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Abstract

In this article, we consider the problem of equilibrium price formation in an incom-
plete securities market consisting of one major financial firm and a large number of minor
firms. They carry out continuous trading via the securities exchange to minimize their cost
while facing idiosyncratic and common noises as well as stochastic order flows from their
individual clients. The equilibrium price process that balances demand and supply of the
securities, including the functional form of the price impact for the major firm, is derived
endogenously both in the market of finite population size and in the corresponding mean
field limit.

Keywords : mean field game, major agent, mean-field type control, controlled-FBSDEs,
equilibrium price formation, market clearing,

1 Introduction

In the traditional setups for financial derivatives and portfolio theories, a security price process
is given exogenously as a part of the model inputs. On the other hand, in the field of financial
economics, the problem of equilibrium price formation has been one of the central issues, which
seeks an appropriate price process that balances demand and supply of securities among a large
number of agents endogenously based on their preferences and rational actions. The intrinsic
difficulty for the latter comes from the strategic interactions among the agents.

The progress in the mean field game (MFG) theory in the last decade has opened a
new promising approach to study the long-standing problem of multi-agent games. Since
the publication of seminal works by Lasry & Lions [41, 42, 43] and Huang, Malhame &
Caines [34, 35, 36, 37], which characterizes the Nash equilibrium by a coupled system of
Hamilton-Jacobi-Bellman (HJB) and Kolmogorov equations, the mean field game has been
one of the central themes among many researchers.

∗Forthcoming in ESAIM: Control, Optimization and Calculus of Variations. All the contents expressed in
this research are solely those of the author and do not represent any views or opinions of any institutions. The
author is not responsible or liable in any manner for any losses and/or damages caused by the use of any contents
in this research.
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Carmona & Delarue [8, 9] developed a probabilistic approach to the mean field games and
mean-field type control problems based on a forward-backward stochastic differential equa-
tion (FBSDE) of McKean-Vlasov type. Lacker [39, 40] initiated the weak formulation of the
mean field games by applying the relaxed-control technique. An extension to the so-called
extended mean field games was recently made by Djete [17, 18]. The mean field games in the
presence of common noise were developed by Carmona et.al. [12] in the framework of weak
solutions. Laurière & Tangpi [46] generalized the concept of propagation of chaos for forward
and backward weakly interacting particles. Since the mean field game theory can decompose a
complicated Nash system arising from stochastic differential games into a separate optimization
and an additional fixed point problem, it has found vast applications involving many homo-
geneous agents competing through symmetric interactions. For interested readers, there exist
excellent monographs such as [3, 29, 30, 38] for analytic approach and [10, 11] for probabilistic
approach. See also the lecture notes by Cardaliaguet [6].

Since the original MFG setting assumes the homogeneous agents, one natural extension
is to allow multiple types of populations, where the cost functions as well as the coefficient
functions of the state dynamics can be different population by population. See, for example,
[2, 5, 15, 20, 54] for analytic approach and [26] for probabilistic approach. Another important
direction of research is to allow the existence of a major agent whose importance does not
diminish even in the large population limit of the minor agents. Huang [33] introduced linear-
quadratic mean field games with a major agent, which was extended by Nourian & Caines [47]
to a general nonlinear dynamical system. Bensoussan et.al. [4] and Carmona & Zhu [13] further
developed the framework to allow the major agent to directly influence the law of the minor
agents. The former considered the Stackelberg equilibrium and the latter dealt with the Nash
equilibrium. See also [23] for recent generalization in the linear-quadratic system, and [7, 44]
which studies the master equation for the mean field games with a major agent.

These developments of the MFG theory have been successfully applied to various problems
regarding in particular, the energy and financial markets which naturally involve a large number
of agents with similar preferences. A popular phenomenological approach used to fit to the
concept of Nash equilibrium is to assume that the relevant asset price is decomposed into two
parts; one is a so-called fundamental price, which is exogenously given and assumed to be
independent of the agents’ actions, and the other part representing the market friction which
is often assumed to be proportional to the average trading speed among the agents. One
can find in [1, 14, 16, 21, 24, 32, 45] interesting applications to, optimal trading, liquidation,
energy production, optimal use of smart grids, etc. In particular, we refer to Fu & Horst [25],
Evangelista & Thamsten [19] and Féron et.al.[22] who studied the optimal liquidation and
trading problems in the mean-field games with a major player.

As for the problem of equilibrium price formation, which requires the prices to balance
demand and supply of the corresponding assets, application of the MFG theory has been
surprisingly rare. The first contribution in this direction was made by Gomes & Saude [31] who
modeled the electricity price process using the analytic approach. Recently, Shrivats et.al.[48]
and Fujii & Takahashi [27] independently proposed a probabilistic model for equilibrium price
formation. In the former work, the authors studied the solar renewable energy certificate
(SREC) market and derived the equilibrium SREC price using McKean-Vlasov FBSDEs. As
in [31], they assumed that each agent is subject to an independent noise and applied the fixed-
point technique developed by [8] to obtain a deterministic process for the equilibrium price.
In the latter, we studied the price process of general financial assets using a stylized model of
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the securities exchange. In contrast to [31, 48], we included a common noise which affects all
the agents. Since the existence of the common noise makes it impossible to use the fixed-point
technique, we resorted to the continuation method developed by Yong [51] and Peng & Wu [49]
to solve the conditional McKean-Vlasov FBSDEs directly under the appropriate monotone
conditions. In the accompanying work [28], we proved the strong convergence of the finite
agent equilibrium to the corresponding mean field limit given in [27]. Note that, if we only
want a short-term solution, the monotone conditions are unnecessary. In economic terms, they
prevent the price bubbles/crashes from happening so that the price process is well-posed for
an arbitrary interval. Roughly speaking, they require the demand of the securities decreases
when their prices rise.

In the current paper, we further developed the model studied in the two preceding works
[27, 28] by including a major agent. As long as we know, this is the first attempt to solve the
problem of equilibrium price formation with a major agent under the market-clearing condition.
For a given order flow from the major agent, a properly functioning market is expected to
produce an equilibrium price process as in [27, 28]. Since the equilibrium price process of the
securities becomes dependent on the trading strategy of the major agent, her optimization
problem ends up in minimizing the cost with her own feedback effects into account, which
is given by a large system of controlled-FBSDEs in the case of the finite population market,
and by controlled-FBSDEs of conditional McKean-Vlasov type in the limit of large population
size. In order to guarantee the optimality, we prove the new verification theorem for the
controlled-FBSDEs of conditional McKean-Vlasov type. Although we are forced to assume a
linear-quadratic setup (with stochastic coefficients) for the minor agents in order to make the
verification theorem hold, we keep a general non-linear cost function for the major agent. The
resultant system of fully-coupled FBSDEs is solved once again by the continuation method.
The equilibrium price process that balances demand and supply of the securities, including the
functional form of the price impact for the major agent, is derived endogenously both in the
market of finite population size and in the corresponding mean field limit. Lastly, we show the
strong convergence of the finite agent equilibrium to the corresponding mean-field limit. Note
that, it is quite rare that one can prove the strong convergence of N -agent equilibrium to the
corresponding mean-field limit outside the explicitly solvable linear-quadratic (LQ) settings.
To the best of the authors’ knowledge, this is the first example of this kind in the presence of a
major player in the non-LQ setups. As an important byproduct, we obtain the direct estimate
on the difference of the equilibrium price between the two markets.

The organization of the paper is as follows: After explaining the notations in Section 2,
we solve the equilibrium price formation for the finite population market in Section 3. The
corresponding problem in the mean-field limit is solved in Section 4. In Section 5, we prove the
strong convergence of the finite population equilibrium to the corresponding mean field limit
and give the stability result for the market-clearing price between the two cases. Section 6 gives
a brief discussion on the special case in which the securities have a specified date of maturity
with exogenously determined payoffs, as in the case for Futures, Bonds and other financial
derivatives. A general verification theorem for the optimization problem with respect to the
controlled-FBSDEs is provided in Appendix.
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2 Notations

We use the same notation adopted in the work [28]. We introduce (N+1) complete probability
spaces:

(Ω
0
,F0

,P0
) and (Ω

i
,F i

,Pi
)Ni=1 ,

endowed with filtrations Fi
:= (F i

t)t≥0, i ∈ {0, · · · , N}. Here, F0
is the completion of the

filtration generated by d0-dimensional Brownian motion W 0 (hence right-continuous) and, for

each i ∈ {1, · · · , N}, Fi
is the complete and right-continuous augmentation of the filtration

generated by d-dimensional Brownian motions W i as well as a W i-independent n-dimensional
square-integrable random variables (ξi). We also introduce the product probability spaces

Ωi = Ω
0 × Ω

i
, F i, Fi = (F i

t )t≥0, Pi , i ∈ {1, · · · , N}

where (F i,Pi) is the completion of (F0 ⊗ F i
,P0 ⊗ Pi

) and Fi is the complete and right-

continuous augmentation of (F0
t ⊗ F i

t)t≥0. In the same way, we define the complete proba-
bility space (Ω,F ,P) endowed with F = (Ft)t≥0 satisfying the usual conditions as a product of

(Ω
i
,F i

,Pi
;Fi

)Ni=0.
Throughout the work, the symbol L and L0 denote given positive constants, the symbol C

a general positive constant which may change line by line. For a given constant T > 0, we use
the following notation for frequently encountered spaces:
• Sn

+ denotes the space of n× n strictly positive definite matrices.
• Sn denotes the space of n× n positive semidefinite matrices.
• L2(G;Rd) denotes the set of Rd-valued G-measurable square integrable random variables.
• S2(G;Rd) is the set of Rd-valued G-adapted continuous processes X satisfying

||X||S2 := E
[
sup

t∈[0,T ]
|Xt|2

] 1
2 < ∞ .

• H2(G;Rd) is the set of Rd-valued G-progressively measurable processes Z satisfying

||Z||H2 := E
[(∫ T

0
|Zt|2dt

)] 1
2
< ∞ .

• L(X) denotes the law of a random variable X.
• P(Rd) is the set of probability measures on (Rd,B(Rd)).
• Pp(Rd) with p ≥ 1 is the subset of P(Rd) with finite p-th moment; i.e., the set of µ ∈ P(Rd)
satisfying

Mp(µ) :=
(∫

Rd

|x|pµ(dx)
) 1

p
< ∞ .

We always assign Pp(Rd) with (p ≥ 1) the p-Wasserstein distance Wp, which makes Pp(Rd) a
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complete separable metric space. It is defined by, for any µ, ν ∈ Pp(Rd),

Wp(µ, ν) := infπ∈Πp(µ,ν)

[(∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1

p
]

(2.1)

where Πp(µ, ν) denotes the set of probability measures in Pp(Rd × Rd) with marginals µ and
ν. For more details, see Chapter 5 in [10].
• For any N variables (xi)Ni=1, we write its empirical mean as

m((x)) := m((xi)Ni=1) :=
1

N

N∑
i=1

xi.

We frequently omit the arguments such as (G,Rd) in the above definitions when there is no
confusion from the context.

3 Equilibrium of finite population size

3.1 Problem description

In the preceding works, we have been interested in the equilibrium price formation in a financial
market among a large number of security firms. Every firm (agent) is supposed to have many
individual clients who cannot directly access to the exchange. Therefore, every agent supposed
to face the stochastic order flows from his individual clients in addition to the idiosyncratic as
well as common market shocks. Under such an environment, they carry out optimal trading via
the common exchange to minimize their cost functions. Importantly, since there exist very large
number of agents, every agent considers that his market share is negligibly small and hence
that there is no direct market impact from his trading. In other words, they behave as price
takers. The problem of equilibrium price formation is to search an appropriate price process
of securities which equalize the demand and supply based on the agents’ cost functions and
the state dynamics. In the presence of common shocks, the price process inevitably becomes
stochastic. Such a problem has been investigated in our two preceding papers [27, 28], where
the former treats the mean-field limit and the latter proves the strong convergence to the
mean-field limit from the corresponding equilibrium of finite population.

The new twist in the current paper is the presence of one major agent, a huge financial
firm, who knows that her trading volume has a significant market share. For a given order flow
from the major agent, a properly functioning market is expected to produce an equilibrium
price process so that it matches the net demand and supply among all the agents. Through
this function of the market, the equilibrium price process of the securities becomes dependent
on the trading strategy of the major agent. Therefore, her optimization problem ends up
in minimizing the cost with her own feedback effects into account. We then finally obtain
the market equilibrium price process by solving the major agent’s optimal strategy. In the
following, we first solve this problem in the market with finite population size. The minor
agents are allowed to be heterogeneous so that the coefficients functions for their state processes
as well as the cost functions can be different from each other. The large population limit of
minor agents will be studied in later sections.
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Let us now describe the setup more concretely. There are N minor agents indexed by
i = 1, · · · , N . The major agent is always labeled by the index 0. The number of securities
traded in the market is assumed to be n ∈ N. Each minor agent i ∈ {1, · · · , N} tries to solve
the cost minimization problem among the admissible strategies Ai := H2(F;Rn)

inf
αi∈Ai

J i(αi) (3.1)

with some functions fi and gi, which denotes the running as well as terminal costs, respectively:

J i(αi) := E
[∫ T

0
fi(t,X

i
t , α

i
t, ϖt,Λt, c

0
t , c

i
t)dt+ gi(X

i
T , ϖT , c

0
T , c

i
T )
]
.

