that the convergence holds in P -almost
surely and in particular,∫ T

0

∣∣ϕn(o(k)),o(k)(s,Xs, B, Y n(o(k)),o(k)
s , Zn(o(k)),o(k)

s )− ϕ(s,Xs, B, Ys, Zs)
∣∣ ds → 0 (k → ∞).

(380)

Then, we have

|Y n(o(k)),o(k)
t − Yt| ≤

∣∣∣∣∫ T

t

ϕn(o(k)),o(k)(s,Xs, B, Y n(o(k)),o(k)
s , Zn(o(k)),o(k)

s )− ϕ(s,Xs, B, Ys, Zs)ds

∣∣∣∣
+

∣∣∣∣∫ T

t

(Zn(o(k)),o(k)
s − Zs)dBs

∣∣∣∣
≤
∫ T

t

∣∣ϕn(o(k)),o(k)(s,Xs, B, Y n(o(k)),o(k)
s , Zn(o(k)),o(k)

s )− ϕ(s,Xs, B, Ys, Zs)
∣∣ ds

+

∣∣∣∣∫ T

t

(Zn(o(k)),o(k)
s − Zs)dBs

∣∣∣∣ . (381)

By taking sup0≤t≤T in both sides, we have

sup
0≤t≤T

|Y n(o(k)),o(k)
t − Yt|

≤
∫ T

0

∣∣ϕn(o(k)),o(k)(s,Xs, B, Y n(o(k)),o(k)
s , Zn(o(k)),o(k)

s )− ϕ(s,Xs, B, Ys, Zs)
∣∣ ds

+ sup
0≤t≤T

∣∣∣∣∫ T

t

(Zn(o(k)),o(k)
s − Zs)dBs

∣∣∣∣ . (382)
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Finally, to prove (378), it suffices to show that there exists a subsequence {n(o(p(k)))}k∈N
of {n(o(k))}k∈N such that

lim
k→∞

sup
0≤t≤T

∣∣∣∣∫ T

t

(Zn(o(p(k))),o(p(k))
s − Zs)dBs

∣∣∣∣ = 0, (383)

since (380) holds.
(383) is proved as follows. By Burkholder’s inequality,

E

[
sup

0≤t≤T

∣∣∣∣∫ T

t

(Zn(o(p(k))),o(p(k))
s − Zs)dBs

∣∣∣∣2
]
≤ KE

[∫ T

0

∣∣(Zn(o(p(k))),o(p(k))
s − Zs)

∣∣2 ds]→ 0 (k → ∞).

(384)

Hence, (383) follows.

A.7

The uniqueness of (Y, Z) holds by the following discussion. Let (Y, Z) and (Y ′, Z ′) be
solutions of the BSDE (14).

By Ito’s formula, we have

d(Yt − Y ′
t )

2 = 2(Yt − Y ′
t )d(Yt − Y ′

t ) + d ⟨Y − Y ′⟩t , (385)

where

d(Yt − Y ′
t ) = −(g(t, B,Xt, Yt)− g(t, B,Xt, Y

′
t ) + λ1,t(Z1,t − Z ′

1,t) + λ2,t(Z2,t − Z ′
2,t))dt

+
d∑

j=1

(Zj,t − Z ′
j,t)dBj,t,

= −g(t, B,Xt, Yt)− g(t, B,Xt, Y
′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}(Yt − Y ′

t )dt+
d∑

j=1

(Zj,t − Z ′
j,t)dB̃j,t,

= −bt(Yt − Y ′
t )dt+

d∑
j=1

(Zj,t − Z ′
j,t)dB̃j,t, (386)

and

d ⟨Y − Y ′⟩t =
d∑

j=1

(Zj,t − Z ′
j,t)

2dt. (387)

Here, we set

dB̃j,t = dBj,t − λj,tdt, j = 1, 2, (388)

where B̃ is a P̃ -Brownian motion because of (17) and Girsanov’s theorem if we define

P̃ (A) = E

[
exp

(
−1

2

2∑
j=1

∫ T

0

λ2
j,sds+

2∑
j=1

∫ T

0

λj,sdBj,s

)
1A

]
, A ∈ F , (389)

62



and

bt =
g(t, B,Xt, Yt)− g(t, B,Xt, Y

′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}. (390)

Let Ȳt = (Yt − Y ′
t )e

∫ t
0 budu, Z̄t = (Zt − Z ′

t)e
∫ t
0 budu.

