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Abstract

This online appendix provides some results omitted in the paper entitled Interest rate model with
investor attitude and text mining by Nakatani et al. (2020).

1 Interest Rate Model with Investor Attitude

1.1 Sup-inf/Inf-sup (Max-min/Min-max) Problem

Let (Ω,F , {F}0≤t≤T , P ) be a filtered probability space satisfying the usual conditions. We consider an
economy with a representative agent and an endowment to the agent. Then, in equilibrium where the
agent consumes all the given endowment at each instant, the agent’s optimal consumption must be equal
to the endowment process. Hence, let us assume a nonnegative consumption (i.e. endowment) process c
exogenously whose expected return and volatility depend on a Rl-valued state vector x, as the {Ft}-adapted
progressively measurable process satisfying the following stochastic differential equations (SDEs):{

dct
ct

= µc(xt, t)dt+ σc(xt, t) · dBt,

dxt = µx(xt, t)dt+ σx(xt, t)dBt,
(1)

with Rd-dimensional Brownian motion B, µc(xt, t) ∈ R, µx(xt, t) ∈ Rl, σc(x, t) ∈ Rd, σx(x, t) ∈ Rl×d.
Here, while the economy is driven by specific Brownian motions representing fundamental risk sources, the

agent is not certain about all Brown motions. The agent thinks there is fundamental uncertainty about some
of these fundamental risks, Brownian motions. We follow Nisimura, Sato and Takahashi (2019) formulating
that under fundamental uncertainty about them, the representative agent does not face a single probability
measure, but a set of probability measures. In particular, in the diffusion process framework, we postulate
that the agent’s fundamental uncertainty is represented by a set of different Brownian motions, i.e. a set of
d-dimensional Brownian motions Bλ1,λ2 characterized by the equation (4) with a particular set of stochastic
processes, (5) below. Moreover, the representative agent may be ”conservative” about the fundamental
uncertainty for some Brownian motions (in the sense that the agent considers their worst possible case),
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while at the same time the agent may be ”optimistic” about the fundamental uncertainty about some other
Brownian motions (in the sense that the agent considers the best possible case).

To explicitly model the above concept, let us introduce a probability measure Pλ1,λ2 by

Pλ1,λ2(A) := E[ZT (λ)1A]; A ∈ FT , (2)

for a R2-valued {Ft}-progressively measurable processes λ = (λ1, λ2), where Zt(λ) defined by

Zt(λ) := exp


2∑

j=1

∫ t

0

λj,sdBj,s −
2∑

j=1

1

2

∫ t

0

λ2j,sds

 (3)

is assumed to be a martingale. Then, by Girsanov’s theorem, we can define a d-dimensional Brownian motion
under Pλ1,λ2 , Bλ1,λ2 = (Bλ1,λ2

1 , . . . , Bλ1,λ2

d ), by

Bλ1,λ2

1,t = B1,t −
∫ t

0

λ1,sds,

Bλ1,λ2

2,t = B2,t −
∫ t

0

λ2,sds,

Bλ1,λ2

j,t = Bj,t (3 ≤ j ≤ d). (4)

We also define a set Λ as

Λ = {(λ1, λ2);Z(λ) is a martingale and |λj,t| ≤ |λ̄j(xt)|, 0 ≤ t ≤ T, j = 1, 2}, (5)

where λ̄j : [0, T ] × Rd → R, (j = 1, 2) are measurable functions, and λ̄j(x), a function of x, Rl → R is
exogenously specified so that Z(λ̄) with a progressively measurable process λ̄(xt) is a martingale under P
with some Rl-valued stochastic process xt of state variables(factors).

We remark that λj represents fundamental uncertainty about the j-th risk, i.e. Brownian motion Bj .
Particularly, for λj ≡ 0, i.e. Bλ

j = Bj (3 ≤ j ≤ d), there is no fundamental uncertainty about the j-th risk.
On the contrary, when there is fundamental uncertainty about the the j-th risk with j = 1, 2, we only know
the true j-th risk is one of {Bλ

j ;λj ∈ Λ} with Bλ1,λ2

j,t := Bj,t −
∫ t

0
λj,sds for the set Λ, and we cannot tell

which is the true one. Also, there are upper and lower limits that are random processes |λ̄j,t(xt)| (j = 1, 2)
for the values that λj (j = 1, 2) can take, which are specified in the definition of Λ above.