The dynamic constraint, which is the time evolution of the securities’ position size of the ith
agent, is given by

dXi
t =

(
αi
t + li(t, c

0
t , c

i
t)
)
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t , t ∈ [0, T ]

with Xi
0 = ξi. Here, ξi ∈ L2(F i

0;Rn) denotes the size of the initial position, which is assumed
to have the common law for every 1 ≤ i ≤ N . (ϖt)t∈[0,T ] ∈ H2(F;Rn) denotes the market price
process of the n securities. In the end, we want to determine (ϖt)t∈[0,T ] endogenously so that

it equalizes the amount of demand and supply. (c0t )t≥0 ∈ H2(F0
;Rn) with c0T ∈ L2(F0

T ;Rn)
denotes the coupon payments from the securities or the market news affecting all the agents,

while (cit)t≥0 ∈ H2(Fi
;Rn) with ciT ∈ L2(F i

T ;Rn) denotes some idiosyncratic shocks affecting
only the ith agent. Moreover, (cit)t≥0 are also assumed to have the common law for all 1 ≤ i ≤
N . (Λt)t∈[0,T ] is an F0

-adapted process related to the trading fee to be paid to the exchange.
The terms involving (li, σ

0
i , σi) denote the order flow to the ith agent from his individual clients

through the over-the-counter (OTC) market. Each minor agent controls (αi
t)t∈[0,T ], which is

an Rn-valued process denoting the trading speed of the n securities via the exchange. More
precisely, (αi

t)
kdt, 1 ≤ k ≤ n, denotes the number of shares of the kth security bought (or sold

if negative) within the time interval [t, t + dt] by the ith agent. Note that, in addition to the
random initial states (ξi)Ni=1, we have d0-dimensional common noise W 0 and N d-dimensional
idiosyncratic noises (W i)Ni=1. Since we impose no restriction on the size among (n, d0, d,N),
we have an incomplete securities market in general. For more information, see [27, Section 3],
which explains the financial interpretation of each term in details.

When the number of agents N is sufficiently large, it is natural to assume that each minor
agent consider himself as a price taker. Throughout the paper, we assume that this is the
case. This means that each minor agent tries to solve the optimization problem by treating
(ϖt)t≥0 as an exogenous process. Suppose that the trading strategy of the major agent is
given by (βt)t∈[0,T ], which denotes her trading speed. For given order flow (βt)t∈[0,T ], the
financial market is expected to produce an equilibrium price process (ϖt)t∈[0,T ] which equalizes
the demand and supply among all the agents. Our first goal is to find such a price process
(ϖt)t∈[0,T ] which achieves

N∑
i=1

α̂i
t + βt = 0 (3.2)

dt⊗dP-a.e., where
(
(α̂i

t)t∈[0,T ]

)N
i=1

are the optimal trading strategies of the minor agents solving
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(3.1) based on this price process (ϖt)t∈[0,T ].
We shall show that the resultant equilibrium price process becomes dependent on (βt)t∈[0,T ]

i.e., we have
(
ϖt(β)

)
t∈[0,T ]

. Note that the minor agents do not directly care about (βt)t∈[0,T ].

They are just destined to face, as price takers, the exogenous market price process, which
happens to depend on the major’s strategy when it clears the market. The problem of the
major agent is now to solve

inf
β∈A0

J0(β) (3.3)

with the cost functional depending on f
(N)
0 and g

(N)
0 :

J0(β) := E
[∫ T

0
f
(N)
0 (t,X0

t , βt, ϖt(β),Λ
0
t , c

0
t )dt+ g

(N)
0 (X0

T , c
0
T )
]
,

with her own feedback effects taken into account. (Λ0
t )t∈[0,T ] is an F0

-adapted process related
to the trading fee to be paid to the exchange. The state dynamics of the major agent describing
her position size is assumed to follow

dX0
t =

(
βt + l

(N)
0 (t, c0t )

)
dt+ σ

(N)
0 (t, c0t )dW

0
t , t ∈ [0, T ] (3.4)

with some initial condition X0
0 ∈ Rn. The superscript (N) of the coefficient functions is added

to indicate that there are (N) minor agents. It becomes useful when we take the large-N limit
in later sections. We assume that the space of admissible strategies for the major agent is given
by A0 := H2(F;Rn) ∩ {βT = 0}, where the constraint βT = 0 is added in order to forbid the
last-time price manipulation.

In our framework, the price process including the feedback effects from the major’s action
is determined endogenously. This is a clear contrast to the existing literature dealing with the
optimal execution strategy, where the form of the price impact as well as the fundamental price
process are exogenously given. With appropriate modifications of the cost functions and their
interpretations, the current setup may be useful also for economic analysis, for example, the
market involving one major producer and a large number of small consumers.

Before going to the details, let us comment on the information structure for the agents.

Remark 3.1. If possible, we naturally want to restrict the space of admissible strategies for
each minor agent to Ai = H2(Fi;Rn), 1 ≤ i ≤ N and that for the major agent to A0 =

H2(F0
;Rn) ∩ {βT = 0}. In other words, we want to realize a market in which each agent only

cares about the common market shocks adapted to F0
and his/her own idiosyncratic shocks

adapted to Fi
. This would be a much plausible model for the real financial market than our setup

given above. Unfortunately, this looks impossible in the market consisting of finite number of

agents since, in general, the market-clearing price does not solely adapted to F0
but is dependent

on the idiosyncratic shocks, too.
As already observed in [27, 28], we shall see that this ideal situation is actually realized in

the large population limit. There, we can restrict the admissible strategy of the ith minor agent

to Ai = H2(Fi;Rn), and that of the major agent to A0 = H2(F0
;Rn)∩{βT = 0}. In fact, we can

find (ϖt)t∈[0,T ] is an F0
-adapted process, i.e. the market-clearing price is dependent only on the

common market shocks. By the convergence analysis, we shall see that this is approximately
true when the population size is large enough.
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3.2 Solving the problem for the minor agents

Let us solve the problem for each minor agent with given order flow (βt)t∈[0,T ] ∈ A0 of the
major agent. This is done in a completely parallel manner with our previous work [28]. We
first specify the details of the functions introduced in the last section. For each 1 ≤ i ≤ N , we
consider the following measurable functions:

(li, σ
0
i , σi) : [0, T ]× Rn × Rn 3 (t, c0, ci)

7→ (li(t, c
0, ci), σ0

i (t, c
0, ci), σi(t, c

0, ci)) ∈ (Rn,Rn×d0 ,Rn×d),

f i : [0, T ]× (Rn)4 3 (t, x,ϖ, c0, ci) 7→ f i(t, x,ϖ, c0, ci) ∈ R,
gi : (Rn)3 3 (x, c0, ci) 7→ gi(x, c

0, ci) ∈ R,

as well as fi : [0, T ]× (Rn)3 × Sn
+ × (Rn)2 → R and gi : (Rn)4 → R defined by

fi(t, x, α,ϖ,Λ, c0, ci) := 〈ϖ,α〉+ 1

2
〈α,Λα〉+ f i(t, x,ϖ, c0, ci),

gi(x,ϖ, c0, ci) := −δ〈ϖ,x〉+ gi(x, c
0, ci).

Let us explain the economic meaning of the cost functions. By buying (or selling if negative)
with speed αt, each agent pays (or receives if negative) 〈αt, ϖt〉dt amount of cash in the time
interval [t, t + dt]. In addition to this direct cost, we suppose that each agent has to pay the
service fees to the securities exchange 1

2〈αt,Λαt〉dt where Λ is an n×n positive definite matrix.
These costs are represented by the first two terms of the function fi. The first term of gi
denotes the mark-to-market value at the closing time with some discount factor δ ∈ [0, 1).1

The above three terms are assumed to be common across the agents since there is no strong
motivation to suppose otherwise. The remaining terms represented by functions f i and gi can
be used to distinguish various characters among the agents. The function f i is supposed to
represent the running costs which can be dependent on the position size, cash flows, prices of
the securities as well as any relevant news available to each agent. The function gi puts some
penalty on the position size at the terminal time T . In particular, we can make the ith agent
more risk averse by assigning stronger convexity on x for f i and/or gi.

Example 3.1. Suppose that the n securities have continuous dividend payments (c0t )t∈[0,T ) as
well as the rump-sum payment c0T at time T . In this case, it may be natural to consider

f i(t, x,ϖ, c0, ci) = −〈c0, x〉+ f
′
i(t, x,ϖ, c),

gi(x,ϖ, c0, ci) = −〈c0, x〉+ g′i(x,ϖ, c),

with some appropriate measurable functions f
′
i and g′i. Here, the first term 〈c0, x〉 denotes the

benefit from the receipt of the cash flow. The idiosyncratic shock ci can be used in various ways.
For example, we may used it to change the risk-averseness with respect to the position size x of
each agent according to the arrival of the idiosyncratic information. In fact, this is represented
by the functions cfi (·, ci) and cgi (·, ci) explained in (iv) of Assumption 3.1 given below.

1We shall see that the condition δ < 1 is necessary to obtain well-defined terminal condition for the equilib-
rium.
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Let us also introduce the following measurable functions (cfi , c
g
i , h

f
i , h

g
i ) for each 1 ≤ i ≤ N :

cfi : [0, T ]× (Rn)2 3 (t, c0, ci) 7→ cfi (t, c
0, ci) ∈ Sn

+,

cgi : (Rn)2 3 (c0, ci) 7→ cgi (c
0, ci) ∈ Sn

+,

hfi : [0, T ]× (Rn)2 7→ hfi (t, c
0, ci) ∈ Rn,

hgi : (Rn)2 7→ hgi (c
0, ci) ∈ Rn.

We assume the following conditions:

Assumption 3.1. (Minor-A) Uniformly in 1 ≤ i ≤ N , the functions satisfy the followings:

(i) (Λt)t∈[0,T ] is an F0
-progressively measurable Sn

+-valued process such that there exist some

positive constants 0 < λ ≤ λ < ∞ satisfying λ|θ|2 ≤ 〈θ,Λtθ〉 ≤ λ|θ|2 for every (ω, t, θ) ∈
Ω× [0, T ]× Rn.
(ii) For any (t, c0, ci) ∈ [0, T ]× (Rn)2,

|li(t, c0, ci)|+ |σ0
i (t, c

0, ci)|+ |σi(t, c0, ci)| ≤ L(1 + |c0|+ |ci|).

(iii) For any (t, x,ϖ, c0, ci) ∈ [0, T ]× (Rn)4,

|f i(t, x,ϖ, c0, ci)|+ |gi(x, c0, ci)| ≤ L(1 + |x|2 + |ϖ|2 + |c0|2 + |ci|2).

(iv) For any (t, x,ϖ, c0, ci) ∈ [0, T ]× (Rn)4, f i and gi are once continuously differentiable in x
with ϖ-independent derivatives, and the functions ∂xf i and ∂xgi have the following affine-form
in x:

∂xf i(t, x,ϖ, c0, ci)
(
=: ∂xf i(t, x, c

0, ci)
)
= cfi (t, c

0, ci)x+ hfi (t, c
0, ci),

∂xgi(x, c
0, ci) = cgi (c

0, ci)x+ hgi (c
0, ci).

Moreover, the functions (cfi , c
g
i , h

f
i , h

g
i ) satisfy

|hfi (t, c
0, ci)|+ |hgi (c

0, ci)| ≤ L(1 + |c0|+ |ci|),
|cfi (t, c

0, ci)|+ |cgi (c
0, ci)| ≤ L,〈

θ, cfi (t, c
0, ci)θ

〉
≥ γf |θ|2,

〈
θ, cgi (c

0, ci)θ
〉
≥ γg|θ|2, ∀θ ∈ Rn,

with some positive constants γf , γg > 0.

This is a special situation studied in Section 3.1 of [28]. In fact, the conditions in Assumption
(Minor-A) are significantly more stringent than those used in [28]. We do this in order to
avoid introducing many sets of assumptions incrementally in later sections. In particular, the
affine-form condition in (iv) is to be used when we verify the optimality condition for the
major agent based on Theorem A.1. The associated (reduced) Hamiltonian for the ith agent
Hi : [0, T ]× (Rn)4 × Sn

+ × (Rn)2 → R is given by

Hi(t, x, y, α,ϖ,Λ, c0, ci) :=
〈
y, α+ li(t, c

0, ci)
〉
+ fi(t, x, α,ϖ,Λ, c0, ci),

which is jointly convex in (x, y, α) and strictly so in (x, α). The unique minimizer α of Hi is

9



given by
α̂(y,ϖ) := −Λ(y +ϖ),

with Λ := Λ−1. Therefore, the adjoint equation associated with the problem (3.1) for the ith
agent arising from the stochastic maximum principle is given by, for t ∈ [0, T ],{

dXi
t =

(
−Λt(Y

i
t +ϖt) + li(t, c

0
t , c

i
t)
)
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf i(t,X

i
t , c

0
t , c

i
t)dt+ Zi,0

t dW 0
t +

∑N
j=1 Z

i,j
t dW j

t ,
(3.5)

with Xi
0 = ξi and Y i

T = −δϖT + ∂xgi(X
i
T , c

0
T , c

i
T ).

Theorem 3.1. Let Assumption (Minor-A) be in force. Then, for any (ϖt)t∈[0,T ] ∈ H2(F;Rn)
satisfying ϖT ∈ L2(FT ;Rn), the problem (3.1) for each agent 1 ≤ i ≤ N is uniquely character-
ized by the FBSDE (3.5) which is strongly solvable with a unique solution (Xi, Y i, Zi,0, (Zi,j)Nj=1) ∈
S2(F;Rn)× S2(F;Rn)×H2(F;Rn×d0)× (H2(F;Rn×d))N .