Then,

−Ȳ 2
t =

d∑
j=1

∫ T

t

2ȲtZ̄j,sdB̃j,s +

∫ T

t

d∑
j=1

Z̄2
j,sds, (391)

and taking conditional expectation with respect to P̃ and the filtration Ft, we have

Ẽ

[
Ȳ 2
t +

∫ T

t

d∑
j=1

Z̄2
j,sds

∣∣∣∣Ft

]
= 0. (392)

We used the fact that {
∑d

j=1

∫ t

0
2ȲsZ̄j,sdB̃j,s}0≤t≤T is a P̃ -martingale, which can be shown

by a localization argument as follows.
Noting that

d∑
j=1

∫ t

0

2ȲsZ̄j,sdB̃j,s = Ȳ 2
t − Ȳ 2

0 −
∫ t

0

d∑
j=1

Z̄2
j,sds, (393)

and {
∑d

j=1

∫ t

0
2ȲsZ̄j,sdB̃j,s}0≤t≤T is a P̃ -local martingale, we can take an increasing sequence

of stopping times {τn}n∈N such that τn = T for sufficiently large n, P̃ -almost surely, the
P̃ -local martingale {

∑d
j=1

∫ t∧τn
0

2ȲsZ̄j,sdB̃j,s}0≤0≤T is a P̃ -martingale for all n ∈ N.
Thus, we observe that for all 0 ≤ t1 ≤ t2 ≤ T ,

lim
n→∞

Ẽ

[
d∑

j=1

∫ t2∧τn

0

2ȲsZ̄j,sdB̃j,s

∣∣∣∣Ft1

]
= lim

n→∞

d∑
j=1

∫ t1∧τn

0

2ȲsZ̄j,sdB̃j,s

=
d∑

j=1

∫ t1

0

2ȲsZ̄j,sdB̃j,s, (394)

and

lim
n→∞

Ẽ

[
d∑

j=1

∫ t2∧τn

0

2ȲsZ̄j,sdB̃j,s

∣∣∣∣Ft1

]
= lim

n→∞
Ẽ

[
Ȳ 2
t2∧τn − Ȳ 2

0 −
∫ t2∧τn

0

d∑
j=1

Z̄2
j,sds,

∣∣∣∣Ft1

]

= Ẽ

[
Ȳ 2
t2
− Ȳ 2

0 −
∫ t2

0

d∑
j=1

Z̄2
j,sds,

∣∣∣∣Ft1

]

= Ẽ

[
d∑

j=1

∫ t2

0

2ȲsZ̄j,sdB̃j,s

∣∣∣∣Ft1

]
. (395)
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In the second equality in (395), we used the dominated convergence theorem and the
monotone convergence theorem, since {Ȳ 2

t − Ȳ 2
0 }0≤t≤T is uniformly bounded with respect to

ω and t and {−
∫ t

0

∑d
j=1 Z̄

2
j,sds}0≤t≤T is an decreasing process.

Hence,

Ẽ

[
d∑

j=1

∫ t2

0

2ȲsZ̄j,sdB̃j,s

∣∣∣∣Ft1

]
=

d∑
j=1

∫ t1

0

2ȲsZ̄j,sdB̃j,s. (396)

Therefore, noting that e
∫ t
0 budu > 0, 0 ≤ ∀t ≤ T , we have

Yt = Y ′
t , 0 ≤ ∀t ≤ T, P -a.s. (397)

Zj,t = Z ′
j,t, µ× P -a.e. (398)

B Proof of Proposition 2

Proposition 2 is proved in the same manner as Proposition 1 with the following modifications.
In the proof of existence of a solution, instead of (319) and (322), we set

ϕ(t, x, ω, y, z) = g(t, ω, x, y)− |λ̄1(t, x)||z1|+ |λ̄2(t, x)||z2| (399)

and

ϕn,m(t, x, ω, y, z) = ϕ(t, x, ω, y, z)1{∥λ̄(x)∥t≤n}1{ϕ(t,x,ω,y,z)≥0}

+ ϕ(t, x, ω, y, z)1{∥λ̄(x)∥t≤m}1{ϕ(t,x,ω,y,z)<0}, (400)

respectively.
Then, noting that

|ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|
≤ L|y − y′|+ |λ̄1,t(x)|||z1| − |z′1||+ |λ̄2,t(x)|||z2| − |z′2||
≤ L|y − y′|+ |λ̄1,t(x)||z1 − z′1|+ |λ̄2,t(x)||z2 − z′2|
≤ L|y − y′|+ |λ̄t(x)||z − z′|
≤ L|y − y′|+ ∥λ̄(x)∥t|z − z′|, (401)

we have

|ϕn,m(t, x, ω, y, z)− ϕn,m(t, x, ω, y′, z′)|
≤ |ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|1{∥λ̄(x)∥t≤n}1{ϕ(t,x,ω,y,z)≥0}

