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Abstract

This online appendix provides some results omitted in the paper entitled Interest rate model with
investor attitude and text mining by Nakatani et al. (2020).

1 Interest Rate Model with Investor Attitude

1.1 Sup-inf/Inf-sup (Max-min/Min-max) Problem

Let (2, F,{F}o<i<r, P) be a filtered probability space satistying the usual conditions. We consider an

economy with a representative agent and an endowment to the agent. Then, in equilibrium where the

agent consumes all the given endowment at each instant, the agent’s optimal consumption must be equal

to the endowment process. Hence, let us assume a nonnegative consumption (i.e. endowment) process c

exogenously whose expected return and volatility depend on a R'-valued state vector x, as the {F; }-adapted

progressively measurable process satisfying the following stochastic differential equations (SDEs):
dc—ct‘ = pe(xg, t)dt + oc(, ) - dBy, (1)
dxy = pg(ze,t)dt + oy (24, t)d By,

with R?-dimensional Brownian motion B, ji.(7¢,t) € R, pie(7¢,t) € R, 0c(w,t) € RY, 0,(w,t) € R4,
Here, while the economy is driven by specific Brownian motions representing fundamental risk sources, the
agent is not certain about all Brown motions. The agent thinks there is fundamental uncertainty about some
of these fundamental risks, Brownian motions. We follow Nisimura, Sato and Takahashi (2019) formulating
that under fundamental uncertainty about them, the representative agent does not face a single probability
measure, but a set of probability measures. In particular, in the diffusion process framework, we postulate
that the agent’s fundamental uncertainty is represented by a set of different Brownian motions, i.e. a set of
d-dimensional Brownian motions B*1**2 characterized by the equation (4) with a particular set of stochastic
processes, (5) below. Moreover, the representative agent may be ”conservative” about the fundamental
uncertainty for some Brownian motions (in the sense that the agent considers their worst possible case),
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while at the same time the agent may be ”optimistic” about the fundamental uncertainty about some other
Brownian motions (in the sense that the agent considers the best possible case).
To explicitly model the above concept, let us introduce a probability measure P22 by

PMA2(A) .= E[Zr(\)14]; A € Fr, (2)

for a R2-valued {F;}-progressively measurable processes A = (A1, A2), where Z;(\) defined by

2 t 2 t
1
Zy(A) ==expq Y / Aj.sdBj s =Y 3 / A2 ds (3)
j=170 j=1 0

is assumed to be a martingale. Then, by Girsanov’s theorem, we can define a d-dimensional Brownian motion
A1, AA
under P>‘1’)‘2, BA1iA2 — (Bll, 27 o ,Bdl, 2)’ by

t
A1 Az
Bl,lt = Bl,t _/ )\Lst,
0
t

By = By — / Ag,sds,
' 0
B} =B, (3<j<d). (4)
We also define a set A as
A = {(A\1,A2); Z()) is a martingale and |\;¢| < [Nj(z)], 0<t < T, j=1,2}, (5)

where \; : [0,7] x R — R, (j = 1,2) are measurable functions, and \;(z), a function of z, R! — R is
exogenously specified so that Z(\) with a progressively measurable process A(z;) is a martingale under P
with some R!-valued stochastic process z; of state variables(factors).

We remark that \; represents fundamental uncertainty about the j-th risk, i.e. Brownian motion B;.
Particularly, for A; =0, i.e. BjA = B; (3 < j < d), there is no fundamental uncertainty about the j-th risk.
On the contrary, when there is fundamental uncertainty about the the j-th risk with j = 1,2, we only know
the true j-th risk is one of {B;»‘; Aj € A} with BJ)»‘,%’)"" = Bj; — fot Ajsds for the set A, and we cannot tell
which is the true one. Also, there are upper and lower limits that are random processes |\;¢(z¢)| (j = 1,2)
for the values that A\; (j = 1,2) can take, which are specified in the definition of A above.