Next, we introduce a representative agent’s (recursive) utility process V λ1,λ2 as follows: with a function
f : R2 → R,

V λ1,λ2

t = EPλ1,λ2

[
ξ +

∫ T

t

f(cs, V
λ1,λ2
s )ds

∣∣∣∣Ft

]
, (6)

where ξ is a FT -measurable random variable that is exogenously given. Specifically, we set f(c, v) = u(c)−βv,
and it becomes a well-known time-separable utility case:

V λ1,λ2

t = EPλ1,λ2

[
ξ +

∫ T

t

e−β(s−t)u(cs)ds

∣∣∣∣Ft

]
. (7)

Under this setting, we consider a situation where the representative agent takes his/her own views for
uncertainties (risks) associated with Brownian motions into account. Specifically, the representative agent
who has a conservative (optimistic) view on Brownian motion B1(B2) assumes the worst (best) case. Thus,
he/she implements optimization with respect to λj (j = 1, 2), that is, minimize (maximize) the expected
utility with respect to λ1(λ2). In contrast, for j = 3, · · · , d, the economic agent has perfect confidence, so
that we have λj ≡ 0.

Precisely, setting the time-0 utility as a functional of λ1 and λ2, J(λ1, λ2) as

J(λ1, λ2) = V λ1,λ2

0 , (λ1, λ2) ∈ Λ, (8)
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we consider the following sup-inf (max-min) and inf-sup (min-max) problems for the utility J(λ1, λ2) with
respect to λ1 and λ2:

1

• sup-inf (max-min) problem:

sup
λ2∈Λ2

inf
λ1∈Λ1(λ2)

J(λ1, λ2)

= sup
λ2∈Λ2

inf
λ1∈Λ1(λ2)

EPλ1,λ2

[
ξ +

∫ T

0

f(cs, V
λ1,λ2
s )ds

]
, (9)

• inf-sup (min-max) problem:

inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

J(λ1, λ2)

= inf
λ1∈Λ1

sup
λ2∈Λ2(λ1)

EPλ1,λ2

[
ξ +

∫ T

0

f(cs, V
λ1,λ2
s )ds

]
, (10)

where for (j, k = 1, 2, k ̸= j) we define Λj and Λj(λk) respectively as

Λj = {λj ; |λj,t| ≤ |λ̄j(xt)|, 0 ≤ t ≤ T}, j = 1, 2, (11)

and

Λj(λk) = {λj ; |λj,t| ≤ |λ̄j(xt)|, 0 ≤ t ≤ T , and Z(λ) is a martingale for given λk ∈ Λk}
for (j, k) = (1, 2), (2, 1). (12)

Here, conservatism and optimism are expressed by infλ1
and supλ2

, respectively. Moreover, the conditions
specifying Λj(λk) contain that λj (j = 1, 2) are progressively measurable processes such that |λj,t| ≤ |λ̄j(xt)|
with a Rl-valued process x = {xt; t ≥ 0} of state variables(factors), and Z(λ) is a martingale under P given
λk(k ̸= j).

(Remark) When a weak version of Novikov’s condition (e.g. Corollary 3.5.14 in Karatzas and Shreve(1991))
is satisfied for λ̄j(xt), j = 1, 2, for all λ = (λ1, λ2) with |λj,t| ≤ |λ̄j(xt)| (0 ≤ t ≤ T, j = 1, 2), {Zt(λ)}0≤t≤T

is a martingale. Thus, Λ1(λ2) = Λ1, Λ2(λ1) = Λ2. Also, for Λ defined by (5), we have Λ = Λ1 × Λ2. See
Theorem 1 and Remark 1 in Saito-Takahashi (2019) for the details.

To solve the sup-inf/inf-sup problem, since by the equation (6),
∫ t

0
f(cs, V

λ1,λ2
s )ds+V λ1,λ2

t is a martingale

under the probability measure Pλ1,λ2 , V λ1,λ2

t is a solution of a stochastic Lipschitz backward stochastic
differential equation (BSDE):

dV λ1,λ2

t = −f(ct, V λ1,λ2

t )dt+

d∑
j=1

σV λ1,λ2 ,j,tdB
λ1,λ2

j,t ,

= −
(
f(ct, V

λ1,λ2

t ) + λ1,tσV λ1,λ2 ,1,t + λ2,tσV λ1,λ2 ,2,t

)
dt+

d∑
j=1

σV λ1,λ2 ,j,tdBj,t,

V λ1,λ2

T = ξ, (13)

where the right hand side on the second equality follows from (4).
We also introduce another BSDE:

dV
λ∗
1 ,λ

∗
2

t = −
(
f(ct, V

λ∗
1 ,λ

∗
2

t )− |λ̄1,t(xt)||σV λ∗
1 ,λ∗

2 ,1,t
|+ |λ̄2,t(xt)||σV λ∗

1 ,λ∗
2 ,2,t

|)
)
dt+

d∑
j=1

σ
V λ∗

1 ,λ∗
2 ,j,t

dBj,t,

V
λ∗
1 ,λ

∗
2

T = ξ, (14)

1In general, sup-inf and inf-sup problems are not the same, so that we consider both. However, they become the same for
the optimal solution as shown below.
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which is rewritten under the probability measure Pλ∗
1 ,λ