+ |ϕ(t, x, ω, y, z)− ϕ(t, x, ω, y′, z′)|1{∥λ̄(x)∥t≤m}1{ϕ(t,x,ω,y,z)<0}

≤ L|y − y′|+ (n+m)|z − z′|, (402)

which corresponds to (323).
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For uniqueness of the solution, let (Y, Z), (Y ′, Z ′) be solutions of BSDE (23).
Then, instead of (386), we have

d(Yt − Y ′
t ) = −g(t, B,Xt, Yt)− g(t, B,Xt, Y

′
t )

Yt − Y ′
t

1{Yt−Y ′
t ̸=0}(Yt − Y ′

t )dt

+ |λ̄1,t(Xt)|
|Z1,t| − |Z ′

1,t|
Z1,t − Z ′

1,t

1{Z1,t−Z′
1,t ̸=0}(Z1,t − Z ′

1,t)dt

− |λ̄2,t(Xt)|
|Z2,t| − |Z ′

2,t|
Z2,t − Z ′

2,t

1{Z2,t−Z′
2,t ̸=0}(Z2,t − Z ′

2,t)dt

+
d∑

j=1

(Zj,t − Z ′
j,t)dBj,t, YT − Y ′

T = 0. (403)

Setting Ȳt = Yt − Y ′
t , Z̄j,t = Zj,t − Z ′

j,t, j = 1, . . . , d, bt =
g(t,B,Xt,Yt)−g(t,B,Xt,Y ′

t )

Yt−Y ′
t

1{Yt−Y ′
t ̸=0},

c1,t = −|λ̄1,t(Xt)|
|Z1,t|−|Z′

1,t|
Z1,t−Z′

1,t
1{Z1,t−Z′

1,t ̸=0}, c2,t = |λ̄2,t(Xt)|
|Z2,t|−|Z′

2,t|
Z2,t−Z′

2,t
1{Z2,t−Z′

2,t ̸=0}, we have

dȲt = −btȲtdt+ Z̄1,t(dB1,t − c1,tdt) + Z̄2,t(dB2,t − c2,tdt) +
d∑

j=3

Z̄j,tdBj,t, ȲT = 0. (404)

Since

|c1,t| = |λ̄1,t(Xt)|
||Z1,t| − |Z ′

1,t||
|Z1,t − Z ′

1,t|
≤ |λ̄1,t(Xt)|,

|c2,t| = |λ̄2,t(Xt)|
||Z2,t| − |Z ′

2,t||
|Z2,t − Z ′

2,t|
≤ |λ̄2,t(Xt)|, (405)

if a weak version of Novikov’s condition (21) is satisfied for λ̄1 and λ̄2, then the probability
measure P c1,c2

P c1,c2(A) = E

[
exp

(
−1

2

2∑
j=1

∫ T

0

c2j,sds+
2∑

j=1

∫ T

0

cj,sdBj,s

)
1A

]
, A ∈ F , (406)

is well-defined and Girsanov’s theorem is applied.
Then,

dȲt = −btȲtdt+
d∑

j=1

Z̄j,tdB
c1,c2
j,t , ȲT = 0, (407)

where Bc1,c2 = (Bc1,c2
1 , . . . , Bc1,c2

d ) define by

Bc1,c2
1,t = B1,t −

∫ t

0

c1,sds,

Bc1,c2
2,t = B2,t −

∫ t

0

c2,sds,

Bc1,c2
j,t = Bj,t (3 ≤ j ≤ d). (408)
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is a d-dimensional Brownian motion under P c1,c2 .
The rest of the proof is the same as the one for Proposition 1.

C Equilibrium interest rate without fundamental un-

certainties

In this section, we show that BSDE (97) with the stochastic differential power utility f in
(94)

dVt = −
[
β
eρt
ρ
(1 + αVt)

(α−ρ)/α − β

ρ
(1 + αVt)

]
dt+ σv,t(1 + αVt)dBt,

VT =
eαT − 1

α
, (409)

that is

dVt = −f(et, Vt)dt+ σV,tdBt (410)

where

f(et, Vt) = β
eρt
ρ
(1 + αVt)

(α−ρ)/α − β

ρ
(1 + αVt), (411)

σV,t = σv,t(1 + αVt), (412)

is explicitly solved and r is obtained as in (101).