Next, we introduce a representative agent’s (recursive) utility process V122 as follows: with a function
f:iR? =R,

T
v = pri [5 +/ Fles, V222)ds
t

ft} , (6)

where £ is a Fr-measurable random variable that is exogenously given. Specifically, we set f(c,v) = u(c)—Bv,
and it becomes a well-known time-separable utility case:

T
‘/t>\1,)\2 :EPM,/\z |:§+/ efﬁ(sft)u(cs)ds
t

]-“t} . (7)

Under this setting, we consider a situation where the representative agent takes his/her own views for
uncertainties (risks) associated with Brownian motions into account. Specifically, the representative agent
who has a conservative (optimistic) view on Brownian motion Bj(Bs) assumes the worst (best) case. Thus,
he/she implements optimization with respect to A; (j = 1,2), that is, minimize (maximize) the expected
utility with respect to A1(A2). In contrast, for j = 3,--- ,d, the economic agent has perfect confidence, so
that we have \; = 0.

Precisely, setting the time-0 utility as a functional of A1 and Ao, J(A1, A2) as

J(A1,A2) = V22 (A, Ag) € A, (8)



we consider the following sup-inf (max-min) and inf-sup (min-max) problems for the utility J(A1, A2) with
respect to Ay and Ao:!

e sup-inf (max-min) problem:

su inf  J(A, A
Maeha A AT (A2) (s, Ae)

T
_ inf E;I:’Al"\2 / . V)\17)\2 d 9
Ailelﬁz /\161/\1110\2) &t 0 fles ° s, ©

e inf-sup (min-max) problem:

inf sup  J(A, A
>\1€A1)\2€A2(,\1) (1 2)

T
= inf sup BV {§+/ f(cs,‘/;‘l’&)ds], (10)
ALEAL N e, (M) 0

where for (j,k =1,2, k # j) we define A; and A;(\g) respectively as
Aj = {Ni el < N, 0<E< T} j=1,2, (1)
and

A;(O) = {05 [Nl < IAj(x)], 0 <t < T, and Z()) is a martingale for given Ay € Ay}
for (j, k) = (1,2), (2, 1). (12)

Here, conservatism and optimism are expressed by infy, and sup,,, respectively. Moreover, the conditions
specifying A;(Ax) contain that A\; (j = 1,2) are progressively measurable processes such that |\ ;| < |X;(z¢)]
with a Rl-valued process z = {x;;t > 0} of state variables(factors), and Z(\) is a martingale under P given
Ak(k # 7).

(Remark) When a weak version of Novikov’s condition (e.g. Corollary 3.5.14 in Karatzas and Shreve(1991))
is satisfied for A\;(x), 7= 1,2, for all A = (A1, A2) with [X;4] < [Nj(z)] (0<t < T, j=1,2), {Z:(\)}o<i<r
is a martingale. Thus, Aj(A2) = Ay, Aa(A1) = Ag. Also, for A defined by (5), we have A = A; x Ay. See
Theorem 1 and Remark 1 in Saito-Takahashi (2019) for the details.

To solve the sup-inf/inf-sup problem, since by the equation (6), fot fcs, Vs/\l”\2)ds—|—Vt’\1’)‘2 is a martingale

under the probability measure P*2, Vt’\l’/\2 is a solution of a stochastic Lipschitz backward stochastic
differential equation (BSDE):

d
d‘/t>\17)\2 _ —f(Ct7 ‘/t)\h)\Q)dt 4 ZO-V)‘P)‘? ,j}tdB;‘:%’)‘Q?

j=1
d
T (f(cta VM) £ ALoyaroe 1+ )\2,tffv*1’k2,2,t) dt+ Z Oy jdBji,
j=1
A1 A2
Vi =¢, (13)
where the right hand side on the second equality follows from (4).
We also introduce another BSDE:
d
ATAS AL — _
AV = (f(Ct, yiAey |>\17t($t)”(7v*fﬂﬁ,17t| + A2t ()| a1 05 727t|)>dt + ZO’V/\T,)\E 14Bjts
j=1
VR =g, (14)

'In general, sup-inf and inf-sup problems are not the same, so that we consider both. However, they become the same for
the optimal solution as shown below.



which is rewritten under the probability measure P13 as follows:

d
AVIS = = fen VIt Y oy 5 dBY L VR =€, (15)
j=1
where
Xiy = (—1Y g a(alsen(oya o 5 )s 5= 1,2 (16)

Then, by Theorem 1 in Saito and Takahashi (2019), under certain conditions, (A}, A3) attains the sup-
inf(max-min)/inf-sup(min-max) in the problem (9)/ (10).