∗
2 as follows:

dV
λ∗
1 ,λ

∗
2

t = −f(ct, V
λ∗
1 ,λ

∗
2

t )dt+

d∑
j=1

σ
V λ∗

1 ,λ∗
2 ,j,t

dB
λ∗
1 ,λ

∗
2

j,t , V
λ∗
1 ,λ

∗
2

T = ξ, (15)

where

λ∗j,t = (−1)j |λ̄j,t(xt)|sgn(σV λ∗
1 ,λ∗

2 ,j,t
), j = 1, 2. (16)

Then, by Theorem 1 in Saito and Takahashi (2019), under certain conditions, (λ∗1, λ
∗
2) attains the sup-

inf(max-min)/inf-sup(min-max) in the problem (9)/ (10).
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1.2 Three-factor Gaussian quadratic-Gaussian Interest Rate Model

In the following, as a special case in the previous subsection, we introduce a Gaussian quadratic-Gaussian
model. We first present a simplified three factor model and then explain determination of interest rates
and pricing zero coupon bonds. Finally, we show that this formulation leads to a three factor Gaussian
quadratic-Gaussian interest rate model, which is used in the empirical analysis of subsequent sections.

A Three-Factor Specification

Let us first specify the consumption (endowment) process as follows:

dct
ct

= µc(xt, t)dt+ σc(xt, t) · dBt, (17)

dxt = µx(xt, t)dt+ σx(xt, t)dBt, (18)

with B ∈ Rd, µc(x, t) ∈ R, σc(x, t) ∈ Rd, x, µx(x, t) ∈ Rl, σx(x, t) ∈ Rl×d (d = l = 3), where

µc(x, t) = µ0 + l1(t)x1 + l2(t)x2 + µ1x
2
1 + µ2x

2
2 + µ3x3, (19)

σj
c(x, t) = σc,jxj , (j = 1, 2), (with σc,1 > 0, σc,2 > 0); σc,3 ∈ R, (20)

µx,j(x, t) = aj − bjxj , (j = 1, 2, 3), (21)

σx,j(x, t) =

σx,1 0 0
0 σx,2 0
0 0 σx,3

 . (22)

Then, we define λ1,t := λ̂1x1,t, λ2,t := λ̂2x2,t, with constants λ̂1 and λ̂2 such that |λ̂1| ∈ [0,−λ̄1] and
|λ̂2| ∈ [0, λ̄2] for given constants λ̄1 < 0, λ̄2 > 0. Also, let

λ∗1,t = λ̄1x1,t,

λ∗2,t = λ̄2x2,t, (23)

Since x1,t and x2,t are Gaussian processes under P , probability measures Pλ1,λ2 and Pλ∗
1 ,λ

∗
2 are well defined

by (2). (e.g. Example 1 in Section 3.1 of Saito-Takahashi (2019))
Also, by Girsanov’s theorem, Bλ1,λ2 in (4) is a Brownian motion under Pλ1,λ2 , and (17) and (18) are

rewritten as

dct
ct

= µλ
c dt+ σc(x, t) · dBλ1,λ2

t , (24)

dxt = µλ
xdt+ σx(xt, t)dB

λ1,λ2

t , (25)

where

µλ
c = µc(x, t) + λ · σc(x, t), (26)

µλ
x = µx(x, t) + σx(x, t)λ, (27)

with

λ =

λ1λ2
λ3

 =

λ̂1x1λ̂2x2
0

 . (28)

In particular,

dct
ct

= µλ∗

c dt+

3∑
j=1

σj
c(x, t)dB

λ∗
1 ,λ

∗
2

j,t , (29)

dxi,t = (ai − b∗i xi,t)dt+ σx,idB
λ∗
1 ,λ

∗
2

i,t , (i = 1, 2), (30)

dx3,t = (a3 − b3x3)dt+ σx,3dB
λ∗
1 ,λ

∗
2

3,t , (31)
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where

µλ∗

c := µ0 + l1(t)x1 + l2(t)x2 + (µ1 + λ̄1σc,1)x
2
1 + (µ2 + λ̄2σc,2)x

2
2 + µ3x3, (32)

σj
c(x, t) = σc,jxj , (j = 1, 2), (with σc,1 > 0, σc,2 > 0); σc,3 ∈ R, (33)

b∗i := bi − λ̄iσx,i. (34)

This formulation allows the factors x1 and x2 about which the investor (representative agent) has funda-
mental uncertainty may influence expected consumption growth non-linearly (to be precise, quadratically),
while the factor x3 about which there is no fundamental uncertainty influences consumption growth linearly
(as in many traditional models). Also, the standard deviation of consumption growth may depend on these
“ fundamental uncertainty” factors. Thus, we can consider more complicated effects for “ fundamental
uncertainty” factors x1 and x2 than the no fundamental uncertainty factor x3.

