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Abstract

This paper develops an incomplete equilibrium model with multi-agents’ different risk attitudes and heterogeneous in-
come/payout profiles. Particularly, we apply its concrete and computationally tractable model to reinsurance derivatives
pricing and life-cycle investment, which are important for insurance and asset management companies in practice. In numer-
ical experiments, we explicitly obtain endogenously determined expected returns of the risky asset in equilibrium, agents’
specific reinsurance prices with their stochastic discount factors (SDF) and optimal life-cycle trading strategies. Moreover,
we investigate how each agent’s degree of risk aversion and income/payout profile, and correlations between an insurance or
economic factor and the risky asset price affect reinsurance claims pricing and optimal portfolios in life-cycle investment.
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1 Introduction

This study proposes a multi-agent’s incomplete equilibrium model, which characterizes an excess return process of
a risky asset, each agent’s optimal portfolio and stochastic discount factor (SDF), equivalently, an agent’s specific
risk-neutral probability measure in equilibrium. Moreover, when state processes are of square-root types, those
variables are explicitly obtained, which are effectively applied to reinsurance claim pricing and life-cycle investment
in numerical experiments.

Insurance companies manage large portfolios for their insurance payments, exposing them to risks that cannot be fully
hedged with market instruments. Reinsurance is a tool used by insurance companies to hedge their insurance risk, and
how to price the risk is an important issue. Since insurance and reinsurance companies face risks with heterogeneous
risk preferences and income or payout profiles, those companies have different risk-neutral probability measures for
contingent claim pricing. Then, it is not always possible for them to agree on the reinsurance claim pricing. Therefore,
it is essential to price reinsurance claims under heterogeneous risk-neutral measures to investigate conditions when
insurance and reinsurance companies can agree on the price to trade. Particularly, we show reinsurance pricing for
the financial stop loss contract using a marginal pricing approach, where the pricing of reinsurance claims is done
with given the equilibrium expected return process as a result of the original individual portfolio optimization.

Also, on behalf of individuals who aim to optimize their financial portfolios with considering their lifetime income
and payment, pension funds plan and offer products that suit individuals’ life cycles, and optimally trade by taking
into account the markets’ and individuals’ net income movement, which is also a central topic in the insurance
industry.
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Since the risks insurance companies face and changes in economic factors affecting individuals’ income and payment
cannot be completely hedged with tradable securities, pricing a contingent claim and investigating an optimal
investment with such risks and factors are quite important problems. Moreover, as the expected return of a risky
asset is a key element in pricing associated financial products and determining relevant asset allocations in portfolio
management, considering an equilibrium model where the excess expected return process is endogenously determined
seems also useful in practice.

Hence, the motivation of this study is to develop a computationally tractable equilibrium model to evaluate contingent
claims and investigate optimal portfolios with an endogenously determined expected return process in an incomplete
market setting with multi-agents’ different risk attitudes and heterogeneous income/payout profiles. In detail, we
incorporate the heterogeneity of agents into the modeling of equilibrium in an incomplete market, namely, risk
aversion parameters of exponential utilities, income/payout profiles at maturity driven by a common economic
factor through functional specific to respective agents, and individual income factors, which are sources of market
incompleteness. Specifically, we solve the problem through a transformation of the probability measure, which enables
us to reduce the dimension of the problems substantially. As examples including numerics, we present computationally
tractable cases with the common and individual-specific factors following square-root processes.

The contribution of this study is to develop a concrete multi-agent equilibrium model in an incomplete market to
investigate practically important problems for insurance and asset management companies. In particular, we apply
the model to reinsurance claim pricing and life-cycle investment, extracting the essence from practical situations. In
numerical experiments we explicitly obtain agents’ specific reinsurance prices and optimal trading strategies with
endogenously determined expected returns of a risky asset in equilibrium. Moreover, we investigate how each agent’s
degree of risk aversion and income/payout profile, and correlations between an insurance or economic factor and the
risky asset price affect reinsurance claim pricing and optimal portfolios in life-cycle investment, whose implications
agree with the insights from practice.

The general equilibrium model with heterogeneous agents and market clearing conditions is a major topic in math-
ematical finance. Particularly, we briefly introduce literature regarding continuous-time models with heterogeneous
agents in financial markets: First, as standard textbooks that contain general theory of equilibrium models, Karatzas
and Shreve (1998) rigorously explain the case of a complete market driven by Brownian motions in Chapter 4, and
a recent book by Jarrow (2021) provides comprehensive discussions on incomplete and trading constraint markets
driven by semi-martingales in Chapter 13,14 of Part III and Chapter 23 of Part IV, respectively. Among extensions in
the complete market with Brownian motions, Epstein and Miao (2003) study an equilibrium model under Knightian
uncertainty, and Kizaki et al. (2023) investigate a model with heterogeneous conservative and aggressive views on
the Brownian risks.