1.2 Three-factor Gaussian quadratic-Gaussian Interest Rate Model

In the following, as a special case in the previous subsection, we introduce a Gaussian quadratic-Gaussian
model. We first present a simplified three factor model and then explain determination of interest rates
and pricing zero coupon bonds. Finally, we show that this formulation leads to a three factor Gaussian
quadratic-Gaussian interest rate model, which is used in the empirical analysis of subsequent sections.

A Three-Factor Specification

Let us first specify the consumption (endowment) process as follows:

t
dwy = pig (@4, 0)dt + 05 (24, 1)d By, (e

with B € RY, pe(z,t) € R, 0c(x,t) € RY, x, e, t) € RY, 0p(z,t) € R™? (d =1 = 3), where

pe(m,t) = po + L ()71 + lo() T + @] + pows + pazs, (19)
ol (x,t) = 0. jx;,( = 1,2), (with 0.1 > 0,002 > 0); 0.3 € R, (20)
fa,j(@,t) = aj — bjz;, (j=1,2,3), (21)
Ogz,1 0 0
oz, t)=[ 0 og,2 0 |. (22)
0 0 0.3

Then, we define A1, := ;\1:1:1’,5, Aoy = 5\2562,25, with constants \; and Ao such that |5\1| € [0,—X\;] and
|A2| € [0, Ag] for given constants A; < 0, Ay > 0. Also, let

)‘it = 5\1$1,t7
)‘;,t = 5\2%27757 (23)

Since z1; and z2 ; are Gaussian processes under P, probability measures PAA2 and PAA2 are well defined
by (2). (e.g. Example 1 in Section 3.1 of Saito-Takahashi (2019))

Also, by Girsanov’s theorem, B*1**2 in (4) is a Brownian motion under P*1:*2 and (17) and (18) are
rewritten as

d
G _ D dt+ o, t) - dBN, (24)
Ct
dry = p)dt + o (ze, t)dB) (25)
where
pip = pe(z,t) + A oe(x, 1), (26)
M;\ = Mx(xa t) + O'I(J:, t)/\, (27)
with
)\1 5\1371
A= | = [ dom |- (28)
A3 0
In particular,
dc > AL
’ \- , Y
— =, dt+ ol (x,t)dB;1"2, 29
o =i Y ole ) (29)
diy = (a; — bias)dt + 0, dB ™, (i =1,2), (30)
dxg,t = (a3 — ngg)dt + 0m$3dB?>)€7>\;, (31)



where

() = po + L)z + () + (n + Moe1)rd + (2 + Aaoe2)rd + pzas, (32)
ol(x,t) = o jx;,( = 1,2), (with 0.1 > 0,002 > 0); 0.3 € R, (33)
b;k = bz - 5\1'0'357,;. (34)

This formulation allows the factors x; and x5 about which the investor (representative agent) has funda-
mental uncertainty may influence expected consumption growth non-linearly (to be precise, quadratically),
while the factor 3 about which there is no fundamental uncertainty influences consumption growth linearly
(as in many traditional models). Also, the standard deviation of consumption growth may depend on these
“ fundamental uncertainty” factors. Thus, we can consider more complicated effects for “ fundamental
uncertainty” factors 1 and o than the no fundamental uncertainty factor xs.

Then, with a log-utility:

fle,v) =loge— Bv, >0, (35)

and the terminal random variable £ as & = logcr, we can show that (A}, A}) defined by (23) attains the
sup-inf in the problem (9) and inf-sup in the problem (10) under certain conditions. The outline of the
derivation is given in Section 2.

In particular, a special case used for our empirical analysis is described in the subsection 1.2.1.