Remark 10. The stochastic differential power utility in (411) is derived from the standard
version of stochastic differential power utility (continuous version of recursive power utility)
that includes the volatility of the BSDE in the aggregator (driver), as follows.

dvt
vt

= −
[
β
(ct/vt)

ρ − 1

ρ
− γ

2
|σv,t|2

]
dt+ σv,tdBt, (413)

vT = cT (414)

with β > 0, ρ = 1− δ < 1, γ > 0.
For ρ = 0 (δ = 1),

dvt
vt

= −
[
β log(ct/vt)−

γ

2
|σv,t|2

]
dt+ σv,tdBt, (415)

vT = cT (416)

Let

V = ϕA(v) :=
vα − 1

α
(417)

with α = 1− γ < 1. Then, vt = (1 + αVt)
1/α, ϕ′

A(v) = vα−1 and ϕ
′′
A(v) = (α− 1)vα−2.
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Applying Ito’s formula, we have

dVt = −
[
β
cρ

ρ
(1 + αVt)

(α−ρ)/α − β

ρ
(1 + αVt)

]
dt+ σv,t(1 + αVt)dBt, (418)

VT =
cαT − 1

α
. (419)

Then, we have the following:
For β > 0, ρ < 1(ρ ̸= 0) and α < 1(α ̸= 0) (stochastic differential power utility),

dVt = −f(ct, Vt)dt+ σV,tdBt (420)

where

f(ct, Vt) = β
cρt
ρ
(1 + αVt)

(α−ρ)/α − β

ρ
(1 + αVt), (421)

σV,t = σv,t(1 + αVt). (422)

For ρ = 0 with β > 0 and α < 1(α ̸= 0) (stochastic differential log-utility),

f(ct, Vt) = β(1 + αVt)

[
log ct −

log(1 + αVt)

α

]
, (423)

σV,t = σv,t(1 + αVt). (424)

For ρ = α ̸= 0 with β > 0 (standard power utility),

f(ct, Vt) =
β

ρ
(cρt − 1)− βVt (ρ = α ̸= 0, (425)

σV,t = σv,t(1 + αVt). (426)

For ρ = α = 0 with β > 0 (standard log-utility),

f(ct, Vt) = β [log ct − Vt] , (427)

σV,t = σv,t(1 + αVt). (428)

Let us suppose that the endowment process is given as

det
et

= µedt+ σedBt (429)

with a constant µe and a constant vector σe.
Let us assume Vt = V (et, t) =

A(t)eαt −1

α
∈ C2,1 and since

∫ t

0
f(es, Vs)dt + V (et, t) is a

martingale, Ito’s formula implies

f + ∂tV + µe,tet∂eV +
1

2
σ2
e,te

2
t∂

2
eV = 0,

VT =
eαT − 1

α
. (430)
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Then, by (430), we obtain an ODE

A′(t) = pA(t) + qA1− ρ
α (t), A(T ) = 1, (431)

with

p = α(β/ρ− µe − (α− 1)σ2
e/2), q = −αβ/ρ. (432)

Let u(t) = A(t)ρ/α, and then

u′(t) = au(t) + b, u(T ) = 1, (433)

with a = pρ/α = β − ρ(µe + (α− 1)σ2
e/2) and b = qρ/α = −β.

Hence, we obtain

u(t) = e−a(T−t)u(T ) +
β

a
(1− e−a(T−t))

= e−a(T−t) +
β

a
(1− e−a(T−t)), (434)

with a = β − ρ(µe + (α− 1)σ2
e/2), and u(t) > 0 for t ∈ [0, T ] since β > 0.

Thus,

Vt =
A(t)eαt − 1

α
, (435)

with A(t) = u(t)α/ρ.
We also obtain σV (t) = A(t)σee

α
t = (1 + αV )σe, and σv = σe.