Then, with a log-utility:

f(c, v) = log c− βv, β > 0, (35)

and the terminal random variable ξ as ξ = log cT , we can show that (λ∗1, λ
∗
2) defined by (23) attains the

sup-inf in the problem (9) and inf-sup in the problem (10) under certain conditions. The outline of the
derivation is given in Section 2.

In particular, a special case used for our empirical analysis is described in the subsection 1.2.1.
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1.2.1 Special Case: Transitory and Permanent Factors

In particular, a special case used for our empirical analysis is is given with a1 = a2 = a3 = b3 = 0. We also
remark that a1 = a2 = 0 implies lj(t) ≡ 0 (j = 1, 2). (See (45) in Section 2 below.) This is the case in
which (a) x1 and x2 are transitory factors eventually dying out (i.e. mean-reverting toward 0) if there is no
new shock and (b) x3 is a permanent factor of which a shock becomes permanent (see (37) below). Then,
consumption growth is determined by the permanent factor x3 if there are no shocks in x1 and x2 after they
die out, so that x1 = x2 = 0 afterwards. In this sense, x3 can be called fundamentals. Fundamentals include
technological conditions, consumer preferences, institutional factors and so on. It may include permanent
components of consumer, business and investor sentiments. In contrast, transitory components of these
sentiments are examples of the transitory factors we consider. Other examples of transitory factors are
strikes and accidents that disrupt production.

In this case, the equilibrium instantaneous short-term interest rate is given by

rt = β +

{
µ0 +

2∑
i=1

(µi + λ̄iσc,i)x
2
i,t + µ3x3,t

}
−

{
2∑

i=1

σ2
c,ix

2
i,t + σ2

c,3

}

= (β + µ0 − σ2
c,3) +

2∑
i=1

(µi + λ̄iσc,i − σ2
c,i)x

2
i,t + µ3x3,t

= c0 + c1x
2
1,t + c2x

2
2,t + µ3x3,t,

where c0 ≡ (β + µ0 − σ2
c,3); ci ≡ (µi + λ̄iσc,i − σ2

c,i) i = 1, 2. (36)

Particularly, the terms λ̄1σc,1x
2
1,t < 0 with λ̄1 > 0, σc,1 < 0 and λ̄2σc,2x

2
2,t > 0 with λ̄2 > 0, σc,2 > 0 repre-

sent the investor(representative agent)’s conservative and optimistic attitudes, respectively. Therefore, this
equation implies that the current equilibrium interest rate rt is lower (higher) when the investor (represen-
tative agent) is conservative (optimistic) than the rate when there is no fundamental uncertainty without
conservatism (optimism).

In this special case, the dynamics of xi (i = 1, 2, 3) under Pλ∗
1 ,λ

∗
2 and Qλ∗

are given by

dxi,t = −b∗i xi,tdt+ σx,idB
λ∗
1 ,λ

∗
2

i,t , (i = 1, 2),

dx3,t = σx,3dB
λ∗
1 ,λ

∗
2

3,t , (37)

and

dxi,t = −b̂ixi,tdt+ σx,idB
Qλ∗

i,t , (i = 1, 2),

dx3,t = −σx,3σc,3dt+ σx,3dB
Qλ∗

3,t , (38)

respectively.
It is noted here that xi with b∗i > 0 and b̂i > 0 (i = 1, 2) follow mean-reverting processes under

both probability measures, which are often associated with spread factors. In contrast, x3,t has no mean-
reverting terms and is a random walk process without (with) a drift under Pλ∗

1 ,λ
∗
2 (Qλ∗

), where the drift
term (−σx,3σc,3) stands for the term premium regarding x3. Then, since the change in x3 has the same
effect on all the yields with different maturities, this factor is regarded as a ”level factor”.

We also set parameters in the interest rate r in this special case so that c0 = 0, c1 ∈ [−(b̂1σx,1)
2/2, 0),

c2 > 0 and µ3 = 1: (i) The specification c0 = 0 (i.e. µ0 = σ2
c,3 − β) and µ3 = 1 are just for simplicity

and normalization, and the positive value of µ3 means that the ”level factor” x3 has a positive impact on
the consumption (endowment) expected return in (32). (ii) The condition c1 ≥ −(b̂1σx,1)

2/2 is for a zero-
coupon bond price to be well-defined. (iii) The conditions c1 < 0 and c2 > 0 imply that the effects of spread
factors x21 and x22 on the equilibrium interest rate r are the same directions as those of the investor(agent)’s
conservative (λ̄1σc,1x

2
1,t < 0) and optimistic (λ̄2σc,2x

2
2,t > 0) attitudes, respectively.