1.2.1 Special Case: Transitory and Permanent Factors

In particular, a special case used for our empirical analysis is is given with a; = a3 = az = bg = 0. We also
remark that a1 = ap = 0 implies [;(t) = 0 (j = 1,2). (See (45) in Section 2 below.) This is the case in
which (a) 27 and x4 are transitory factors eventually dying out (i.e. mean-reverting toward 0) if there is no
new shock and (b) z3 is a permanent factor of which a shock becomes permanent (see (37) below). Then,
consumption growth is determined by the permanent factor x3 if there are no shocks in x; and x5 after they
die out, so that z1 = x5 = 0 afterwards. In this sense, x5 can be called fundamentals. Fundamentals include
technological conditions, consumer preferences, institutional factors and so on. It may include permanent
components of consumer, business and investor sentiments. In contrast, transitory components of these
sentiments are examples of the transitory factors we consider. Other examples of transitory factors are
strikes and accidents that disrupt production.
In this case, the equilibrium instantaneous short-term interest rate is given by

2 2
e = B+ {Mo + Z(M + Ao )a}, + Nsx&t} - {Z 027 + 03,3}
=1 =1
2

(B+po—023) + > (bi + Nivei — 00 a7 + paws s

i=1
= co + clxit + cyv%jt + w33 ¢,
where  co = (B4 po — 023); € = (i + Nioe; —02,) i =1,2. (36)

Particularly, the terms 5\10@1:17%7,5 < 0 with A\ > 0,001 <0 and 5\20072137,f > 0 with Ay > 0,0¢2 > 0 repre-
sent the investor(representative agent)’s conservative and optimistic attitudes, respectively. Therefore, this
equation implies that the current equilibrium interest rate r; is lower (higher) when the investor (represen-
tative agent) is conservative (optimistic) than the rate when there is no fundamental uncertainty without
conservatism (optimism).

In this special case, the dynamics of z; (i = 1,2,3) under P*1*2 and Q*" are given by

AT:AS

d.’L‘i7t = —b;‘xi,tdt + Uw,idBi’t s (7, = 1,2),
dvs, = 0,3dBy™, (37)
and
~ Q)\* .
da:i’t = _bixi,tdt—‘rgw,idBLt R (ZZI,Q),
-
de,t = _Jm,SJc,Sdt"_Uxﬁngt s (38)
respectively. .
It is noted here that x; with b > 0 and b; > 0 (i = 1,2) follow mean-reverting processes under

both probability measures, which are often associated with spread factors. In contrast, z3; has no mean-
reverting terms and is a random walk process without (with) a drift under P*1:*2 (Q*"), where the drift
term (—o0430.3) stands for the term premium regarding x3. Then, since the change in z3 has the same
effect on all the yields with different maturities, this factor is regarded as a "level factor”.

We also set parameters in the interest rate 7 in this special case so that co = 0, ¢; € [—(b10,.1)%/2,0),
¢ > 0 and pg = 1: (i) The specification ¢o = 0 (i.e. po = 023 — f3) and pg = 1 are just for simplicity
and normalization, and the positive value of p3 means that the ”level factor” x3 has a positive impact on
the consumption (endowment) expected return in (32). (ii) The condition ¢; > 7(510%1)2/2 is for a zero-
coupon bond price to be well-defined. (iii) The conditions ¢; < 0 and ¢g > 0 imply that the effects of spread
factors 27 and 22 on the equilibrium interest rate r are the same directions as those of the investor(agent)’s
conservative (A1o127, < 0) and optimistic (A20c 223, > 0) attitudes, respectively.

Specifically, the conditions ¢; < 0 and ¢ > 0 are achieved by setting pu; = po = 0 and Ay > Oc,2
in the expected return and volatility parameters ((32), (33)) of the consumption (endowment) process.
Namely, 1 = p2 = 0 means that in the economy without conservatism and optimism, the spread factors



x; (1 = 1,2) have no impacts and thus only fundamentals represented by the level factor x3 does on the
expected consumption (endowment) growth. The condition Ao > o.,2 implies that the extent of the optimism
A2 > 0 is larger than the risk from the second risk-source (i.e. volatility of the second Brownian motion) of
the consumption (endowment). We also remark that since we already set A > 0,0.1 <0, we have ¢; <0



2 Outline of derivation of optimality of (A}, \5) in Section 1.2

First, Let us suppose a functional form of Vt)‘l’)‘z =V r2(¢y 2y, 19, 23,1) as an additively separable one for
the utility of the consumption, log ¢ and the factors z? (i = 1,2), z3:

Vf‘hA? — mi\l’)‘z (t):cit + mgl’)‘z (t)xg,t +mg(t)zs, + nride (t) + log ct, (39)

and hence, Ito’s formula implies that of oy,5;,5, as

o (40)

2jaloes +2m 2 (W)on 5l (= 1,2),
LSk T A

Oc,j + m;l’)‘z (t)oe,j, j=3.