By applying Ito’s formula to (309), the interest rate r in (308) is given by

rt = β + (1− ρ)µe −
|σe|2

2
(1− α)(2− ρ). (436)

D A(x, t) for determination of sgn(σV ) in Example 3

A(x, t) in Example 3 in Section 8.1 is explicitly calculated and concrete conditions that
determine the signs of σk

V , k = 1, 2 are obtained as follows.

rAt = rA(xt, t) = β +
ρ(1− ρ)

2
|σe(xt, t)|2 − ρµ∗

e(xt, t) (437)

= β +
ρ(1− ρ)

2
[σ̃2

e,1x1,t + σ̃2
e,2x2,t + σ̃2

e,3] (438)

−ρ
[
(µ̃e,1 + λ̄1,tσ̃e,1)x1 + (µ̃e,2 + λ̄2,tσ̃e,2)x2 + µ̃e,3x3 + µ̃e,0

]
(439)

rAt (x, t) =
2∑

i=1

[
ρ(1− ρ)

2
σ2
e,i − ρ(µ̃e,i + λ̄i,tσ̃e,i)

]
xi − ρµ̃e,3x3 +

[
β +

ρ(1− ρ)

2
σ̃2
e,3 − ρµ̃e,0

]
(440)
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rAt = γ0 +
3∑

i=1

γixi,t, (441)

with

γ0 = β +
ρ(1− ρ)

2
σ̃2
e,3 − ρµ̃e,0, (442)

γi =
ρ(1− ρ)

2
σ2
e,i − ρ(µ̃e,i + λ̄i,tσ̃e,i), (i = 1, 2), (443)

γ3 = −ρµ̃e,3. (444)

β + ∂tA(x, t)− A(x, t)

[
γ0 +

3∑
i=1

γixi,t

]

+
3∑

i=1

∂xi
A(x, t)µA

i (xt, t) +
1

2

[
∂2
x2
1
A(x, t)σ̃2

x,1x1,t + ∂2
x2
2
A(x, t)σ̃2

x,2x2,t + ∂2
x2
3
A(x, t)σ̃2

x,3

]
= 0,

AT = 1.

(445)

By Feynman-Kac formula,

A(x, t) = EA
t

[
e−

∫ T
t rAs ds + β

∫ T

t

e−
∫ u
t rAs dsdu

]
. (446)

By independence among BA
i (i = 1, 2, 3),

EA
t [e

−
∫ u
t rAs ds] = e−γ0(u−t)Π3

i=1E
A
t [e

−
∫ u
t γi,sxi,sds]. (447)

For i = 1, 2,

µA
i (xt, t) = µ∗

xi
(xt, t) + ρ

d∑
k=1

σk
e (xt, t)σ

k
xi
(xt, t) (448)

= (µ̃xi,1 + λ̄i,tσ̃xi
)xi,t + µxi,0 + ρσ̃e,iσ̃x,ixi,t (449)

= (µ̃xi,1 + λ̄i,tσ̃xi
+ ρσ̃e,iσ̃x,i)xi,t + µxi,0. (450)

For i = 3,

µA
i (xt, t) = µ̃x3,1x3,t + µx3,0. (451)

dx1,t = (a1 − b1x1,t)dt+ σ̃x,1
√
x1,tdB

A
1,t, x1,0 > 0, (452)
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with a1 = µx1,0 ≥ 0 and b1 = −(µ̃x1,1 + λ̄1,tσ̃x1 + ρσ̃e,1σ̃x,1).
Let x̂1,t := |γ1|x1,t.

dx̂1,t = (â1 − b1x̂1,t)dt+ σ̂x,1

√
x̂1,tdB

A
1,t, x̂1,0 > 0 (453)

with â1 = |γ1|µx1,0 ≥ 0 and σ̂x,1 =
√
|γ1|σ̃x,1.

We note that there exits the unique strong solution x̂1,t ≥ 0 for all t ≥ 0.

dx2,t = (a2 − b2x2,t)dt+ σ̃x,2
√
x2,tdB

A
2,t, x2,0 > 0 (454)

with a2 = µx2,0 ≥ 0 and b2 = −(µ̃x2,1 + λ̄2,tσ̃x2 + ρσ̃e,2σ̃x,2).
Let x̂2,t := |γ2|x2,t.

dx̂2,t = (â2 − b2x̂2,t)dt+ σ̂x,2

√
x̂2,tdB

A
2,t, x̂2,0 > 0 (455)

with â2 = |γ2|µx2,0 ≥ 0, and σ̂x,2 =
√

|γ2|σ̃x,2.
Again, there exits the unique strong solution x̂2,t ≥ 0 for all t ≥ 0.