Specifically, the conditions c1 < 0 and c2 > 0 are achieved by setting µ1 = µ2 = 0 and λ̄2 > σc,2
in the expected return and volatility parameters ((32), (33)) of the consumption (endowment) process.
Namely, µ1 = µ2 = 0 means that in the economy without conservatism and optimism, the spread factors
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xi (i = 1, 2) have no impacts and thus only fundamentals represented by the level factor x3 does on the
expected consumption (endowment) growth. The condition λ̄2 > σc,2 implies that the extent of the optimism
λ̄2 > 0 is larger than the risk from the second risk-source (i.e. volatility of the second Brownian motion) of
the consumption (endowment). We also remark that since we already set λ̄1 > 0, σc,1 < 0, we have c1 < 0
with µ1 = 0.
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2 Outline of derivation of optimality of (λ∗
1, λ

∗
2) in Section 1.2

First, Let us suppose a functional form of V λ1,λ2

t = V λ1,λ2(ct, x1, x2, x3, t) as an additively separable one for
the utility of the consumption, log c and the factors x2i (i = 1, 2), x3:

V λ1,λ2

t = mλ̂1,λ̂2

1 (t)x21,t +mλ̂1,λ̂2

2 (t)x22,t +m3(t)x3,t + nλ̂1,λ̂2(t) + log ct, (39)

and hence, Ito’s formula implies that of σV λ1,λ2 as

σ
V

λ1,λ
2 ,j

=

{
xj,t[σc,j + 2mλ̂1,λ̂2

j (t)σx,j ], (j = 1, 2),

σc,j +mλ̂1,λ̂2

j (t)σx,j , j = 3.
(40)

Since the equation (6) implies that
∫ t

0
f(cs, V

λ1,λ2
s )ds+V λ1,λ2(ct, x1, x2, x3, t) is a martingale under Pλ1,λ2

and thus its drift term should be 0, Ito’s formula with (39), (40) and ξ = log cT shows that mλ̂1,λ̂2

j (t), (j =

1, 2), m3(t), and n
λ̂1,λ̂2(t) need to satisfy a system of ordinary differential equations (ODEs) below:

ṁλ̂1,λ̂2

j (t)−mλ̂1,λ̂2

j (t)(β + 2bλ̂1,λ̂2

j ) + µλ̂1,λ̂2

j − 1

2
σ2
c,j = 0; mλ̂1,λ̂2

j (T ) = 0, j = 1, 2, (41)

ṁ3(t)−m3(t)(β + b3) + µ3 = 0; m3(T ) = 0, (42)

and

ṅλ̂1,λ̂2(t)− βnλ̂1,λ̂2(t) + µ0 +

2∑
j=1

mλ̂1,λ̂2

j (t)σ2
x,j +m3(t)a3 −

1

2
σ2
c,3 = 0; nλ̂1,λ̂2(T ) = 0, (43)

where

µλ̂1,λ̂2

j = µj + λ̂jσc,j , j = 1, 2,

bλ̂1,λ̂2

j = bj − λ̂jσx,j , j = 1, 2. (44)

In addition, the time-t deterministic function in µc(x, t) should be

lj(t) = −2mλ̂1,λ̂2

j (t)aj , j = 1, 2. (45)

Then, we obtain the solution of mλ̂1,λ̂2

j (t), (j = 1, 2), m3(t), and n
λ̂1,λ̂2(t):

mλ̂1,λ̂2

j (t) =

(
µλ̂1,λ̂2

j − 1

2
σ2
c,j

)∫ T

t

e−(β+2b
λ̂1,λ̂2
j )(s−t)ds

=

(
µλ̂1,λ̂2

j − 1

2
σ2
c,j

)
1− e−(β+2b

λ̂1,λ̂2
j )(T−t)

(β + 2bλ̂1,λ̂2

j )
, j = 1, 2, (46)

m3(t) = µ3

∫ T

t

e−(β+b3)(s−t)ds = µ3
1− e−(β+b3)(T−t)

(β + b3)
, (47)

nλ̂1,λ̂2(t) =

∫ T

t

µ0 +

2∑
j=1

mλ̂1,λ̂2

j (s)σ2
x,j +m3(s)a3 −

1

2
σ2
c,3

 e−β(s−t)ds. (48)

Now, we summarize the discussion above to have the next proposition.
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Proposition 1. (V λ1,λ2 , σV λ1,λ2 ) given by (39) and (40) is a solution of BSDE:

dV λ1,λ2

t = −f(ct, V λ1,λ2

t )dt+ σV λ1,λ2dB
λ1,λ2

t , V λ1,λ2

T = log cT . (49)

Moreover, (V λ1,λ2 , σV λ1,λ2 ) satisfies a stochastic Lipschitz BSDE:

dV λ1,λ2

t = −

f(ct, V λ1,λ2

t ) +

2∑
j=1

λ̂jxj,tσV λ1,λ2 ,j

 dt+ σV λ1,λ2dBt, V
λ1,λ2

T = log cT . (50)