Since the equation (6) implies that fot fles, VOrA2)ds+ VA 22 ¢y, 2y, 9, 23, 1) is a martingale under P2

and thus its drift term should be 0, Ito’s formula with (39), (40) and & = log ¢ shows that m?‘l’j‘Q t), (=

1,2), ms(t), and nAiAz (t) need to satisfy a system of ordinary differential equations (ODEs) below:

IS o ~ I ~ IS I - 1 a a
g (8) = mi R (4 (B + 205777 N = oty = 05 m (1) =0, j=1.2, (41)
1z (t) —ma(t)(B + bs) + pg = 0; my(T) =0, (42)
and
2
PUREN PO PN 1 PEEEN
A (1) = B2 () 4 o + Y m 2 (8ol + ma(t)as — 5008 =0; nM2*(T) =0, (43)
j=1
where
/’L;\hj\? = Hj + 5‘jo’c,jﬁ .7 = 1127
b1 = by — Ao, j=1,2. (44)

In addition, the time-t deterministic function in . (x,t) should be
AAz ;
(1) = —2m 1)y, j = 1,2. (45)

Then, we obtain the solution of mj‘l’ﬂg (), (=1,2), ms(t), and niiAe (t):

A Sde _ Lo ) [T srantiin e
mytR () = <Mj1’ 220c,j>/ e” P g
t
X1,%2
a1 1 — (i @—n
- <uj e 2537],) .y L j=1,2, (46)
(B +20572)

T _ o= (B+b3)(T—1)
1—e

H = ~(B+b3)(s—1) g — 47
ms(t) uza/t e ST (47)

T 2

VD) 3. A 1

n)‘l”\2(t) = / ,uOJrg mg‘l’)‘2(s)0ij+m3(s)agf50373 e Pl gs. (48)

t =

Now, we summarize the discussion above to have the next proposition.



Proposition 1. (VA2 g5, 5,) given by (89) and (40) is a solution of BSDE:
AV = — (e, V)Y dE+ opag g dBY Y VAN = logep. (49)

Moreover, (VA2 oy, ;) satisfies a stochastic Lipschitz BSDE:
2
AV = — | f(en, VI2) + 3 Nmiaoyan ;| dE+ oyarndBy, V™ =loger. (50)
j=1

Particularly, when A\ = A, 5\2 = Ao, (VAT’A;,O'VXT,AE) defined as

VIR = 0ad, om0+ ma (1),
+nMA2(t) + log ey, (51)
~Jajelol +2m M (o), (G=1,2),
Oy atxs i ; A2 .
’ J¢J: + m; (t)az,jv Jj=3,
is a solution of the following stochastic Lipschitz BSDE:
* * * * 2 * *
AV = | Flen, VIR 4 3 Nmaopaiag | dE+ opagasdBr, Vit = loger. (52)
j=1
Remark 1. This implies that V,\""** satisfies (6) with f(c,v) = B(logc —v), 8> 0.
Moreover, if conditions,
ol +2m> M (o, >0, j=1,2, (53)
are satisfied, then the equation for o,;.»; ; in (51) implies that
59”(‘7\/*?*3,1) = sgn(z1,4); sgn(oyarag 72) = sgn(xa). (54)

That iS, xlthVYf'AE 1 = |I’17t| |0'V>\>1k1)§ ’1‘ and vatJVAT’AE 2 = |I27t||O—V>‘§‘A; 72|.

Then, under this condition, in the drift term (the coefficient dt) of the BSDE in (52), we have the following
key property to show the optimality of (A7, A7) with A}, = Ajz;., A1 <0, A; >0

For any |Ai] € [0, —A1], [A2] € [0, A2],

Alzrilloyagss )| < Mzrioyaiag ;0 (G =1 (55)

AjTa0yai g 5 = {)\2|x2 ¢l

Tyaiag ol 2 X240 ap 5 0 (1= 2).

Based on the discussion above, we obtain a theorem that shows the optimality of V%2 with (A, \5) on
the sup-inf/inf-sup problem.