Proof. This is the direct result of Theorem 3.1 in [28]. One can easily check Assumption 3.1 in
[28] is satisfied under (Minor-A). Although (Λt)t∈[0,T ] is now stochastic, it does not introduce
any additional difficulty. The existence of the unique solution to the FBSDE (3.5) can also be
proved by the direct application of Theorem 2.6 in [49] (with β1, µ1 > 0), which is repeatedly
used in the following sections.

3.3 Deriving the equilibrium price process for a given (βt)t∈[0,T ]

From Theorem 3.1, we find that the optimal trading speed of each minor agent 1 ≤ i ≤ N is
given by

α̂i
t = −Λt(Y

i
t +ϖt), t ∈ [0, T ],

for any exogenous input (ϖt)t∈[0,T ]. Since the market-clearing condition requires
∑N

i=1 α̂
i
t+βt =

0, dt⊗ dP-a.e. the market price process needs to satisfy

ϖt = −m
(
(Yt)

)
+ Λt

βt
N

, t ∈ [0, T ]. (3.6)

This relation suggests a large system of fully-coupled FBSDEs given below: for 1 ≤ i ≤ N ,dXi
t =

{
−Λt

(
Y i
t −m((Yt))

)
− βt

N
+ li(t, c

0
t , c

i
t)
}
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf i(t,X

i
t , c

0
t , c

i
t)dt+ Zi,0

t dW 0
t +

∑N
j=1 Z

i,j
t dW j

t ,
(3.7)

with {
Xi

0 = ξi,

Y i
T = δ

1−δm
((

cgj (c
0
T , c

j
T )X

j
T + hgj (c

0
T , c

j
T )
)N
j=1

)
+ cgi (c

0
T , c

i
T )X

i
T + hgi (c

0
T , c

i
T ) .

(3.8)

The terminal condition for Y i is implied from

Y i
T = −δϖT + ∂xgi(X

i
T , c

0
T , c

i
T )

10



and the fact that ϖT = −m((YT )) (note that βT = 0). We have the following result.

Theorem 3.2. Let Assumption (Minor-A) be in force. With a given strategy (βt)t∈[0,T ] ∈
A0 of the major agent, the market-clearing equilibrium with a square integrable price process
(ϖt)t∈[0,T ] ∈ H2(F;Rn) with ϖT ∈ L2(FT ;Rn) exists if and only if there exists a solution

(Xi, Y i, Zi,0, (Zi,j)Nj=1) ∈ S2(F;Rn) × S2(F;Rn) × H2(F;Rn×d0) × (H2(F;Rn×d))N , 1 ≤ i ≤ N
to the N -coupled system of FBSDEs (3.7) with (3.8).

Proof. This is a simple modification of [28, Theorem 3.2]. The necessity is obvious from
Theorem 3.1 and the above discussion. On the other hand, suppose that there exists a square
integrable solution to the N -coupled FBSDEs (3.7) with (3.8). Let us define the price process
ϖ by (3.6) using the solution (Y i)Ni=1. Then, with this ϖ as an input, the solution (yit)t∈[0,T ] to
(3.5), which corresponds to the problem for the ith agent, actually satisfies yi = Y i in S2(F;Rn)
due to the uniqueness of the solution to (3.5). Therefore, the market-clearing condition is
satisfied.

Assumption 3.2. (Minor-B)
There exists some FT -measurable Sn-valued random variable c such that

a :=
δ

1− δ
||c− cgi (c

0
T , c

i
T )||∞ < γg, 1 ≤ i ≤ N.

Theorem 3.3. Let Assumptions (Minor-A, B) be in force. Then, for any given (βt)t∈[0,T ] ∈ A0,

the N -coupled system of FBSDEs (3.7) with (3.8) has a unique strong solution (Xi, Y i, Zi,0, (Zi,j)Nj=1) ∈
S2(F;Rn)× S2(F;Rn)×H2(F;Rn×d0)× (H2(F;Rn×d))N , 1 ≤ i ≤ N .

Proof. Let xi, yi ∈ Rn be arbitrary constants. For notational simplicity, we write x = (xi)Ni=1

and y = (yi)Ni=1. Put

drift[xi](t, y) := −Λt

(
yi −m((y))

)
− βt

N
+ li(t, c

0
t , c

i
t),

drift[yi](t, x) := −∂xf i(t, x
i, c0t , c

i
t),

terminal[yi](x) :=
δ

1− δ
m
(
(cgj (c

0
T , c

j
T )x

j + hgj (c
0
T , c

j
T ))

N
j=1

)
+ cgi (c

0
T , c

i
T )x

i + hgi (c
0
T , c

i
T ).

For two inputs (x, y) and (x′, y′), with the conventions ∆xi := xi − xi′, ∆yi := yi − yi′,

∆drift[xi](t) := drift[xi](t, y)− drift[xi](t, y′),

∆drift[yi](t) := drift[yi](t, x)− drift[yi](t, x′),

∆terminal[yi] := terminal[yi](x)− terminal[yi](x′),

we have

N∑
i=1

〈
∆drift[xi](t),∆yi

〉
= −

N∑
i=1

〈
Λt∆yi,∆yi

〉
+N

〈
Λtm((∆y)),m((∆y))

〉
≤ 0,

N∑
i=1

〈
∆drift[yi](t),∆xi

〉
= −

〈
cfi (t, c

0
t , c

i
t)∆xi,∆xi

〉
≤ −γf

N∑
i=1

|∆xi|2,
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N∑
i=1

〈
∆terminal[yi],∆xi

〉
=

δN

1− δ

〈
m((cgi (c

0
T , c

i
T )∆xi)Ni=1),m((∆x))

〉
+

N∑
i=1

〈
cgi (c

0
T , c

i
T )∆xi,∆xi

〉
≥ δN

1− δ

〈
c m((∆x)),m((∆x))

〉
+ (γg − a)

N∑
i=1

|∆xi|2 ≥ (γg − a)
N∑
i=1

|∆xi|2. (3.9)

Thus we can apply Theorem 2.6 in [49] with (β1, µ1) = (γf , γg − a) and G = I. See also the
proof for Theorem 3.3 in [28], which can be applied in essentially the same way for the current
problem.

3.4 Optimization problem for the major agent

We now investigate the optimization problem for the major agent. From Theorems 3.2 and
3.3, her problem is given by infβ∈A0 J0(β) with

J0(β) := E
[∫ T

0
f
(N)
0

(
t,X0

t , βt,−m((Yt)) + Λt
βt
N

,Λ0
t , c

0
t

)
dt+ g

(N)
0 (X0

T , c
0
T )
]
,

subject to the dynamic constraints with 1 ≤ i ≤ N :
dX0

t =
(
βt + l

(N)
0 (t, c0t )

)
dt+ σ

(N)
0 (t, c0t )dW

0
t ,

dXi
t =

{
−Λt

(
Y i
t −m((Yt))

)
− βt

N
+ li(t, c

0
t , c

i
t)
}
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dY i
t = −∂xf i(t,X

i
t , c

0
t , c

i
t)dt+ Zi,0

t dW 0
t +

∑N
j=1 Z

i,j
t dW j

t , t ∈ [0, T ]

(3.10)

with 
X0

0 = Nχ0, χ0 ∈ Rn,

Xi
0 = ξi,

Y i
T = δ

1−δm
((

cgj (c
0
T , c

j
T )X

j
T + hgj (c

0
T , c

j
T )
)N
j=1

)
+ cgi (c

0
T , c

i
T )X

i
T + hgi (c

0
T , c

i
T ).

(3.11)

As we can see, the problem for the major agent turns out to be an optimization with respect
to the system of controlled-FBSDEs instead of controlled-SDEs. See, for relevant information,
Appendix A and the references therein.

Remark 3.2. At first glance, it may seem to be a linear price impact model popular in the
literature dealing with the optimal execution problem. However, notice that the term −m((Y i

t ))
is also dependent on the major agent’s strategy in a complicated fashion.

Since we want to study the large population limit N → ∞ in later sections, it is convenient
to define the normalized measurable functions:

(l0, s0) : [0, T ]× Rn 3 (t, c0) 7→ (l0(t, c
0), s0(t, c

0)) ∈ (Rn,Rn×d0),

f0 : [0, T ]× (Rn)2 3 (t, x, c0) 7→ f0(t, x, c
0) ∈ R,

g0 : (Rn)2 3 (x, c0) 7→ g0(x, c
0) ∈ R,
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and f0 : [0, T ]× (Rn)3 × Sn × Rn → R by

f0(t, x, β,ϖ,Λ0, c0) := 〈β,ϖ〉+ 1

2

〈
β,Λ0β

〉
+ f0(t, x, c

0).

We then define the unnormalized functions by

l
(N)
0 (t, c0) := N l0(t, c

0),

σ
(N)
0 (t, c0) := Ns0(t, c

0),

f
(N)
0 (t, x, β,ϖ,Λ0, c0) := N f0

(
t, x/N, β/N,ϖ,Λ0, c0

)
,

f
(N)
0 (t, x, c0) := N f0

(
t, x/N, c0

)
,

g
(N)
0 (x, c0) := Ng0

(
x/N, c0

)
.

(3.12)

Note that, we have

f
(N)
0 (t, x, β,ϖ,Λ0, c0) = 〈β,ϖ〉+ 1

2

〈
β,

Λ0

N
β
〉
+ f

(N)
0 (t, x, c0).

Economic meaning of each term can be understood in the same way as the one for minor agents
given in Section 3.2.

Let us introduce the following assumptions.

Assumption 3.3. (Major)

(i) (Λ0
t )t∈[0,T ] is an F0

-progressively measurable Sn-valued process such that there exist some

positive constants 0 < λ ≤ λ < ∞ satisfying λ|θ|2 ≤
〈
θ, (Λ0

t + 2Λt)θ
〉
≤ λ|θ|2 for every

(ω, t, θ) ∈ [0, T ]× Ω× Rn.
(ii) For any (t, c0) ∈ [0, T ]× Rn, |l0(t, c0)|+ |s0(t, c0)| ≤ L0(1 + |c0|).
(iii) For any (t, x0, c0) ∈ [0, T ]× (Rn)2,

|f0(t, x0, c0)|+ |g0(x0, c0)| ≤ L0(1 + |x0|2 + |c0|2).

(iv) f0 and g0 are once continuously differentiable in x and satisfy

|∂xf0(t, x0, c0)|+ |∂xg0(x0, c0)| ≤ L0(1 + |x0|+ |c0|),
|∂xf0(t, x0′, c0)− ∂xf0(t, x

0, c0)|+ |∂xg0(x0′, c0)− ∂xg0(x
0, c0)| ≤ L0|x0′ − x0|,

for any (t, x0, x0′, c0) ∈ [0, T ]× (Rn)3.

(v) f0 and g0 are strictly convex in the sense that there exist some positive constants γf0 , γ
g
0 > 0

and

f0(t, x
0′, c0)− f0(t, x

0, c0)−
〈
x0′ − x0, ∂xf0(t, x

0, c0)
〉
≥ γf0

2
|x0′ − x0|2,

g0(x
0′, c0)− g0(x

0, c0)−
〈
x0′ − x0, ∂xg0(x

0, c0)
〉
≥ γg0

2
|x0′ − x0|2,

hold for any (t, x0, x0′, c0) ∈ [0, T ]× (Rn)3.
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For later use, let us put

γ
f(N)
0 :=

γf0
N

, γ
g(N)
0 :=

γg0
N

.

Remark 3.3. With the above definition, we have

∂xf
(N)
0 (t, x, c0) = N

∂

∂x
f0(t, x/N, c0)

= N
∂(x/N)

∂x
∂xf0(t, x/N, c0) = ∂xf0(t, x/N, c0).

and similar relation for ∂xg0.

Remark 3.4. For the analysis with a fixed N , such a scaling is arbitrary and irrelevant.
However, it plays an important role when we study the large population limit N → ∞. In
particular, the market share of the major agent must grow proportionally to the population size

N . For example, if the cost functions contain
〈
β,Λ0β

〉
instead of

〈
β, Λ

0

N β
〉
, the market share

of the major agent becomes negligible in the large population limit. In this case, we obtain the
same market price as in [27, 28].

Following the analysis done in Appendix A, let us introduce the adjoint variables (p0, (pi)Ni=1, (r
i)Ni=1)

for (x0, (xi)Ni=1, (y
i)Ni=1), respectively. The (reduced) Hamiltonian

H : [0, T ]× Rn × (Rn)N × (Rn)N × Rn × (Rn)N × (Rn)N × Rn × Sn × Sn
+ × Rn × (Rn)N → R

of the system is defined by

H(t, x0, (xi)Ni=1, (y
i)Ni=1, p

0, (pi)Ni=1, (r
i)Ni=1, β,Λ

0,Λ, c0, (ci)Ni=1)

:=
〈
p0, β + l

(N)
0 (t, c0)

〉
+

N∑
i=1

〈
pi,−Λ

(
yi −m((y))

)
− β

N
+ li(t, c

0, ci)
〉

+

N∑
i=1

〈
ri,−∂xf i(t, x

i, c0, ci)
〉

+
〈
β,−m((y)) + Λ

β

N

〉
+

1

2

〈
β,

Λ0

N
β
〉
+ f

(N)
0 (t, x0, c0). (3.13)

For a given set of p0, (pi)Ni=1, (r
i)Ni=1 (and also (Λ0,Λ, c0, (ci)Ni=1)), it is straightforward to check

that H is jointly convex in (x0, (xi)Ni=1, (y
i)Ni=1, β) and strictly convex in (x0, β). Here, recall

that ∂xf i is affine in xi by Assumption (Minor-A, (iv)). For given inputs, the minimizer of the
Hamiltonian β̂ := argminH(β) is given by

β̂ = NV0(−p0 +m((y)) +m((p))
)

(3.14)

where V0
:= (Λ0 + 2Λ)−1.
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The adjoint equations for (p0, (pi)Ni=1, (r
i)Ni=1) can be found from (A.2): for 1 ≤ i ≤ N ,

dP 0
t = −∂xf

(N)
0 (t,X0

t , c
0
t )dt+Q0,0

t dW 0
t +

∑N
j=1Q

0,j
t dW j

t ,

dP i
t = cfi (t, c

0
t , c

i
t)R

i
tdt+Qi,0

t dW 0
t +

∑N
j=1Q

i,j
t dW j

t ,

dRi
t =

{
Λt

(
P i
t −m((Pt))

)
+

βt
N

}
dt,

(3.15)

with 
P 0
T = ∂xg

(N)
0 (X0

T , c
0
T ),

P i
T = −cgi (c

0
T , c

i
T )
(
Ri

T + δ
1−δm((RT ))

)
,

Ri
0 = 0.