Regarding research articles on incomplete market models, Zhao (2012), Žitković (2012), Choi and Larsen (2015),
Weston and Žitković (2020), and Kardaras et al. (2022) present and rigorously prove new results on the existence for
the equilibrium in abstract settings. Zhao (2012), Žitković (2012), and Kardaras et al. (2022) prove the uniqueness
in addition to the existence. Christensen et al. (2012), Christensen and Larsen (2014), and Larsen and Sae-Sue
(2016) construct a concrete market equilibrium to show the economic implications of incompleteness with numerical
illustrations. Moreover, all the studies consider exponential utilities: Zhao (2012), Žitković (2012), Choi and Larsen
(2015), and Kardaras et al. (2022) examine exponential utility for terminal wealth, Christensen et al. (2012), Chris-
tensen and Larsen (2014), and Larsen and Sae-Sue (2016) for intermediate consumption, and Weston and Žitković
(2020) for both intermediate consumption and terminal wealth. Zhao (2012) also considers risk-measure-minimizing
agents. We remark that those articles suppose boundedness with appropriate regularity conditions on exogenously
given random terminal endowment and intermediate dividends/income, except specifying concrete processes such as
Gaussian, Feller, or discontinuous Lévy processes.

Further, all the papers except Larsen and Sae-Sue (2016) investigate exponential utilities with random endow-
ment/income characterized by Brownian motion that can not be perfectly hedged by tradable assets. Žitković (2012)
includes risk represented by a counting process in addition to Brownian risk. Larsen and Sae-Sue (2016) consider the
case that all the investors’ income as well as the stock’s dividend rate are described by discontinuous Lévy processes
with numerics on impacts of incompleteness.

Choi and Larsen (2015) also provide an exponential-quadratic model with the motivation of approximating a class of
models for an incomplete market equilibrium, of which existence they have proved. In addition, Kizaki et al. (2022)
study an incomplete market model with multi-agents having heterogeneous conservative views on Brownian risks.

Finally, regarding recently developing equilibrium models with heterogeneous agents for continuous-time macro-
finance, see, for instance, He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Klimenko et al. (2017)
and Kaplan et al. (2018).

Another approach can be found in the game-theoretic literature, which examines the multi-agent equilibrium model.
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Xia (2004) investigated a cooperative investment game and provided a characterization of Pareto optimal cooperative
strategies in incomplete markets. Bensoussan et al. (2014) addressed a non-zero-sum stochastic differential investment
and reinsurance game between two insurance companies. They solved the game problem by applying the dynamic
programming principle. Han et al. (2022) developed a dynamic model to study the effect of relative performance
evaluation (RPE) in delegated portfolio management. They introduced a non-zero-sum game among managers, in
addition to the hierarchical Stackelberg game between the shareholders and managers.

For reinsurance pricing, Becherer (2003) deals with an indifference pricing, and for the life-cycle investment, Hen-
derson (2005) investigates an optimal investment problem with stochastic income, where those studies consider a
single agent model with an exogenously given expected return of a risky asset. Our study is different from Becherer
(2003) and Henderson (2005) in that we consider a multi-agent model in an incomplete market, where the expected
return process is endogenously determined in equilibrium. Namely, we introduce insurance and reinsurance parties
with different risk profiles before their contract’s agreement, or a representative of individuals considering life-cycle
investment and the other market participants, whose different optimization behaviors determine an equilibrium
expected return of a risky asset and provide agents’ specific reinsurance prices or optimal life-cycle investment
strategies.

The organization of the paper is as follows: Section 2 introduces the setting of a multi-agent equilibrium model in
an incomplete market, Section 3 solves the problem of each agent’s optimal investment and an equilibrium expected
return process of the risky asset. Section 4 investigates the case where state factors’ processes are of square-root types
and provide a computational procedure, which enables us to concretely obtain each agent’s optimal trading strategy
and the equilibrium expected return of the risk asset. By applying this method, Section 5 presents numerical examples
for reinsurance pricing and life-cycle investments. Finally, Section 6 concludes. Appendix A discusses another example
of a multi-agent equilibrium in an incomplete market setting in a log utility case.

2 Settings

2.1 Economy and financial market

Firstly, we describe the settings of the economy and financial market in this study.