10



Theorem 1. Let A € A in the sup-inf/inf-sup problem (9)/(10) be of the form \; = Njxj, j = 1,2,
1ALl € [0,=X1], |Aa] € [0, X2] and assume f in the problem as (35). Suppose also that ¢ and @ are solution
of SDEs (24) and (25), respectively, with their coefficients (19) - (22), and that the condition (53) holds.
Then, (A}, \5) defined by (23) attains the sup-inf in the problem (9) and inf-sup in the problem (10).

Proof. We show that (A}, \}) is a saddle point. Particularly, for all ¢ € [0, 7] and all \; such that
|)\1| S [0, *)\1] and |)\2| € [0,)\2},

VR < A s (56)
We first show that
VZ\I’/\; B ‘/;Al,,\; <o. (57)
Set
Vo= oy (58)

Since BSDE (52) is rewritten as

ATLAS A1,A5 AT,

AV = — [f(ct,vﬁ“;) + (A = AT aras | dE+ opagasdBY T, VRl =loger,  (59)

we have

Vi = = [£(e V5 = e V) + (o= Mooy, | di

+ (O-VA’I*,A; —Opans )dB)\l’

= —|—ﬁ‘2§dt - ()\1 — Al)xl’tav,\’f,,\s 1dt + (O'V/\’f,,\’é - O'V,\l,/\;)dB;\h)\;, VT =0. (60)

By Ito’s formula, we have

A1,A5

d(e*ﬂtVt) =—(\1 — )\1)I17tav>\’{,x§ leiﬁtdt + (O'VA’{,Ag - O'Vxl,x*) ﬁtdB (61)
and thus
—e PV, = / —(A1 = A)T1,50 a1 a5 167ﬁsd$ +/ (Tyatas = opaing Je PedBt e (62)
t ’ t
Taking the conditional expectation E;‘ 143 [[] in both sides of (62), we have
A oo
767615‘/ b 1A / 7()\1 - )\1)301750"/%‘,)\5 16765d8 . (63)
] :

Thus, by (55), we have V; < 0.
Here, we easily see with Burkholder’sinequality and standard moment estimates of z;(j = 1,2, 3) that

t
{/ (O-VYIK'XE,S — val,kg’s)eﬁSdBilakg} (64)
0 0<t<T

is a martingale under P***2. In the same manner, we can prove that

vy 2 (65)

Thus, (A}, \}) is a saddle point of J(A1, Aa), (A1, Ag) for all A; such that [A,| € [0, —\i] and |Aa| € [0,Ag]. O

11



3 Algorithm for Monte Carlo Filter

This appendix describes the outline of an algorithm of Monte Carlo filter used in this work, which is an
adaptation of Fukui et al. (2017) and Nakano et al. (2017a,2017b,2019).
We introduce a state space model that consists of the following system and observation models:

zy = f(zi—ar &) (system equation)
. . (66)
yt = h(z) +e; (observation equation),

where x;, y; and At denote a N dimensional state vector, a M dimensional observation vector at time ¢
and the time interval of observational data, respectively while €; and e; denote the system noise and the
observational noise whose density functions are given by ¢(v) and % (u) respectively. The functions f and h
are generally non-linear maps, R x RY — RY and R — RM and the initial state vector zg is assumed
to be a random variable whose density function is given by po(z).

Next, we summarize the notations: p(x¢|y:—a¢), called “one step ahead prediction” denotes the conditional
density function of a state vector x; given an observation vector y;_a; where At is the interval of time series

data. p(z¢]y:), called “filter” denotes the conditional density function of z; given ;. {p?]7 e ,pgm]} and
{sp], e ,sgm]} represent the vectors of realization of m trials of Monte Carlo simulations from p(z:|y:—a¢)
and p(z¢|y:), respectively. Then, when we choose {sg], e ,sgn]} from the density function po(z) of the

initial state vector xg, as realization of Monte Carlo simulations, an algorithm of Monte Carlo filter is as
follows.