(3.16)

Note that the forward and backward processes x and y in (A.1) correspond to (X0, (Xi)Ni=1)
and (Y i)Ni=1 in (3.10), respectively. As for the adjoint processes, p and r in (A.2) corresponds to
(P 0, (P i)Ni=1) and (Ri)Ni=1, respectively. By checking Assumption A.1 using the above relations,
we obtain the next theorem.

Theorem 3.4. Let Assumptions (Minior-A, B) and (Major) be in force. Suppose that the
system of FBSDEs (3.10) and (3.15) with boundary conditions (3.11) and (3.16) has a so-
lution X0, Y i, P 0, P i, Ri ∈ S2(F;Rn), Zi,0, Q0,0, Qi,0 ∈ H2(F;Rn×d0), and Zi,j , Q0,j , Qi,j ∈
H2(F;Rn×d), 1 ≤ i, j ≤ N , with the control process βt = β̂t, t ∈ [0, T ) i.e.,

β̂t = NV0
t

(
−P 0

t +m((Yt)) +m((Pt))
)
, V0

t := (Λ0
t + 2Λt)

−1.

Then, (β̂t)t∈[0,T ) (with β̂T = 0) is the unique optimal control for the major agent.

Proof. This is the direct result of Theorem A.1. Note that Assumption (Minor-A) (iv) plays a
crucial role to guarantee the joint convexity of H and the affine property of Φ required in the
theorem.

Remark 3.5 (on the condition βT = 0). In the current work, we restrict the admissible
strategies of the major agent to {βT = 0}. Since {t = T} is the Lebesgue null set, βT does not
affect the terminal position size X0

T of the major agent. Nevertheless, it affects the equilibrium
price at time T by the relation (3.6). Therefore, in general, the major agent has an incentive
to manipulate the price by changing βT . In order to make the optimization problem at T
well-defined, we need a strict convexity in the terminal cost with respect to ϖT after including
complicated feedback effects from the minor agents. Since this makes the analysis intractable

for us, we restrict to {βT = 0} and also make g
(N)
0 independent from ϖT at the moment. We

leave this interesting problem on general βT at the terminal time for future research.
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3.5 Existence of the optimal solution for the major agent

From Theorem 3.4, the crucial target of our analysis is the following coupled system of FBSDEs:

dX0
t =

(
β̂t + l

(N)
0 (t, c0t )

)
dt+ σ

(N)
0 (t, c0t )dW

0
t ,

dXi
t =

{
−Λt

(
Y i
t −m((Yt))

)
− β̂t

N
+ li(t, c

0
t , c

i
t)
}
dt+ σ0

i (t, c
0
t , c

i
t)dW

0
t + σi(t, c

0
t , c

i
t)dW

i
t ,

dRi
t =

{
Λt

(
P i
t −m((Pt))

)
+

β̂t
N

}
dt,

dP 0
t = −∂xf

(N)
0 (t,X0

t , c
0
t )dt+Q0,0

t dW 0
t +

∑N
j=1Q

0,j
t dW j

t ,

dY i
t = −∂xf i(t,X

i
t , c

0
t , c

i
t)dt+ Zi,0

t dW 0
t +

∑N
j=1 Z

i,j
t dW j

t ,

dP i
t = cfi (t, c

0
t , c

i
t)R

i
tdt+Qi,0

t dW 0
t +

∑N
j=1Q

i,j
t dW j

t ,

(3.17)

with 
X0

0 = Nχ0, Xi
0 = ξi, Ri

0 = 0

P 0
T = ∂xg

(N)
0 (X0

T , c
0
T ),

Y i
T = δ

1−δm
((

cgj (c
0
T , c

j
T )X

j
T + hgj (c

0
T , c

j
T )
)N
j=1

)
+ cgi (c

0
T , c

i
T )X

i
T + hgi (c

0
T , c

i
T ),

P i
T = −cgi (c

0
T , c

i
T )
(
Ri

T + δ
1−δm((RT ))

)
,

(3.18)

for 1 ≤ i ≤ N . Here, (β̂t)t∈[0,T ) is defined by

β̂t = NV0
t

(
−P 0

t +m((Yt)) +m((Pt))
)
, t ∈ [0, T ).

The main result of this section is the next theorem.

Theorem 3.5. Under Assumptions (Minor-A, B) and (Major), there exists a unique strong
solution X0, Y i, P 0, P i, Ri ∈ S2(F;Rn), Zi,0, Q0,0, Qi,0 ∈ H2(F;Rn×d0), and Zi,j , Q0,j , Qi,j ∈
H2(F;Rn×d), 1 ≤ i, j ≤ N to the coupled system of FBSDEs (3.17) with (3.18).

Proof. We shall show that the monotone conditions used in Theorem 2.6 in [49] are actually
satisfied. Let x0, p0 and xi, yi, pi, ri, 1 ≤ i ≤ N be arbitrary constants in Rn. We put x =
(xi)Ni=1, y = (yi)Ni=1, p = (pi)Ni=1, r = (ri)Ni=1, and u = (x0, x, r, p0, y, p). We write β̂(t, u) :=

V0
t

(
−p0 +m((y)) +m((p))

)
. As in Theorem 3.3, we introduce the quantities:

drift[x0](t, u) := β̂(t, u) + l
(N)
0 (t, c0t ),

drift[xi](t, u) := −Λt

(
yi −m((y))

)
− β̂(t, u)

N
+ li(t, c

0
t , c

i
t),

drift[ri](t, u) := Λt

(
pi −m((p))

)
+

β̂(t, u)

N
,

drift[p0](t, u) := −∂xf
(N)
0 (t, x0, c0t ),

drift[yi](t, u) := −∂xf i(t, x
i, c0t , c

i
t),

drift[pi](t, u) := cfi (t, c
0
t , c

i
t)r

i,
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and

terminal[p0](u) := ∂xg
(N)
0 (x0, c0T ),

terminal[yi](u) :=
δ

1− δ
m
(
(cgj (c

0
T , c

j
T )x

j + hgj (c
0
T , c

j
T ))

N
j=1

)
+ cgi (c

0
T , c

i
T )x

i + hgi (c
0
T , c

i
T ),

terminal[pi](u) := −cgi (c
0
T , c

i
T )
(
ri +

δ

1− δ
m((r))

)
.

With two inputs (u, u′), we define ∆u := u− u′,

∆drift[x0](t) := drift[x0](t, u)− drift[x0](t, u′),

∆terminal[p0] := terminal[p0](u)− temrinal[p0](u′),

and similarly for the others. From Remark 3.3, we have〈
∆drift[p0](t),∆x0

〉
= −

〈
∂xf0(t, x

0/N, c0t )− ∂xf0(t, x
0′/N, c0t ),∆x0t

〉
≤ −Nγf0 |∆x0/N |2 = −γ

f(N)
0 |∆x0|2.

It is then straightforward to get

〈
∆drift[p0](t),∆x0

〉
+

N∑
i=1

〈
∆drift[yi](t),∆xi

〉
+

N∑
i=1

〈
(−I)∆drift[pi](t),∆ri

〉
≤ −γ

f(N)
0 |∆x0|2 − γf

N∑
i=1

(
|∆xi|2 + |∆ri|2

)
,

where I = In×n is the identity matrix. Next, with ∆β̂t := β̂(t, u)− β̂(t, u′), we have

N∑
i=1

〈
∆drift[xi](t),∆yi

〉
=

N∑
i=1

〈
−Λt

(
∆yi −m((∆y))

)
− ∆β̂t

N
,∆yi

〉
= −

N∑
i=1

〈
Λt∆yi,∆yi

〉
+N

〈
Λtm((∆y)),m((∆y))

〉
−N

〈∆β̂t
N

,m((∆y))
〉
≤ −N

〈∆β̂t
N

,m((∆y))
〉
.

By similar calculation, we get

〈
∆drift[x0](t),∆p0

〉
+

N∑
i=1

〈
∆drift[xi](t),∆yi

〉
+

N∑
i=1

〈
(−I)∆drift[ri](t),∆pi

〉
≤ −N

〈∆β̂t
N

,−∆p0 +m((∆y)) +m((∆p))
〉
= −N

〈∆β̂t
N

, (Λ0
t + 2Λt)

∆β̂t
N

〉
≤ 0.
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Therefore, from the drift contribution, we eventually have

〈
∆drift[p0](t),∆x0

〉
+

N∑
i=1

〈
∆drift[yi](t),∆xi

〉
+

N∑
i=1

〈
(−I)∆drift[pi](t),∆ri

〉
+
〈
∆drift[x0](t),∆p0

〉
+

N∑
i=1

〈
∆drift[xi](t),∆yi

〉
+

N∑
i=1

〈
(−I)∆drift[ri](t),∆pi

〉
≤ −γ

f(N)
0 |∆x0|2 − γf

N∑
i=1

(
|∆xi|2 + |∆ri|2

)
. (3.19)

For the terminal conditions, by the similar calculation done in (3.9), we obtain

〈
∆terminal[p0],∆x0

〉
+

N∑
i=1

〈
∆terminal[yi],∆xi

〉
+

N∑
i=1

〈
(−I)∆terminal[pi],∆ri

〉
≥ γ

g(N)
0 |∆x0|2 + (γg − a)

N∑
i=1

(
|∆xi|2 + |∆ri|2

)
. (3.20)

Using (3.19) and (3.20), we can now apply Theorem 2.6 in [49] with

A(t, u) =



In×n 0 0 0 0 0
0 (In×n)

N 0 0 0 0
0 0 (−In×n)

N 0 0 0
0 0 0 In×n 0 0
0 0 0 0 (In×n)

N 0
0 0 0 0 0 (−In×n)

N





drift[p0]
drift[y]
drift[p]
drift[x0]
drift[x]
drift[r]

 (t, u)

and

G =

In×n 0 0
0 (In×n)

N 0
0 0 (−In×n)

N

 .

In particular, we have β1 := min(γ
f(N)
0 , γf ) > 0, µ1 := min(γ

g(N)
0 , γg − a) > 0. Note that the

coefficients of the Brownian motions (σi etc.) are irrelevant since they are uncontrolled and
state-independent. In fact, one can repeat the proof for Theorem 3.3 in [28] in essentially the
same way by simply replacing the analysis for d

〈
∆yt,∆xt

〉
with that for

d

〈∆p0t
∆yt
∆pt

 , G

∆x0t
∆xt
∆rt

〉

using the above estimates.

Thanks to Theorem 3.5, we now find the market-clearing price process is given by

ϖt = −m((Yt)) + ΛtV
0
t

(
−P 0

t +m((Yt)) +m((Pt))
)
, t ∈ [0, T ) (3.21)
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using the solutions to the system of FBSDEs (3.17) with (3.18). Note that the system of
equations is coupled among the agents 1 ≤ i ≤ N by the interactions through the empirical
means such as m((Yt)). As in the case for the standard mean field game theory for Nash
equilibrium, we can obtain a simpler decoupled system described by the FBSDE of McKean-
Vlasov type in the large-N limit. This is the major topic to be treated in the remainder of the
work. In the next section, we study the mean-field limit of the corresponding problem under
the assumption that the minor agents are homogeneous.

Remark 3.6 (on Nash equilibrium). The equilibrium in our model is characterized by the
relation

∑N
i=1 α̂

i
t+β̂t = 0, dt⊗dP-a.e. Notice that this market-clearing equilibrium is a different

concept from the Nash equilibrium. Since Nash equilibrium is characterized by the optimality
of the value function of each agent with respect to his/her strategy while keeping the other
agents’ strategies unchanged, it inevitably violates the market-clearing condition and hence is
inapplicable to our case. In fact, because of this reason, the market-clearing equilibrium is quite
popular in standard economic theories.

4 Mean-field Equilibrium

Let us work on the probability space withN = 1 in Section 2, i.e. (Ω,F ,P,F) = (Ω1,F1,P1,F1).
In the following, we use the notation:

E0
t

[
·
]
:= E

[
· |F0

t

]
.

Let us first introduce the following assumptions.

Assumption 4.1. (MFG)
(i) (l, σ0, σ, f , g, cf , cg, hf , hg) satisfy the same conditions corresponding to those for (li, σ

0
i , σi, f i, gi,

cfi , c
g
i , h

f
i , h

g
i ) in Assumption (Minor-A).