Particularly, when λ̂1 = λ̄1, λ̂2 = λ̄2, (V
λ∗
1 ,λ

∗
2 , σ

V λ∗
1 ,λ∗

2
) defined as

V
λ∗
1 ,λ

∗
2

t = mλ̄1,λ̄2

1 (t)x21,t +mλ̄1,λ̄2

2 (t)x22,t +m3(t)x3,t

+nλ̄1,λ̄2(t) + log ct,

σ
V λ∗

1 ,λ∗
2 ,j

=

{
xj,t(σ

j
c + 2mλ̄1,λ̄2

j (t)σx,j), (j = 1, 2),

σj
c +mλ̄1,λ̄2

j (t)σx,j , j = 3,

(51)

is a solution of the following stochastic Lipschitz BSDE:

dV
λ∗
1 ,λ

∗
2

t = −

f(ct, V λ∗
1 ,λ

∗
2

t ) +

2∑
j=1

λ̄jxj,tσV λ∗
1 ,λ∗

2 ,j

 dt+ σ
V λ∗

1 ,λ∗
2
dBt, V

λ∗
1 ,λ

∗
2

T = log cT . (52)

Remark 1. This implies that V λ1,λ2

t satisfies (6) with f(c, v) = β(log c− v), β > 0.

Moreover, if conditions,

σj
c + 2mλ̄1,λ̄2

j (t)σx,j > 0, j = 1, 2, (53)

are satisfied, then the equation for σ
V λ∗

1 ,λ∗
2 ,j

in (51) implies that

sgn(σ
V λ∗

1 ,λ∗
2 ,1

) = sgn(x1,t); sgn(σ
V λ∗

1 ,λ∗
2 ,2

) = sgn(x2,t). (54)

That is, x1,tσV λ∗
1 ,λ∗

2 ,1
= |x1,t||σV λ∗

1 ,λ∗
2 ,1

| and x2,tσV λ∗
1 ,λ∗

2 ,2
= |x2,t||σV λ∗

2 ,λ∗
2 ,2

|.
Then, under this condition, in the drift term (the coefficient dt) of the BSDE in (52), we have the following

key property to show the optimality of (λ∗1, λ
∗
2) with λ

∗
j,t = λ̄jxj,t, λ̄1 < 0, λ̄j > 0:

For any |λ̂1| ∈ [0,−λ̄1], |λ̂2| ∈ [0, λ̄2],

λ̄jxj,tσV λ∗
1 ,λ∗

2 ,j
=

{
λ̄1|x1,t||σV λ∗

1 ,λ∗
2 ,1

| ≤ λ̂1x1,tσV λ∗
1 ,λ∗

2 ,1
, (j = 1)

λ̄2|x2,t||σV λ∗
1 ,λ∗

2 ,2
| ≥ λ̂2x2,tσV λ∗

1 ,λ∗
2 ,2

, (j = 2).
(55)

Based on the discussion above, we obtain a theorem that shows the optimality of V λ∗
1 ,λ

∗
2 with (λ∗1, λ

∗
2) on

the sup-inf/inf-sup problem.

10



Theorem 1. Let λ ∈ Λ in the sup-inf/inf-sup problem (9)/(10) be of the form λj = λ̂jxj , j = 1, 2,

|λ̂1| ∈ [0,−λ̄1], |λ̂2| ∈ [0, λ̄2] and assume f in the problem as (35). Suppose also that c and x are solution
of SDEs (24) and (25), respectively, with their coefficients (19) - (22), and that the condition (53) holds.
Then, (λ∗1, λ

∗
2) defined by (23) attains the sup-inf in the problem (9) and inf-sup in the problem (10).

Proof. We show that (λ∗1, λ
∗
2) is a saddle point. Particularly, for all t ∈ [0, T ] and all λ̂j such that

|λ̂1| ∈ [0,−λ̄1] and |λ̂2| ∈ [0, λ̄2],

V
λ∗
1 ,λ2

t ≤ V
λ∗
1 ,λ

∗
2

t ≤ V
λ1,λ

∗
2

t . (56)

We first show that

V
λ∗
1 ,λ

∗
2

t − V
λ1,λ

∗
2

t ≤ 0. (57)

Set

V̄t = V
λ∗
1 ,λ

∗
2

t − V
λ1,λ

∗
2

t . (58)