dx3,t = (a3 − b3x3,t)dt+ σ̃x,3dB
A
3,t (456)

with a3 = µx3,0 and b3 = −µ̃x3,1.
Let x̂3,t := γ3x3,t.

dx̂3,t = (â3 − b3x̂3,t)dt+ σ̂x,3dB
A
3,t, (457)

(â3 = γ3µx3,0, σ̂x,3 = γ3σ̃x,3). (458)

A(x, t) = EA
t

[
e−

∫ T
t rAs ds

]
+ β

∫ T

t

EA
t

[
e−

∫ u
t rAs ds

]
du (459)

(460)

with

EA
t [e

−
∫ u
t rAs ds] = e−γ0(u−t)Π3

i=1Ai(t, u). (461)

For i = 1, 2, let

Ai(t, u) = EA
t [e

−
∫ u
t γi,sxi,sds] = EA

t [e
−

∫ u
t x̂i,sds], (γi > 0), (462)

Ai(t, u) = EA
t [e

−
∫ u
t γi,sxi,sds] = EA

t [e
∫ u
t x̂i,sds], (γi < 0). (463)

For i = 1, 2, with constants, ai ≥ 0(µxi,0 ≥ 0), bi, σi, i = 1, 2 such that b2i > 2σ2
i when

γi < 0.
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Then, we obtain with τ = u − t, hi =

√
b2i+2σ2

i

2
(γi > 0) and hi =

√
b2i−2σ2

i

2
(γi < 0,

b2i > 2σ2
i ),

Ai(t, u) = e−x̂i,tβi(τ)−ρi(τ), (γi > 0) (464)

βi(τ) =
sinh(hiτ)

hi cosh(hiτ) +
bi
2
sinh(hiτ)

, (465)

ρi(τ) =
−2âi
σ̂2
i

log

{
hi exp(

biτ
2
)

hi cosh(hiτ) +
bi
2
sinh(hiτ)

}
, (466)

Ai(t, u) = ex̂i,tβi(τ)+ρi(τ), (γi < 0) (467)

βi(τ) =
sinh(hiτ)

hi cosh(hiτ) +
bi
2
sinh(hiτ)

, (468)

ρi(τ) =
2âi
σ̂2
i

log

{
hi exp(

biτ
2
)

hi cosh(hiτ) +
bi
2
sinh(hiτ)

}
, (469)

where sinh(y) = ey−e−y

2
and cosh(y) = ey+e−y

2
.

For i = 3 with b3 = 0,

A3(t, u) = exp

(
−x̂3,tτ − â3

2
τ 2 +

σ̂2
3

6
τ 3.

)
(470)

For i = 3 with b3 ̸= 0,

A3(t, u) = exp (−x̂3,tβ3(τ)− ρ3(τ)) , (471)

where

β3(τ) =
1− e−b3τ

b3
, (472)

ρ3(τ) = −1

2

(
σ̂3

b3

)2 [
τ − 2β3(τ) +

1− e−2b3τ

2b3

]
+

â3
b3

[τ − β3(τ)] . (473)

∂x1r
A
t =

ρ(1− ρ)

2
σ̃2
e,1 − ρ(µ̃e,1 + λ̄1,tσ̃e,1), (474)

∂x2r
A
t =

ρ(1− ρ)

2
σ̃2
e,2 − ρ(µ̃e,2 + λ̄2,tσ̃e,2), (475)

∂x3r
A
t = −ρµ̃e,3 (476)

For k = 1, 2,

l∑
i=1

∂xi
A(x, t)σk

x,i(x, t) = ∂xk
A(x, t)σk

x,k(x, t) = ∂xk
A(x, t)σ̃x,k

√
xk,t, (477)
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where

∂xk
A(x, t) = −EA

t

[∫ T

t

[
ρ(1− ρ)

2
σ̃2
e,k − ρ(µ̃e,k + λ̄k,sσ̃e,k)

]
ds e−

∫ T
t rAs ds (478)

+β

∫ T

t

∫ u

t

[
ρ(1− ρ)

2
σ̃2
e,k − ρ(µ̃e,k + λ̄k,sσ̃e,k)

]
ds e−

∫ u
t rAs dsdu

]
.

(479)

Thus, the sign of [
−ρ(1− ρ)

2
σ̃2
e,k + ρ(µ̃e,k + λ̄k,sσ̃e,k)

]
σ̃x,k (480)

determines the sign of ∂xk
A(x, t)σ̃x,k.
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