(ii) There exists some F0
T -measurable Sn-valued random variable c such that

a :=
δ

1− δ
||c− cg(c0T , c

1
T )||∞ < γg.

(iii) For the other variables and functions, we assume the same conditions as those in Assump-
tions (Minor-A) and (Major).

For the space of admissible strategies A0
mfg := H2(F0

;Rn) ∩ {βT = 0}, we suppose that the
major agent tries to solve

inf
β∈A0

mfg

J0(β) (4.1)

where

J0(β) := E
[∫ T

0
f0

(
t, x0t , βt,−E0

t [y
1
t ] + Λtβt,Λ

0
t , c

0
t

)
dt+ g0(x

0
T , c

0
T )
]
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subject to the following dynamic constraints:
dx0t =

(
βt + l0(t, c

0
t )
)
dt+ s0(t, c

0
t )dW

0
t ,

dx1t =
{
−Λt

(
y1t − E0

t [y
1
t ]
)
− βt + l(t, c0t , c

1
t )
}
dt+ σ0(t, c0t , c

1
t )dW

0
t + σ(t, c0t , c

1
t )dW

1
t ,

dy1t = −∂xf(t, x
1
t , c

0
t , c

1
t )dt+ z1,0t dW 0

t + z1,1t dW 1
t ,

(4.2)

with x00 = χ0, x10 = ξ1,

y1T =
δ

1− δ
E0
T

[
cg(c0T , c

1
T )x

1
T + hg(c0T , c

1
T )
]
+ cg(c0T , c

1
T )x

1
T + hg(c0T , c

1
T ).

(4.3)

Here, the problem for the major agent is the optimization with respect to the controlled-
FBSDE of conditional McKean-Vlasov type. One can naturally expect the above formulation
of the problem in the mean-field limit from the McKean-Vlasov FBSDEs given in [27] and the
expression in (3.6)

Remark 4.1. Notice that, the above problem is well posed in the sense that for a given
β ∈ A0

mfg, there exists a unique strong solution to (4.2) and the corresponding cost J0(β)

is finite. In particular, the unique existence for (x1, y1) can be proved by a simple modification
of Theorem 4.2 in [27].

Implied from (3.13), we consider the Hamiltonian

H : [0, T ]× (Rn)9 × Sn × Sn
+ × (Rn)2 → R

by

H
(
t, x0, x1, y1, y1, p0, p1, p1, r1, β,Λ0,Λ, c0, c1

)
:=

〈
p0, β + l0(t, c

0)
〉
+
〈
p1,−Λ(y1 − y1) + l(t, c0, c1)

〉
+
〈
p1,−β

〉
+
〈
r1,−∂xf(t, x

1, c0, c1)
〉
+
〈
β,−y1 + Λβ

〉
+

1

2

〈
β,Λ0β

〉
+ f0(t, x

0, c0). (4.4)

It is important to observe that the map

(x0, x1, y1, y1, β) 7→ H(t, x0, x1, y1, y1, p0, p1, p1, r1, β,Λ0,Λ, c0, c1)

is jointly convex and strictly convex in β (and x0). It is easy to find

β̂ = V0(−p0 + y1 + p1
)
,

with V0
:= (Λ0 + 2Λ)−1 gives the minimizer of H with respect to β.

The relevant set of adjoint equations can be inferred from Appendix A combined with
Chapter 6 in [10], or from (3.17) and (3.18).

dr1t =
{
Λt

(
p1t − E0

t [p
1
t ]
)
+ βt

}
dt,

dp0t = −∂xf0(t, x
0
t , c

0
t )dt+ q0,0t dW 0

t ,

dp1t = cf (t, c0t , c
1
t )r

1
t dt+ q1,0t dW 0

t + q1,1t dW 1
t ,

(4.5)
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with 
r10 = 0,

p0T = ∂xg0(x
0
T , c

0
T ),

p1T = −cg(c0T , c
1
T )
(
r1T + δ

1−δE
0
T [r

1
T ]
)
.

(4.6)

In order to guarantee that the above system characterizes the optimal solution for the major
agent, we are going to prove the new verification theorem for controlled FBSDEs of conditional
McKean-Vlasov type.

Theorem 4.1. Let Assumption (MFG) be in force. Suppose that there exists a solution
(x̂0, x̂1, r̂1, p̂0, p̂1, ŷ1) to ((4.2), (4.3)) and ((4.5), (4.6)) with the control process β satisfying

β̂t = V0
t

(
−p̂0t + E0

t [ŷ
1
t ] + E0

t [p̂
1
t ]
)

dt⊗ dP-a.e., then (β̂t)t∈[0,T ) (with β̂T = 0) is the unique optimal control for the problem (4.1).

Proof. For a given β ∈ A0
mfg, we denote the associated solution to (4.2) by (x0, x1, y1). We

shall study the difference:

J0(β)− J0(β̂) = E
[
g0(x

0
T , c

0
T )− g0(x̂

0
T , c

0
T )

+

∫ T

0

(
f0
(
t, x0t , βt,−E0

t [y
1
t ] + Λtβt,Λ

0
t , c

0
t

)
− f0

(
t, x̂0t , β̂t,−E0

t [ŷ
1
t ] + Λtβ̂t,Λ

0
t , c

0
t

))
dt
]
.

First, observe that

E
[〈
p̂1T , x

1
T − x̂1T

〉
+
〈
r̂1T , y

1
T − ŷ1T

〉]
=

δ

1− δ
E
[
−
〈
E0
T [r̂

1
T ], c

g(c0T , c
1
T )(x

1
T − x̂1T )

〉
+
〈
r̂1T ,E0

T [c
g(c0T , c

1
T )(x

1
T − x̂1T )]

〉]
= 0.

Thus, from the convexity of g0, we have

E
[
g0(x

0
T , c

0
T )− g0(x̂

0
T , c

0
T )
]
≥ E

[〈
p̂0T , x

0
T − x̂0T

〉
+
〈
p̂1T , x

1
T − x̂1T

〉
+
〈
r̂1T , y

1
T − ŷ1T

〉]
.(4.7)

Let us use Θ̂t :=
(
x̂0t , x̂

1
t , ŷ

1,E0
t [ŷ

1
t ], p̂

0
t , p̂

1
t ,E0

t [p̂
1
t ], r̂

1
t

)
, θ̂t :=

(
p̂0t , p̂

1
t ,E0

t [p̂
1
t ], r̂

1
t

)
and omit the

common arguments (Λ0
t ,Λt, c

0
t , c

1
t ) in the Hamiltonian. Since Λ, β̂ are F0

-adapted, we have

E
[〈
Λt(p̂

1
t − E0

t [p̂
1
t ]) + β̂t, y

1
t − ŷ1t

〉]
= E

[〈
Λtp̂

1
t , y

1
t − ŷ1t

〉]
+ E

[〈
−ΛtE0

t [p̂
1
t ] + β̂t, y

1
t − ŷ1t

〉]
= E

[〈
Λtp̂

1
t , y

1
t − ŷ1t

〉]
+ E

[〈
−Λtp̂

1
t + β̂t,E0

t [y
1
t ]− E0

t [ŷ
1
t ]
〉]

= E
[
−
〈
∂y1H(t, Θ̂t, β̂t), y

1
t − ŷ1t

〉
−
〈
∂y1H(t, Θ̂t, β̂t),E0

t [y
1
t ]− E0

t [ŷ
1
t ]
〉]
.
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With these results and (4.7), a simple application of Itô-formula yields

J0(β)− J0(β̂)

≥ E
∫ T

0

[
H
(
t, x0t , x

1
t , y

1
t ,E0

t [y
1
t ], θ̂t, βt

)
−H

(
t, Θ̂t, β̂t

)
−
〈
∂x0H(t, Θ̂t, β̂t), x

0
t − x̂0t

〉
−
〈
∂x1H(t, Θ̂t, β̂t), x

1
t − x̂1t

〉
−
〈
∂y1H(t, Θ̂t, β̂t), y

1
t − ŷ1t

〉
−
〈
∂y1H(t, Θ̂t, β̂t),E0

t [y
1
t ]− E0

t [ŷ
1
t ]
〉]
dt

≥ E
∫ T

0

[
H
(
t, x0t , x

1
t , y

1
t ,E0

t [y
1
t ], θ̂t, βt

)
−H

(
t, Θ̂t, β̂t

)
−
〈
∂x0H(t, Θ̂t, β̂t), x

0
t − x̂0t

〉
−
〈
∂x1H(t, Θ̂t, β̂t), x

1
t − x̂1t

〉
−
〈
∂y1H(t, Θ̂t, β̂t), y

1
t − ŷ1t

〉
−
〈
∂y1H(t, Θ̂t, β̂t),E0

t [y
1
t ]− E0

t [ŷ
1
t ]
〉

−
〈
∂βH(t, Θ̂t, β̂t), βt − β̂t

〉]
dt

≥ 0,

where the second inequality follows from the fact that β̂t = argminβH(t, Θ̂t, β). The equality

holds only when β = β̂ due to the strict convexity.

From Theorem 4.1, it is clear that the relevant set of equations is given by

dx0t =
(
β̂t + l0(t, c

0
t )
)
dt+ s0(t, c

0
t )dW

0
t ,

dx1t =
{
−Λt

(
y1t − E0

t [y
1
t ]
)
− β̂t + l(t, c0t , c

1
t )
}
dt+ σ0(t, c0t , c

1
t )dW

0
t + σ(t, c0t , c

1
t )dW

1
t ,

dr1t =
{
Λt

(
p1t − E0

t [p
1
t ]
)
+ β̂t

}
dt,

dp0t = −∂xf0(t, x
0
t , c

0
t )dt+ q0,0t dW 0

t ,

dy1t = −∂xf(t, x
1
t , c

0
t , c

1
t )dt+ z1,0t dW 0

t + z1,1t dW 1
t ,

dp1t = cf (t, c0t , c
1
t )r

1
t dt+ q1,0t dW 0

t + q1,1t dW 1
t ,

(4.8)

with 

x00 = χ0, x10 = ξ1, r10 = 0,

p0T = ∂xg0(x
0
T , c

0
T ),

y1T =
δ

1− δ
E0
T

[
cg(c0T , c

1
T )x

1
T + hg(c0T , c

1
T )
]
+ cg(c0T , c

1
T )x

1
T + hg(c0T , c

1
T ),

p1T = −cg(c0T , c
1
T )
(
r1T +

δ

1− δ
E0
T [r

1
T ]
)
,

(4.9)

where β̂t, t ∈ [0, T ) is defined by

β̂t := V0
t

(
−p0t + E0

t [y
1
t ] + E0

t [p
1
t ]
)
.

The next theorem guarantees the existence of the solution to the above FBSDE and hence the
optimal control for the major agent in the mean-field limit.
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Theorem 4.2. Under the Assumption (MFG), there exists a unique strong solution x0, p0 ∈
S2(F0

;Rn), x1, r1, y1, p1 ∈ S2(F1;Rn), q0,0 ∈ H2(F0
;Rn×d0), z1,0, q1,0 ∈ H2(F1;Rn×d0) and

z1,1, q1,1 ∈ H2(F1;Rn×d) to the system of FBSDEs of conditional McKean-Vlasov type (4.8)
with (4.9).

Proof. As we have done in the proof for Theorem 3.5, we introduce u := (x0, x1, r1, p0, y1, p1)
as arbitrary square integrable random variables with appropriate dimensions satisfying that

(x0, p0) are F0
t -measurable, and the others are F1

t -measurable. For these inputs, we define

drift[x0](t, u) := β̂(t, u) + l0(t, c
0
t ),

drift[x1](t, u) := −Λt(y
1 − E0

t [y
1])− β̂(t, u) + l(t, c0t , c

1
t ),

drift[r1](t, u) := Λt(p
1 − E0

t [p
1]) + β̂(t, u),

drift[p0](t, u) := −∂xf0(t, x
0, c0t ),

drift[y1](t, u) := −∂xf(t, x
1, c0t , c

1
t ),

drift[p1](t, u) := cf (t, c0t , c
1
t )r

1,

where β̂(t, u) := V0
t (−p0 +E0

t [y
1] +E0

t [p
1]). For two different inputs u, u′, we set ∆u := u− u′,

∆drift[x0](t) := drift[x0](t, u)− drift[x0](t, u′) and similarly for the other quantities, too. Since

V0
t and p0 are F0

t -measurable, we see

E0
t

[〈
∆drift[x0](t),∆p0

〉
+
〈
∆drift[x1](t),∆y1

〉
+
〈
(−I)∆drift[r1](t),∆p1

〉]
= −E0

t

[〈
V0
t (−∆p0 + E0

t [∆y1 +∆p1]),−∆p0 +∆y1 +∆p1
〉]

= −
〈
V0
t (−∆p0 + E0

t [∆y1 +∆p1]),−∆p0 + E0
t [∆y1 +∆p1]

〉
≤ 0.

(4.10)

It is straightforward to check

E
[〈
∆drift[p0](t),∆x0

〉
+
〈
∆drift[y1](t),∆x1

〉
+
〈
(−I)∆drift[p1](t),∆r1

〉]
≤ −γf0E|∆x0|2 − γf

(
E|∆x1|2 + E|∆r1|2

)
.