Since BSDE (52) is rewritten as

dV
λ∗
1 ,λ

∗
2

t = −
[
f(ct, V

λ∗
1 ,λ

∗
2

t ) + (λ̄1 − λ̂1)x1,tσV λ∗
1 ,λ∗

2 ,1

]
dt+ σ

V λ∗
1 ,λ∗

2
dB

λ1,λ
∗
2

t , V
λ∗
1 ,λ

∗
2

T = log cT , (59)

we have

dV̄t = −
[
f(ct, V

λ∗
1 ,λ

∗
2

t )− f(ct, V
λ1,λ

∗
2

t ) + (λ̄1 − λ̂1)x1,tσV λ∗
1 ,λ∗

2 ,1

]
dt

+ (σ
V λ∗

1 ,λ∗
2
− σ

V λ1,λ∗
2
)dB

λ1,λ
∗
2

t

= +βV̄tdt− (λ̄1 − λ̂1)x1,tσV λ∗
1 ,λ∗

2 ,1
dt+ (σ

V λ∗
1 ,λ∗

2
− σ

V λ1,λ∗
2
)dB

λ1,λ
∗
2

t , V̄T = 0. (60)

By Ito’s formula, we have

d(e−βtV̄t) = −(λ̄1 − λ̂1)x1,tσV λ∗
1 ,λ∗

2 ,1
e−βtdt+ (σ

V λ∗
1 ,λ∗

2
− σ

V λ1,λ∗
2
)e−βtdB

λ1,λ
∗
2

t , (61)

and thus

−e−βtV̄t =

∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗
1 ,λ∗

2 ,1
e−βsds+

∫ T

t

(σ
V λ∗

1 ,λ∗
2
− σ

V λ1,λ∗
2
)e−βsdB

λ1,λ
∗
2

s . (62)

Taking the conditional expectation E
λ1,λ

∗
2

t [·] in both sides of (62), we have

−e−βtV̄t = E
λ1,λ

∗
2

t

[∫ T

t

−(λ̄1 − λ̂1)x1,sσV λ∗
1 ,λ∗

2 ,1
e−βsds

]
. (63)

Thus, by (55), we have V̄t ≤ 0.
Here, we easily see with Burkholder′sinequality and standard moment estimates of xj(j = 1, 2, 3) that{∫ t

0

(σ
V λ∗

1 ,λ∗
2 ,s

− σ
V λ1,λ∗

2 ,s
)e−βsdB

λ1,λ
∗
2

s

}
0≤t≤T

(64)

is a martingale under Pλ1,λ
∗
2 . In the same manner, we can prove that

V
λ∗
1 ,λ

∗
2

t − V
λ∗
1 ,λ2

t ≥ 0. (65)

Thus, (λ∗1, λ
∗
2) is a saddle point of J(λ1, λ2), (λ1, λ2) for all λ̂j such that |λ̂1| ∈ [0,−λ̄1] and |λ̂2| ∈ [0, λ̄2].
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3 Algorithm for Monte Carlo Filter

This appendix describes the outline of an algorithm of Monte Carlo filter used in this work, which is an
adaptation of Fukui et al. (2017) and Nakano et al. (2017a,2017b,2019).

We introduce a state space model that consists of the following system and observation models:{
xt = f(xt−∆t, ϵt) (system equation)
yt = h(xt) + et (observation equation),

(66)

where xt, yt and ∆t denote a N dimensional state vector, a M dimensional observation vector at time t
and the time interval of observational data, respectively while ϵt and et denote the system noise and the
observational noise whose density functions are given by q(v) and ψ(u) respectively. The functions f and h
are generally non-linear maps, RN × RN 7→ RN and RN 7→ RM , and the initial state vector x0 is assumed
to be a random variable whose density function is given by p0(x).

Next, we summarize the notations: p(xt|yt−∆t), called “one step ahead prediction” denotes the conditional
density function of a state vector xt given an observation vector yt−∆t where ∆t is the interval of time series

data. p(xt|yt), called “filter” denotes the conditional density function of xt given yt. {p[1]t , · · · , p[m]
t } and

{s[1]t , · · · , s[m]
t } represent the vectors of realization of m trials of Monte Carlo simulations from p(xt|yt−∆t)

and p(xt|yt), respectively. Then, when we choose {s[1]0 , · · · , s[m]
0 } from the density function p0(x) of the

initial state vector x0, as realization of Monte Carlo simulations, an algorithm of Monte Carlo filter is as
follows.

[Summary of Algorithm for Monte Carlo filter]

1. Apply the following steps (a)∼(d) to each time t = 0,∆t, 2∆t, · · · , (T∗ −∆t), T∗ where T∗ denotes the
final time point of the data.

• (a) Generate the system noise ϵ
[k]
t , k = 1, · · · ,m according to the density function q(ϵ).

• (b) Compute for each k = 1, · · · ,m

p
[k]
t = f(s

[k]
t−∆t, ϵ

[k]
t ).

We note that f(·, ·) is linear in our model, such as Fs
[k]
t−∆t +Gϵ

[k]
t .