[Summary of Algorithm for Monte Carlo filter]
1. Apply the following steps (a)~(d) to each time t = 0, At,2At,--- , (Ty — At), Ty where T, denotes the
final time point of the data.

e (a) Generate the system noise eﬁk], k=1,---,m according to the density function g(e).

e (b) Compute for each k=1,---,m
k k k
! = F(stlaret)):

We note that f(-,-) is linear in our model, such as F 51[5]6—] A+ GeM.

e (c) Evaluate the density function of ¢ (u) at u = y; —h(pgk]), k=1,---,m and define the evaluated

densities as agk], k=1,---,m. In our models, agk] is given by:
(k112
(K] M 1 [ye,e — Mu(pi )]
ap =112 exp | ——————5—— |, 67
t =1 271_712 P < 2’712 ( )

where A(-) in our models is expressed as

k k k k

hu(pi) = a1+ bi(p')? + aph)? + dipl .
Here, a;, by, ¢; and d; are explicitly given as the constant terms, the coefficients of x?’t(j =1,2)
and z3; in the observation equations.

e (d) Resample {sgl], e ,sgm]} from {pE], e p,[fm]}. More precisely, resample each sgk], k=
1,---,m from {pE], cee p,[sm]} with the probability given by

ol
m k]’
> ket O‘E ]

We note that when the variances of the observation noises, 77 are very small, ozY[fk] tends to take
values close to zero (cf. (67)), which makes computation of this resampling probability difficult
(infeasible) or causes inadequate resampling probabilities. (e.g. The support of a resampling
distribution concentrates on a few particular values.)

PrOb'(SEk]:py”yt): k=1,---,m,i=1---,m.
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e (e) We obtain the filtered estimates &; by

T3 = 1 3 sl
3,t m 4 3.t
=1
The estimation of unknown parameters is based on the maximum likelihood method. If # denotes the vector
representing whole unknown parameters, the likelihood L(6) is given by

Ty
0) = 02 9 (Yiatlyat, - 5 Yi—1)ae, 0);

L(9> = g(yAh L yT,
91(yatlyo) = po(yat),

where g(yae, -+, yr.|0) and g;(Yiat|yae, -+ s Y-1)at, 0) denote the joint density function of yae, - -+, yr,
with parameter vector 6 and the conditional density function of y;a¢ given ya¢, -+, y—1)a¢ With 0, respec-
tively. The log-likelihood () is computed approximately within the framework of the Monte Carlo filter
by:

Then, maximize [(f) with respect to 6 to obtain the maximum likelihood estimator 6*.
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4 Parameter Estimation Results of Three-Factor Model

parameter | Jan 2012- Dec 2015 Jan 2016- Dec 2017
K 0.3158241 0.12249906
Ky 1.8401805 140291691

o1 0.0654131 0.04846021

K 0.9685498 0.06000902

Ky 0.1851271 0.00816622

o9 0.0357915 0.00942489

A 0.00461355 0.00503527

o3 0.01560511 0.01494245

a1 -6.23493748 -5.65850548
ca 2.66506946 3.15512217

& 306.3236722 1695.80844838
e 2.0057721 0.52849456

& 357.9055977 698.70981583
€e,2 1.579856133 -1.25151458
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Table 1: Estimates of parameters of three-factor model with word frequency for the the former sub-period(Jan
2012- Dec 2015) and the latter sub-period(Jan 2016- Dec 2017)



5 Result of Regression Annalysis

Table 2: regression results: the objective variable is Nikkei 225

Objective variable:

2012-2015 2016-2017
Nikkei 225 Nikkei 225
Intercept 8,600.137*** 15,501.990***
(653.132) (278.367)
xit —2,940,942.000*** —2,252,062.000***
(404,624.800) (298,533.500)
x%’t 285,307.300%** 2,078,979.000***
(70,488.690) (221,100.200)
3t 441,091.400*** 656,749.500%**
(120,492.900) (70,673.820)
AbenomicsDummy 5,316.994***
(129.394)
QQE2Dummy 3,624.872***
(169.872)
NegativelnterestRateDummy 749.703**
(312.148)
DirectCaplDummy 1,785.541***
(172.029)
DirectCap2Dummy 1,498.848***
(152.160)
Observations 981 492
R? 0.930 0.804
Adjusted R2 0.930 0.802

Residual Std. Error
F Statistic

1,004.962 (df = 975)
2,598.601*** (df = 5; 975)

883.663 (df = 485)
332553 (df = 6; 485)

Note:

*p<0.1; **p<0.05; ***p<0.01 ; df:degrees of freedom
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