(4.11)

Now we set v := (x0, x1, r1) as arbitrary square integrable random variables with appropri-

ate dimensions satisfying that x0 are F0
T -measurable, and the others are F1

T -measurable. For
these inputs, let us define

terminal[p0](v) := ∂xg0(x
0, c0T ),

terminal[y1](v) :=
δ

1− δ
E0
T

[
cg(c0T , c

1
T )x

1 + hg(c0T , c
1
T )
]
+ cg(c0T , c

1
T )x

1 + hg(c0T , c
1
T ),

terminal[p1](v) := −cg(c0T , c
1
T )
(
r1 +

δ

1− δ
E0
T [r

1]
)
,

and with two different input v, v′, we denote by ∆v := v − v′,

∆terminal[p0] := terminal[p0](v)− terminal[p0](v′)
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and similarly for the other quantities. Observe that

E0
T

[〈
∆terminal[y1],∆x1

〉]
= E0

T

[〈 δ

1− δ
E0
T [c

g(c0T , c
1
T )∆x1] + cg(c0T , c

1
T )∆x1,∆x1

〉]
≥ γgE0

T |∆x1|2 + δ

1− δ

〈
cE0

T [∆x1],E0
T [∆x1]

〉
+

δ

1− δ

〈
E0
T [(c

g(c0T , c
1
T )− c)∆x1],E0

T [∆x1]
〉

≥ (γg − a)E0
T |∆x1|2.

Similar calculation yields

E
[〈
∆terminal[p0],∆x0

〉
+
〈
∆terminal[y1],∆x1

〉
+

〈
(−I)∆terminal[p1],∆r1

〉]
≥ γg0E|∆x0|2 + (γg − a)E

[
|∆x1|2 + |∆r1|2

]
.

(4.12)

We have now obtained the monotone conditions necessary for the method of continuation.
In particular, by introducing a strictly positive constant γ > 0

γ := min
{
γf0 , γ

f , γg0 , γ
g − a

}
,

we have from (4.10), (4.11) and (4.12)

E
[〈
∆drift[x0](t),∆p0

〉
+
〈
∆drift[x1](t),∆y1

〉
+
〈
(−I)∆drift[r1](t),∆p1

〉]
≤ 0,

E
[〈
∆drift[p0](t),∆x0

〉
+
〈
∆drift[y1](t),∆x1

〉
+
〈
(−I)∆drift[p1](t),∆r1

〉]
≤ −γE

[
|∆x0|2 + |∆x1|2 + |∆r1|2

]
,

E
[〈
∆terminal[p0],∆x0

〉
+
〈
∆terminal[y1],∆x1

〉
+
〈
(−I)∆terminal[p1],∆r1

〉]
≥ γE

[
|∆x0|2 + |∆x1|2 + |∆r1|2

]
.

(4.13)

We can now repeat the proof of [27, Theorem 4.2]. The three conditions of (4.13) correspond
to those of (4.3) (with Lϖ = 0) in [27]. We treat (x0t , x

1
t , r

1
t ) and (p0t , y

1
t , p

1
t ) as the tuple of

forward and backward processes, which are represented by Xt and Yt in [27], respectively. By
replacing the estimate on E[

〈
∆YT ,∆XT

〉
] by

E

〈∆p0T
∆y1T
∆p1T

 , G

∆x0T
∆x1T
∆r1T

〉

with G =

In×n 0 0
0 (In×n) 0
0 0 (−In×n)

, we can follow the same procedures with slightly more

cumbersome indexing.

Remark 4.2 (on Lasry-Lions monotonicity). The so-called Lasry-Lions monotonicity is a
famous criterion for the uniqueness of the mean field games. It dates back to their original
papers [41, 42, 43] and is defined as follows [10, Definition 3.28]: a real-valued function h on
Rd×P2(Rd) is said to be monotone in the sense of Lasry and Lions, if, for all µ ∈ P2(Rd), the
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mapping Rd 3 x 7→ h(x, µ) is at most quadratic growth, and for all µ, µ′ ∈ P2(Rd), we have∫
Rd

(
h(x, µ)− h(x, µ′)

)
d(µ− µ′)(x) ≥ 0.

The uniqueness result in probabilistic settings is given by [10, Theorem 3.29]. It says that
there is at most one MFG equilibrium if the running as well as terminal cost functions satisfy
Lasry-Lions monotonicity.

On the other hand, the relevant monotonicity in the current paper is assumed so that the
continuation method [49] is applicable. See, for example, the set of inequalities (4.13). It essen-
tially corresponds to [49, (H2.3)] and is used to make Banach’s fixed point theorem applicable
to prove the existence as well as the uniqueness of the solution.

5 Convergence to the mean-field limit

From Theorem 4.2, the market-clearing price in the mean-field limit is naturally expected to
be

ϖmfg
t := −E0

t [y
1
t ] + ΛtVt

0(−p0t + E0
t [y

1
t ] + E0

t [p
1
t ]
)
, t ∈ [0, T ). (5.1)

In this section, we shall show that this is indeed the case for the homogeneous minor agents.
Lastly, we also provide the estimate on the difference of the equilibrium price between the two
markets; one is the homogeneous mean-field limit and the other is the heterogeneous market
of finite population.

5.1 Large population limit of the minor agents

We now go back to the original setup of probability space given in Section 2. We first assume
that the minor agents are homogeneous.

Assumption 5.1. (Minor-Homogeneous) The conditions in Assumption (MFG) hold true.
Moreover, every minor agent 1 ≤ i ≤ N is subject to the common coefficient functions
(l, σ0, σ, f , g, cf , cg, hf , hg) given there.

For each 1 ≤ i ≤ N , let us construct Fi-adapted processes, corresponding to those given by
(4.8) and (4.9):

dx0t =
{
V0
t (−p0t + E0

t [y
i
t] + E0

t [p
i
t]) + l0(t, c

0
t )
}
dt+ s0(t, c

0
t )dW

0
t ,

dxit =
{
−Λt(y

i
t − E0

t [y
i
t])− V0

t (−p0t + E0
t [y

i
t] + E0[pit]) + l(t, c0t , c

i
t)
}
dt

+σ0(t, c0t , c
i
t)dW

0
t + σ(t, c0t , c

i
t)dW

i
t ,

drit =
{
Λt(p

i
t − E0

t [p
i
t]) + V0

t (−p0t + E0
t [y

i
t] + E0

t [p
i
t])
}
dt,

dp0t = −∂xf0(t, x
0
t , c

0
t )dt+ q0,0t dW 0

t ,

dyit = −∂xf(t, x
i
t, c

0
t , c

i
t)dt+ zi,0t dW 0

t + zi,it dW i
t ,

dpit = cf (t, c0t , c
i
t)r

i
tdt+ qi,0t dW 0

t + qi,it dW i
t ,

(5.2)
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with 

x00 = χ0, xi0 = ξi, ri0 = 0,

p0T = ∂xg0(x
0
T , c

0
T ),

yiT =
δ

1− δ
E0
T

[
cg(c0T , c

i
T )x

i
T + hg(c0T , c

i
T )
]
+ cg(c0T , c

i
T )x

i
T + hg(c0T , c

i
T ),

piT = −cg(c0T , c
i
T )
(
riT + δ

1−δE
0
T [r

i
T ]
)
.

(5.3)

By construction of the probability space and the fact that (ci, ξi,W i) are independently and

identically distributed (i.i.d.), Fi-adapted processes (xi, ri, yi, pi) are F0
-conditionally i.i.d. In

particular, for any φi = xi, ri, yi, pi, we have E0
t [φ

i
t] = E0

t [φ
1
t ] and also

E0
T

[
cg(c0T , c

i
T )x

i
T + hg(c0T + ciT )

]
= E0

T

[
cg(c0T , c

1
T )x

1
T + hg(c0T + c1T )

]
.

Therefore, (x0, p0) defined in (5.2) and (5.3) is indeed indistinguishable for every copy.
We are going to compare

(
x0, p0, (xi)Ni=1, (r

i)Ni=1, (y
i)Ni=1, (p

i)Ni=1

)
given above with the dy-

namics
(
X0/N, P 0, (Xi)Ni=1, (R

i)Ni=1, (Y
i)Ni=1, (P

i)Ni=1

)
given by (3.17) and (3.18) with homoge-

neous coefficients. Using the scaling rule in (3.12) and Remark 3.3, we have for 1 ≤ i ≤ N ,

d
X0

t

N
=

{
V0
t

(
−P 0

t +m((Yt)) +m((Pt))
)
+ l0(t, c

0
t )
}
dt+ s0(t, c

0
t )dW

0
t ,

dXi
t =

{
−Λt

(
Y i
t −m((Yt))

)
− V0

t

(
−P 0

t +m((Yt)) +m((Pt))
)
+ l(t, c0t , c

i
t)
}
dt

+σ0(t, c0t , c
i
t)dW

0
t + σ(t, c0t , c

i
t)dW

i
t ,

dRi
t =

{
Λt

(
P i
t −m((Pt))

)
+ V0

t

(
−P 0

t +m((Yt)) +m((Pt))
)}

dt,

dP 0
t = −∂xf0(t,X

0
t /N, c0t )dt+Q0,0

t dW 0
t +

∑N
j=1Q

0,j
t dW j

t ,

dY i
t = −∂xf(t,X

i
t , c

0
t , c

i
t)dt+ Zi,0

t dW 0
t +

∑N
j=1 Z

i,j
t dW j

t ,

dP i
t = cf (t, c0t , c

i
t)R

i
tdt+Qi,0

t dW 0
t +

∑N
j=1Q

i,j
t dW j

t ,

(5.4)

with

X0
0 = Nχ0, Xi

0 = ξi, Ri
0 = 0,

P 0
T = ∂xg0(X

0
T /N, c0T ),

Y i
T =

δ

1− δ
m
((

cg(c0T , c
j
T )X

j
T + hg(c0T , c

j
T )
)N
j=1

)
+ cg(c0T , c

i
T )X

i
T + hg(c0T , c

i
T ),

P i
T = −cg(c0T , c

i
T )
(
Ri

T + δ
1−δm((RT ))

)
.

(5.5)

Thanks to the symmetry, (Xi, Ri, Y i, P i) have the same distribution for every 1 ≤ i ≤ N ,
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although they are not independent due to their interactions. Let us introduce the notation:

∆x0t :=
X0

t

N
− x0t , ∆xit := Xi

t − xit, ∆rit := Ri
t − rit,

∆p0t := P 0
t − p0t , ∆yit := Y i

t − yit, ∆pit := P i
t − pit,

∆q0,0t := Q0,0
t − q0,0t , ∆q0,jt := Q0,j

t ,

∆zi,0t := Zi,0
t − zi,0t , ∆zi,jt := Zi,j

t − δi,jz
i,i
t ,

∆qi,0t := Qi,0
t − qi,0t , ∆qi,jt := Qi,j

t − δi,jq
i,i
t ,

where δi,j stands for Kronecker delta. We also define

µr,N
t :=

1

N

N∑
i=1

δrit , µy,N
t :=

1

N

N∑
i=1

δyit , µp,N
t :=

1

N

N∑
i=1

δpit , µg,N :=
1

N

N∑
i=1

δcg(c0T ,ciT )xi
T+hg(c0T ,ciT ),

µr
t := L(r1t |F

0
t ), µy

t := L(y1t |F
0
t ), µp

t := L(p1t |F
0
t ), µg := L(cg(c0T , c1T )x1T + hg(c0T , c

1
T )|F

0
T ).

Here, µr,N , µy,N , µp,N and µg,N denote the empirical measures, and the others conditional
distributions. When the filtration defined on the product space is completed, there appears
some subtle issue on the conditional distribution about its measurability. However, we can
always construct a measurable version by modifying it only on the null sets. We always suppose
that (µr, µy, µp, µg) are measurable versions constructed in such a way. See Section 2.1.3 in

[11] for details. Since
(
ri, yi, pi, cg(c0T , c

i
T )x

i
T +hg(c0T , c

i
T )
)
, 1 ≤ i ≤ N are F0

conditionally i.i.d.
and also (ri, yi, pi) are continuous processes, we have the following convergence properties.

Lemma 5.1. Let Assumption (Minor-Homogeneous) be in force. Then we have

lim
N→∞

sup
t∈[0,T ]

E
[
W2(µ

r,N
t , µr

t )
2 +W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
]
= 0,

lim
N→∞

E
[
W2(µ

g,N , µg)2
]
= 0.

Moreover, if there exist some positive constants Γ and Γg such that supt∈[0,T ]

(
E[|r1t |k]

1
k +

E[|y1t |k]
1
k + E[|p1t |k]

1
k

)
≤ Γ and E

[
|cg(c0T , c1T )x1T + hg(c0T , c

1
T )|k

] 1
k ≤ Γg for some k > 4, then

there exists some constant C independent of N such that

sup
t∈[0,T ]

E
[
W2(µ

r,N
t , µr

t )
2 +W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
]
≤ CΓ2ϵN ,

E
[
W2(µ

g,N , µg)2
]
≤ CΓ2

gϵN ,

with ϵN := N−2/max(n,4)(1 + log(N)1N=4).

Proof. See Lemma 4.1 in [28] and the proof for Theorem 5.1 in [27]. More details on the
Glivenko-Cantelli convergence in the Wasserstein distance are available from Section 5.1 in [10]
and references therein.

The next property of the Wasserstein distance is important for our purpose. For any
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µ, ν ∈ P2(Rn), it is easy to check∣∣∣∫
Rn

xµ(dx)−
∫
Rn

yν(dy)
∣∣∣ = ∣∣∣∫

Rn×n

(x− y)π(dx, dy)
∣∣∣ ≤ ∫

Rn×n

|x− y|π(dx, dy)

for any coupling π ∈ Π2(µ, ν) with marginals µ and ν. Taking infimum over π ∈ Π2(µ, ν), we
get ∣∣∣∫

Rn

xµ(dx)−
∫
Rn

yν(dy)
∣∣∣ ≤ W1(µ, ν) ≤ W2(µ, ν). (5.6)

We are now ready to prove the main result of this section.