• (c) Evaluate the density function of ψ(u) at u = yt−h(p[k]t ), k = 1, · · · ,m and define the evaluated

densities as α
[k]
t , k = 1, · · · ,m. In our models, α

[k]
t is given by:

α
[k]
t = ΠM

l=1

1√
2πγ2l

exp

(
− [yl,t − hl(p

[k]
t )]2

2γ2l

)
, (67)

where h(·) in our models is expressed as

hl(p
[k]
t ) = al + bl(p

[k]
1,t)

2 + cl(p
[k]
2,t)

2 + dlp
[k]
3,t.

Here, al, bl, cl and dl are explicitly given as the constant terms, the coefficients of x2j,t(j = 1, 2)
and x3,t in the observation equations.

• (d) Resample {s[1]t , · · · , s[m]
t } from {p[1]t , · · · , p[m]

t }. More precisely, resample each s
[k]
t , k =

1, · · · ,m from {p[1]t , · · · , p[m]
t } with the probability given by

Prob.(s
[k]
t = p

[i]
t |yt) =

α
[i]
t∑m

k=1 α
[k]
t

, k = 1, · · · ,m, i = 1, · · · ,m.

We note that when the variances of the observation noises, γ2l are very small, α
[k]
t tends to take

values close to zero (cf. (67)), which makes computation of this resampling probability difficult
(infeasible) or causes inadequate resampling probabilities. (e.g. The support of a resampling
distribution concentrates on a few particular values.)

12



• (e) We obtain the filtered estimates x̂t by

x̂t =
1

m

m∑
i=1

s
[i]
t .

Particularly, in our models, we calculate

x̂2j,t =
1

m

m∑
i=1

(s
[i]
j,t)

2, j = 1, 2,

x̂3,t =
1

m

m∑
i=1

s
[i]
3,t.

The estimation of unknown parameters is based on the maximum likelihood method. If θ denotes the vector
representing whole unknown parameters, the likelihood L(θ) is given by

L(θ) = g(y∆t, · · · , yT∗ |θ) = Π
T∗
∆t
i=1gi(Yi∆t|y∆t, · · · , y(i−1)∆t, θ);

g1(y∆t|y0) = p0(y∆t),

where g(y∆t, · · · , yT∗ |θ) and gi(yi∆t|y∆t, · · · , y(i−1)∆t, θ) denote the joint density function of y∆t, · · · , yT∗

with parameter vector θ and the conditional density function of yi∆t given y∆t, · · · , y(i−1)∆t with θ, respec-
tively. The log-likelihood l(θ) is computed approximately within the framework of the Monte Carlo filter
by:

l(θ) =

T∗
∆t∑
i=1

(
log

m∑
k=1

α
[k]
i∆t

)
− T∗

∆t
logm.

Then, maximize l(θ) with respect to θ to obtain the maximum likelihood estimator θ∗.
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4 Parameter Estimation Results of Three-Factor Model

parameter Jan 2012- Dec 2015 Jan 2016- Dec 2017

κQ1 0.3158241 0.12249906
κP1 1.8401805 1.40291691
σ1 0.0654131 0.04846021

κQ2 0.9685498 0.06000902
κP2 0.1851271 0.00816622
σ2 0.0357915 0.00942489
λ 0.00461355 0.00503527
σ3 0.01560511 0.01494245
c1 -6.23493748 -5.65850548
c2 2.66506946 3.15512217
ξ1 306.3236722 1695.80844838
ξc,1 2.0057721 0.52849456
ξ2 357.9055977 698.70981583
ξc,2 1.579856133 -1.25151458

Table 1: Estimates of parameters of three-factor model with word frequency for the the former sub-period(Jan
2012- Dec 2015) and the latter sub-period(Jan 2016- Dec 2017)
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5 Result of Regression Annalysis

Table 2: regression results: the objective variable is Nikkei 225

Objective variable:

2012-2015 2016-2017

Nikkei 225 Nikkei 225

Intercept 8,600.137∗∗∗ 15,501.990∗∗∗

(653.132) (278.367)

x21,t −2,940,942.000∗∗∗ −2,252,062.000∗∗∗

(404,624.800) (298,533.500)

x22,t 285,307.300∗∗∗ 2,078,979.000∗∗∗

(70,488.690) (221,100.200)

x3,t 441,091.400∗∗∗ 656,749.500∗∗∗

(120,492.900) (70,673.820)

AbenomicsDummy 5,316.994∗∗∗

(129.394)

QQE2Dummy 3,624.872∗∗∗

(169.872)

NegativeInterestRateDummy 749.703∗∗

(312.148)

DirectCap1Dummy 1,785.541∗∗∗

(172.029)

DirectCap2Dummy 1,498.848∗∗∗

(152.160)

Observations 981 492
R2 0.930 0.804
Adjusted R2 0.930 0.802
Residual Std. Error 1,004.962 (df = 975) 883.663 (df = 485)
F Statistic 2,598.601∗∗∗ (df = 5; 975) 332.553∗∗∗ (df = 6; 485)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 ; df:degrees of freedom
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