Theorem 5.1. Let Assumption (Minor-Homogeneous) be in force. Then, for every 1 ≤ i ≤ N ,
there exists an N -independent constant C such that

E
[
sup

t∈[0,T ]

(
|∆x0t |2 + |∆xit|2 + |∆rit|2 + |∆p0t |2 + |∆yit|2 + |∆pit|2

)
+

N∑
j=0

∫ T

0

(
|∆q0,jt |2 + |∆zi,jt |2 + |∆qi,jt |2

)
dt
]

≤ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2 +

∫ T

0

(
W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
)
dt
]
.

Proof. Let us define γ > 0 by

γ := min
{
γf0 , γ

f , γg0 , γ
g − a

}
.

First step: We want to apply Itô-formula to

(〈
∆p0t ,∆x0t

〉
+

1

N

N∑
i=1

〈
∆yit,∆xit

〉
+

1

N

N∑
i=1

〈
∆pit, (−I)∆rit

〉)
. (5.7)

With this in mind, we check the following estimates. It is easy to see, with obvious notation,

〈
drift[∆p0t ],∆x0t

〉
+

1

N

N∑
i=1

〈
drift[∆yit],∆xit

〉
+

1

N

N∑
i=1

〈
drift[∆pit], (−I)∆rit

〉
≤ −γf0 |∆x0t |2 − γf

1

N

N∑
i=1

(
|∆xit|2 + |∆rit|2

) (5.8)

Using (5.6), we get〈
drift[∆x0t ],∆p0t

〉
=

〈
V0
t

(
−∆p0t +m((Yt))− E0

t [y
1
t ] +m((Pt))− E0

t [p
1
t ]
)
,∆p0t

〉
=

〈
V0
t

(
−∆p0t +m((∆yt)) +m((∆pt))

)
,∆p0t

〉
+
〈
V0
t

(
m((yt))− E0

t [y
1
t ] +m((pt))− E0

t [p
1
t ]
)
,∆p0t

〉
≤

〈
V0
t

(
−∆p0t +m((∆yt)) +m((∆pt))

)
,∆p0t

〉
+ C

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)
|∆p0t |.
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Similar calculation yields

〈
drift[∆x0t ],∆p0t

〉
+

1

N

N∑
i=1

〈
drift[∆xit],∆yit

〉
+

1

N

N∑
i=1

〈
drift[∆rit], (−I)∆pit

〉
≤ −

〈
V0
t

(
−∆p0t +m((∆yt)) +m((∆pt))

)
,−∆p0t +m((∆yt)) +m((∆pt))

〉
+ C

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+ |m((∆yt))|+ |m((∆pt))|

)
≤ C

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+m((|∆yt|))|+m((|∆pt|))

)
.

(5.9)

Now, let us check the terminal parts. Similar analysis used in (3.9) yields

〈
∆p0T ,∆x0T

〉
+

1

N

N∑
i=1

〈
∆yiT ,∆xiT

〉
+

1

N

N∑
i=1

〈
∆piT , (−I)∆riT

〉
≥ γg0 |∆x0T |2 + (γg − a)

1

N

N∑
i=1

(
|∆xiT |2 + |∆riT |2

)
− CW2(µ

g,N , µg)m((|∆xT |))− CW2(µ
r,N
T , µr

T )m((|∆rT |)).

(5.10)

From (5.8) and (5.9), we get

E
[∫ T

0
d
(〈

∆p0t ,∆x0t
〉
+

1

N

N∑
i=1

〈
∆yit,∆xit

〉
+

1

N

N∑
i=1

〈
∆pit, (−I)∆rit

〉)]
≤ −γE

[∫ T

0

(
|∆x0t |2 +

1

N

N∑
i=1

(
|∆xit|2 + |∆rit|2

))
dt
]

+ CE
[∫ T

0

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+m((|∆yt|)) +m((|∆pt|))

)
dt
]
.

Note that there is no quadratic covariation term. Now combining the estimate (5.10), we obtain
the following:

γE
[
|∆x0T |2 +

1

N

N∑
i=1

(
|∆xiT |2 + |∆riT |2

)
+

∫ T

0

(
|∆x0t |2 +

1

N

N∑
i=1

(
|∆xit|2 + |∆rit|2

))
dt
]

≤ CE
[
W2(µ

g,N , µg)m((|∆xT |)) +W2(µ
r,N
T , µr

T )m((|∆rT |))

+

∫ T

0

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+m((|∆yt|)) +m((|∆pt|))

)
dt
]
.

By Young’s inequality and the symmetry of the distribution, we find that the following in-
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equality holds for every 1 ≤ i ≤ N :

E
[
|∆x0T |2 + |∆xiT |2 + |∆riT |2 +

∫ T

0

(
|∆x0t |2 + |∆xit|2 + |∆rit|2

)
dt
]

≤ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2

+

∫ T

0

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+m((|∆yt|)) +m((|∆pt|))

)
dt
]
.

(5.11)

Second step
From the standard estimate of the BSDEs, see Section 4.4 in [56] for example, it is easy to find

E
[
sup

t∈[0,T ]
|∆p0t |2 +

∫ T

0

(
|∆q0,0t |2 +

N∑
j=1

|∆q0,jt |2
)
dt
]

≤ CE
[
|∆p0T |2 +

∫ T

0
|∂xf0(t,X0

t /N, c0t )− f0(t, x
0
t , c

0
t )|2dt

]
≤ CE

[
|∆x0T |2 +

∫ T

0
|∆x0t |2dt

]
.

Carrying out the similar analysis for (∆yi,∆pi) and using the symmetry among 1 ≤ i ≤ N , we
obtain for any 1 ≤ i ≤ N ,

E
[
sup

t∈[0,T ]

(
|∆p0t |2 + |∆yit|2 + |∆pit|2

)
+

N∑
j=0

∫ T

0

(
|∆q0,jt |2 + |∆zi,jt |2 + |∆qi,jt |2

)
dt
]

≤ CE
[
|∆x0T |2 + |∆xiT |2 + |∆riT |2 +

∫ T

0

(
|∆x0t |2 + |∆xit|2 + |∆rit|2

)
dt
]

+ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2
]

≤ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2

+

∫ T

0

(
W2(µ

y,N
t , µy

t ) +W2(µ
p,N
t , µp

t )
)(
|∆p0t |+m((|∆yt|)) +m((|∆pt|))

)
dt
]
,

where we have used (5.11) in the second inequality.
From (5.11), (5.12) and the symmetry among 1 ≤ i ≤ N , Young’s inequality yields

E
[
|∆x0T |2 + |∆xiT |2 + |∆riT |2 +

∫ T

0

(
|∆x0t |2 + |∆xit|2 + |∆rit|2

)
dt
]

+ E
[
sup

t∈[0,T ]

(
|∆p0t |2 + |∆yit|2 + |∆pit|2

)
+

N∑
j=0

∫ T

0

(
|∆q0,jt |2 + |∆zi,jt |2 + |∆qi,jt |2

)
dt
]

≤ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2 +

∫ T

0

(
W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
)
dt
]
.

Now the desired estimate follows from a simple application of Burkholder-Davis-Gundy (BDG)
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inequality to the forward variables (∆x0,∆xi,∆ri).

5.2 Some stability results

For understanding the implications of Lemma 5.1 and Theorem 5.1, let us denote the market-
clearing price for the N homogeneous minor agents by

ϖHo,N
t := −m((Yt)) + V0

t

(
−P 0

t +m((Yt)) +m((Pt))
)
, t ∈ [0, T ) (5.12)

using the solution to (5.4) with (5.5). By comparing it with ϖmfg
t in (5.1), we get the following

result.

Theorem 5.2. Under Assumption (Minor-Homogeneous), the following inequality holds:

E
∫ T

0

∣∣ϖHo,N
t −ϖmfg

t

∣∣2dt
≤ CE

[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2 +

∫ T

0

(
W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
)
dt
]
,

where C is some positive constant independent of N .

Proof. Using the symmetry, we have

E
[
|ϖHo,N

t −ϖmfg
t |2

]
≤ CE

[
|∆p0t |2 + |∆y1t |2 + |∆p1t |2 +W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
]
.

Hence Theorem 5.1 gives the desired estimate.

From Lemma 5.1, we observe that (ϖHo,N
t )t∈[0,T ] converges to (ϖmfg

t )t∈[0,T ] in the large
population limit of homogeneous minor agents. In this limit, the optimization problem for each
ith minor agent given in (3.5) is solved within (Ωi,F i,Pi;Fi) since the market price process

ϖmfg is now F0
-adapted i.e. dependent only on the common market information. One can

observe that the natural information structure mentioned in Remark 3.1 is actually achieved
in the mean-field limit.

Before closing the paper, let us briefly discuss about the stability relation between the
heterogeneous and the homogeneous market. Let (X0, (Xi)Ni=1, (R

i)Ni=1, P
0, (P i)Ni=1) denote the

unique solution to (3.17) with (3.18) given by Theorem 3.5 in the market with heterogeneous
minor agents, and (X0, (Xi)Ni=1, (R

i)Ni=1, P
0, (P i)Ni=1) the unique solution to (5.4) with (5.5)

corresponding to the homogeneous minor agents. Let us introduce the following notation: for
1 ≤ i ≤ N ,

δli(t) := li(t, c
0
t , c

i
t)− l(t, c0t , c

i
t),

δσ0
i (t) := σ0

i (t, c
0
t , c

i
t)− σ0(t, c0t , c

i
t), δσi(t) := σi(t, c

0
t , c

i
t)− σ(t, c0t , c

i
t),

δ∂xf i(t) := ∂xf i(t,X
i
t, c

0
t , c

i
t)− ∂xf(t,X

i
t, c

0
t , c

i
t),

δcfi (t) := cfi (t, c
0
t , c

i
t)− cf (t, c0t , c

i
t),

δhgi = hgi (c
0
T , c

i
T )− hg(c0T , c

i
T ).
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Denoting the market-clearing price (3.21) in the market with N heterogeneous agents by
(ϖHe,N

t )t∈[0,T ), we have the next stability result.

Corollary 5.1. Let Assumptions (Minor-A, B) and (MFG) be in force. Then the following
inequality holds:

E
∫ T

0

∣∣ϖHe,N
t −ϖmfg

t |2dt

≤ CE
[
W2(µ

g,N , µg)2 +W2(µ
r,N
T , µr

T )
2 +

∫ T

0

(
W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
)
dt
]

+ C
1

N

N∑
i=1

E
∫ T

0

(
|∂xf i(t)|2 + |δcfi (t)R

i
t|2 + |δli(t)|2 + |δσ0

i (t)|2 + |δσi(t)|2
)
dt

+ C
1

N

N∑
i=1

E
[
|δcgiX

i
T + δhgi |

2 +
∣∣∣δcgi(Ri

T +
δ

1− δ
m((RT ))

)∣∣∣2].
Proof. Let us put ∆X0

t := X0
t −X0

t , ∆Y i
t = Y i

t − Y i
t, and similarly for the others. Thanks to

the stability of fully-coupled FBSDEs, see for example Proposition 3.1 in [28] or more generally
Proposition 3.4 in [53], we have

1

N

N∑
i=1

E
[
sup

t∈[0,T ]

(∣∣∣∆X0
t

N

∣∣∣2 + |∆Xi
t |2 + |∆Ri

t|2 + |∆P 0
t |2 + |∆Y i

t |2 + |∆P i
t |2

)
+

N∑
j=0

∫ T

0

(
|∆Q0,j

t |2 + |∆Zi,j
t |2 + |∆Qi,j

t |2
)
dt
]

≤ C
1

N

N∑
i=1

E
∫ T

0

(
|δ∂xf i(t)|2 + |δcfi (t)R

i
t|2 + |δli(t)|2 + |δσ0

i (t)|2 + |δσi(t)|2
)
dt

+ C
1

N

N∑
i=1

E
[
|δcgiX

i
T + δhgi |

2 +
∣∣∣δcgi(Ri

T +
δ

1− δ
m((RT ))

)∣∣∣2].

(5.13)

Since

E
∣∣ϖHe,N

t −ϖHo,N
t

∣∣2 ≤ CE
[
|∆P 0

t |2 +
1

N

N∑
i=1

(|∆Y i
t |2 + |∆P i

t |2)
]
,

the estimate (5.13) and Theorem 5.2 give the desired inequality.

5.3 Mean-field limit as an approximation

By the MFG theory for the standard Nash-game settings, it is well-known that the equilibrium
strategy in the mean-field limit provides an ϵN -Nash equilibrium for the corresponding finite
N -agent game [10, 11]. For the market-clearing equilibrium, the results of this section allow us
to obtain not only the accuracy of the approximation but also the strong convergence in the
large N -limit. In fact, Theorem 5.2 combined with Lemma 5.1 provides not only the accuracy
of ϖmfg as an approximation but also the convergence speed of the true price process ϖHo,N

in the finite (homogeneous) agent market.
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Let us also mention about the trading strategy in the equilibrium. As one can imagine, the
equilibrium strategy in the mean field limit

β̂mfg
t := V0

t

(
−p0t + E0

t [y
1
t ] + E0

t [p
1
t ]
)
,

α̂mfg,i
t := −Λt

(
yit − E0

t [y
i
t]
)
− V0

t

(
−p0t + E0

t [y
i
t] + E0

t [p
i
t]
)
, 1 ≤ i ≤ N

(5.14)

gives an approximate strategy for the finite agent market, where V0
t = (Λ0 + 2Λt)

−1 and
(p0, yi, pi) is the solution to the McKean-Vlasov FBSDE (5.2). Note that φi = xi, ri, yi, pi,
we have E0

t [φ
i
t] = E0

t [φ
1
t ] for every 1 ≤ i ≤ N and more importantly that β̂mfg and α̂mfg,i are

F0
- and Fi-adapted, respectively. This means that each agent can implement an approximate

strategy without knowing the idiosyncratic information for the other agents. From the result
of Section 3, the true equilibrium strategy in the N -agent (homogeneous) market is given by

β̂N
t /N := V0

t

(
−P 0

t +m((Yt)) +m((Pt))
)
,

α̂N,i
t := −Λt

(
Y i
t −m((Yt))

)
− V0

t

(
−P 0

t +m((Yt)) +m((Pt))
)
, 1 ≤ i ≤ N

(5.15)

where (P 0, Y i, P i), 1 ≤ i ≤ N is the solution to the N -coupled system of FBSDEs (5.4).
Observe that every agent needs the perfect information F to implement the strategy in this
case. The accuracy of (β̂mfg

t , α̂mfg,i
t ) as an approximation for the true strategy (β̂N

t /N, α̂N,i
t ) can

be derived from Theorem 5.1. In fact, the estimate of the square difference becomes essentially
the same as for the equilibrium price process. In the case of heterogeneous minor agents, one
can make use of the stability property of FBSDE as in Corollary 5.1.

Although it is difficult to obtain a numerical solution for McKean-Vlasov FBSDE (5.2),
it looks at least more hopeful than for the large coupled system of FBSDEs (5.4). In fact,
the numerical approximation of mean field games has been one of the hot topics among the
researchers in recent years. Moreover, if we adopt an appropriate linear-quadratic cost functions
both for the major and minor agents, we may obtain an explicit form of the solution. Let us
leave this problem as the potential future project.

6 Securities with maturity T

Let us briefly discuss the special case where the securities have exogenously specified payoff

c0T ∈ L2(F0
T ;Rn) at the date of maturity T . This is the situation arising in Futures, Bonds

and many other financial derivatives. In this case, there is no reason to put a penalty on the
terminal stock. It is then natural to consider

gi(x, c
0) := −

〈
c0, x

〉
, 1 ≤ i ≤ N

g
(N)
0 (x, c0) = g0(x, c

0) := −
〈
c0, x

〉
,

(i.e. cgi (·) = 0) for the terminal condition for the minor and the major agents, respectively.
Since the terminal costs are linear in x, we now have γg0 = γg = 0. Moreover, we remove the
hard constraint βT = 0 from the major agent’s admissible strategies. It does not play any role
since there is no ϖ dependence in the terminal cost functions for all the players. This means

A0 = H2(F;Rn) and A0
mfg = H2(F0

;Rn).
Although we loose strict convexity in the terminal functions, we can actually obtain the
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same conclusions also for this case. As we have already mentioned in [27], what we have to do is
to apply Theorem 2.3 instead of Theorem 2.6 in [49]. Every theorem concerning the existence
of the unique solution holds with the new terminal condition for the backward variables:

P 0
T = −c0T ,

Y i
T = −c0T ,

P i
T = 0.

for the model with finite number of agents, and
p0T = −c0T ,

y1T = −c0T ,

p1T = 0,

for the model in the mean-field limit. Note that the verification theorem such as Theorems 4.1
and A.1 remain true since they do not require strict convexity in the terminal functions. In
particular, (4.7) holds true with equality.

One can easily check that the market-clearing price satisfies ϖT = c0T in the both cases.
The estimate in Theorem 5.1 is now given by, for every 1 ≤ i ≤ N ,

E
[
sup

t∈[0,T ]

(
|∆x0t |2 + |∆xit|2 + |∆rit|2 + |∆p0t |2 + |∆yit|2 + |∆pit|2

)
+

N∑
j=0

∫ T

0

(
|∆q0,jt |2 + |∆zi,jt |2 + |∆qi,jt |2

)
dt
]

≤ CE
[∫ T

0

(
W2(µ

y,N
t , µy

t )
2 +W2(µ

p,N
t , µp

t )
2
)
dt
]
.

One can prove it in the same way by using the new terminal condition; ∆p0T = ∆yiT = ∆piT = 0.

A Sufficient maximum conditions for controlled-FBSDEs

Our optimization problem for the major agent requires the maximum principle for a system of
controlled-FBSDEs. The general issues of controlled-FBSDEs have been studied, in particular,
by Yong [52, 53], where the second-order necessary conditions are given for non-convex con-
trol domain. In the current paper, we actually need the sufficient conditions (i.e. verification
theorem) rather than the necessary conditions. On the other hand, we only need the convex
control domain. Since we cannot find a useful summary in the existing literature, we provide
the relevant theorem in this appendix. For the readers’ convenience, we provide the theorem
under the setup more general than what is actually needed for our purpose.

We let (Ω,F ,P,F) be a complete filtered probability space satisfying the usual conditions.
It supports a d-dimensional Brownian motion W and F0 may be non-trivial. Let the control
domain A ⊂ Rk be closed and convex and the space of admissible controls is denoted by
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A = H2(F;A). For a given T > 0, we introduce the following measurable functions:

b : Ω× [0, T ]× Rn × Rm × Rm×d ×A → Rn,

σ : Ω× [0, T ]× Rn × Rm × Rm×d ×A → Rn×d,

f : Ω× [0, T ]× Rn × Rm × Rm×d ×A → Rm,

γ : Ω× Rm → Rn, Φ : Ω× Rn → Rm, ϕ : Ω× Rm → Rm.

With these coefficient functions, we consider the following controlled system of FBSDEs:
dxt = b(t, xt, yt, zt, ut)dt+ σ(t, xt, yt, zt, ut)dWt,

dyt = f(t, xt, yt, zt, ut)dt+ ztdWt,

x0 = γ(y0) + ξ,

yT = Φ(xT ) + ϕ(y0),

(A.1)

where ξ ∈ L2(F0;Rn) is given. See [52, 53] for various motivations to include the mixed
initial-terminal conditions.

We study an optimization problem, infu∈A J(u), with

J(u) := E
[∫ T

0
F (t, xt, yt, zt, ut)dt+G(xT ) + g(y0)

]
,

under the dynamic constraints (A.1). Here,

F : Ω× [0, T ]× Rn × Rm × Rm×d ×A → R,
G : Ω× Rn → R, g : Ω× Rm → R

are measurable functions representing the cost for the agent. The Hamiltonian H : Ω× [0, T ]×
Rn × Rm × Rm×d × Rn × Rn×d × Rm ×A → R is defined by

H(t, x, y, z, p, q, r, u) :=
〈
p, b(t, x, y, z, u)

〉
+
〈
q, σ(t, x, y, z, u)

〉
+
〈
r, f(t, x, y, z, u)

〉
+F (t, x, y, z, u),

where the brackets in the second term in the right-hand side denote a trace operation.

Assumption A.1. (i) For any (x, y, z, u) ∈ Rn×Rm×Rm×d×A, (b, σ, f, F ) are F-progressively
measurable, (γ, g) are F0-measurable and Φ, ϕ,G are FT -measurable.
(ii) For any (ut)t∈[0,T ] ∈ A, there exists a unique strong solution (xt, yt, zt)t∈[0,T ] ∈ S2(F;Rn)×
S2(F;Rm)×H2(F;Rm×d) to the controlled FBSDE (A.1) 2.
(iii) (b, σ, f, γ,Φ, ϕ) are one-time continuously differentiable in (x, y, z, u) with bounded deriva-
tives.
(iv) (F,G, g) are one-time continuously differentiable in (x, y, z, u) with uniformly Lipschitz
continuous derivatives. Moreover, for any given (x, y, z, u), these derivatives are square inte-
grable.
(v) For any (ut)t∈[0,T ] ∈ A, J(u) is finite.

2For the existence of unique solutions to fully-coupled FBSDEs, see [49, 53]. In particular, the latter deals
with the mixed initial-terminal conditions.
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(vi) (G, g) are convex and (γ,Φ, ϕ) are affine functions in (x, y).

Remark A.1. For a scalar-valued function f(x) ∈ R, we use the convention fx(x) = (∂xif(x))ni=1 ∈
Rn. For a vector-valued function f(x) ∈ Rm, we use fx(x) ∈ Rm×n with (fx(x))i,j = (∂xjf i(x)).

The adjoint equations are given as follows:
drt = −Hy(t, xt, yt, zt, pt, qt, rt, ut)dt−Hz(t, xt, yt, zt, pt, qt, rt, ut)dWt,

dpt = −Hx(t, xt, yt, zt, pt, qt, rt, ut)dt+ qtdWt,

r0 = E
[
ϕy(y0)

⊤rT |F0

]
− γy(y0)

⊤p0 − gy(y0),

pT = −Φx(xT )
⊤rT +Gx(xT ).

(A.2)

Theorem A.1. Let Assumption A.1 be in force. Suppose that (x̂t, ŷt, ẑt)t∈[0,T ] ∈ S2 × S2 ×H2

is a unique solution to the FBSDE (A.1) with some admissible control process (ût)t∈[0,T ] ∈
A. Assume that there exists a solution (p̂t, q̂t, r̂t)t∈[0,T ] ∈ S2 × H2 × S2 to (A.2) with inputs
(x̂t, ŷt, ẑt, ût)t∈[0,T ], and that the map

Rn × Rm × Rm×d ×A 3 (x, y, z, u) 7→ H(t, x, y, z, p̂t, q̂t, r̂t, u) ∈ R

is jointly convex in (x, y, z, u) and strictly convex in u, dt⊗ dP-a.e. Moreover, the equality

H(t, x̂t, ŷt, ẑt, p̂t, q̂t, r̂t, ût) = inf
u∈A

H(t, x̂t, ŷt, ẑt, p̂t, q̂t, r̂t, u)

holds dt⊗ dP-a.e. Then, (ût)t∈[0,T ] is a unique optimal solution.

Proof. Let us denote by (xt, yt, zt)t∈[0,T ] the unique solution to (A.1) with a given control
process (ut)t∈[0,T ] ∈ A. For notational convenience, let us introduce

θt := (xt, yt, zt), θ̂t := (x̂t, ŷt, ẑt), ϱ̂t := (p̂t, q̂t, r̂t),

Θ̂t := (x̂t, ŷt, ẑt, p̂t, q̂t, r̂t), t ∈ [0, T ].

Since (γ,Φ, ϕ) are affine, we have

E
[〈
Gx(x̂T ), xT − x̂T

〉
+
〈
gy(ŷ0), y0 − ŷ0

〉]
= E

[〈
p̂T +Φx(x̂T )

⊤r̂T , xT − x̂T
〉
+
〈
−r̂0 + E[ϕy(ŷ0)

⊤r̂T |F0]− γy(ŷ0)
⊤p̂0, y0 − ŷ0

〉]
= E

[〈
p̂T , xT − x̂T

〉
−
〈
p̂0, x0 − x̂0

〉
+
〈
r̂T , yT − ŷT

〉
−
〈
r̂0, y0 − ŷ0

〉]
,

where we have used the relation, for example, Φx(x̂T )(xT − x̂T ) = Φ(xT )− Φ(x̂T ).
Now, Itô-formula gives

E
[〈
p̂T , xT − x̂T

〉
−
〈
p̂0, x0 − x̂0

〉
+

〈
r̂T , yT − ŷT

〉
−
〈
r̂0, y0 − ŷ0

〉]
= E

∫ T

0

[
〈p̂t, b(t, θt, ut)− b(t, θ̂t, ût)

〉
−
〈
Hx(t, Θ̂t, ût), xt − x̂t

〉
+
〈
q̂t, σ(t, θt, ut)− σ(t, θ̂t, ût)

〉
+
〈
r̂t, f(t, θtut)− f(t, θ̂t, ût)

〉
−
〈
Hy(t, Θ̂t, ût), yt − ŷt

〉
−
〈
Hz(t, Θ̂t, ût), zt − ẑz

〉]
dt.
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It is easy to check that the stochastic integration part becomes a true martingale. Using the
convexity of G and g, we have

J(u)− J(û)

≥ E
[〈
Gx(x̂T ), xT − x̂T

〉
+
〈
gy(ŷ0), y0 − ŷ0

〉
+

∫ T

0

[
F (t, θt, ut)− F (t, θ̂t, ût)

]
dt
]

= E
∫ T

0

[
H(t, θt, ϱ̂t, ut)−H(t, Θ̂t, ût)−

〈
Hx(t, Θ̂t, ût), xt − x̂t

〉
−
〈
Hy(t, Θ̂t, ût), yt − ŷt

〉
−
〈
Hz(t, Θ̂t, ût), zt − ẑt

〉]
dt

≥ E
∫ T

0

[
H(t, θt, ϱ̂t, ut)−H(t, Θ̂t, ût)−

〈
Hx(t, Θ̂t, ût), xt − x̂t

〉
−
〈
Hy(t, Θ̂t, ût), yt − ŷt

〉
−
〈
Hz(t, Θ̂t, ût), zt − ẑt

〉
−
〈
Hu(t, Θ̂t, ût), ut − ût

〉]
dt

≥ 0,

where the equality hods if and only if (u = û) due to the strict convexity.
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