Let (Ω,F ,P) be a probability space, [0, T ] be the time horizon, and W = (WY ,WS ,W1, . . . ,WI)
⊤ be an I + 2-

dimensional standard Brownian motion, where I ≥ 2. Let {Ft}0≤t≤T be the augmented filtration generated by W .
We consider an economy consisting of I agents endowed with income at maturity and the financial market, where
there are two tradable assets, a money market account and a risky asset whose price processes are denoted by
{Bt}0≤t≤T and {St}0≤t≤T , respectively. Particularly, we assume Bt ≡ 1, which indicates the risk-free interest rate
is 0 for simplicity in this study.

Let Yi, i = 1, . . . , I be the individual income process of agent i, and Y be a factor process that drives the final
income/payment. We assume that there are two types of exogenous state variables in this economy, a common factor
process {Yt}0≤t≤T and individual factor processes {Yi,t}0≤t≤T (i = 1, . . . , I), and both the individual income Yi,T

and the final income or payment Fi(YT ) are given at maturity T , where Fi : R → R are continuous functions.

We assume that Y , Yi and S satisfy the following stochastic differential equations (SDEs)
dYt = µY,tdt+ σY,tdWY,t, Y0 = y0, (1)

dYi,t = µi,tdt+ σi,t(ρi,tdWY,t + ρ̂i,tdWi,t), Yi,0 = yi,0 (i = 1, . . . , I), (2)

dSt

St
= µS,tdt+ σS,t(ρS,tdWY,t + ρ̂S,tdWS,t), S0 = s0 > 0, (3)

where µY , µi, µS , σY , σi, σs, ρi, ρ̂i, ρS , ρ̂S are {Ft}-progressively measurable processes, the volatility coefficients

σY,t, σi,t, σs,i > 0, and the correlation coefficients, ρi, ρ̂i, ρS , and ρ̂S satisfy |ρi,t| ≤ 1, |ρ̂i,t| ≤ 1 with ρ̂i,t =
√

1− ρ2i,t,

i = 1, . . . , I, |ρS,t| ≤ 1, |ρ̂S,t| ≤ 1 with ρ̂S,t =
√
1− ρ2S,t for all t ∈ [0, T ]. Also,

∫ T

0
|µY,s|ds,

∫ T

0
|µi,s|ds,

∫ T

0
|µS,s|ds <

∞,
∫ T

0
|σY,s|2ds,

∫ T

0
|σi,s|2ds,

∫ T

0
|σS,s|2ds < ∞, i = 1, . . . , I, P− a.s.

We further suppose that µY , µi, σY , σi, ρi(ρ̂i), ρS(ρ̂S), θ := µS

σS
are functions of t and Yt, which indicates that these

coefficients are driven by the common factor Y and can be stochastic.

In the following, given the volatility process of the risky asset σS , we aim to obtain the representation of the expected
return process µS , or equivalently the market price of risk θ in equilibrium where a market clearing condition is
satisfied, which will be defined later.
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2.2 Individual optimization problem and market equilibrium

Next, we introduce individual optimization problems of the agents and market equilibrium. Firstly, let {X(πi)
i,t }0≤t≤T

be the wealth process of the i-th agent. We consider the situation where the i-th agent invests its wealth X
(πi)
i,t ,

where the initial wealth is set to be 0 for simplicity, into the money market account and the risky asset over the time
horizon [0, T ] and receives its income Yi,T , which is inherent to the agent, and the income/payment Fi(YT ), which
is driven by the common factor Y , at maturity T .

Next, let {πi,t}0≤t≤T be a portfolio process of the i-th agent for the risky asset, which is R-valued {Ft}-progressively
measurable satisfying

∫ T

0
π2
i,sds < ∞, P−a.s. Here, we express the portfolio process πi,t in terms of the value of the

risky asset position at t, the number of units the i-th agent holds times the risky asset price per unit, and assume

the trading strategy to be self-financing. Since the risk-free interest rate is 0, the SDE of X
(πi)
i is as follows.

dX
(πi)
i,t = πi,tµS,tdt+ πi,tσS,t(ρS,tdWY,t + ρ̂S,tdWS,t), X

(πi)
i,0 = xi,0 = 0. (4)

Particularly, in terms of the market price of risk θt =
µS,t

σS,t
, the SDE of X

(πi)
i is expressed as

dX
(πi)
i,t = πi,tσS,tθtdt+ πi,tσS,t(ρS,tdWY,t + ρ̂S,tdWS,t). (5)

We suppose that each agent has an exponential utility Ui(x) = −e−γix with its absolute risk aversion (ARA)
parameter 0 < γi < ∞ and set the market ARA parameter Γ as

Γ =
1∑I

i=1
1
γi

. (6)

Then, we introduce the individual optimization problem of the i-th agent, i = 1, . . . , I, as

sup
πi∈Ai

E
[
Ui(X

(πi)
i,T + Yi,T − Fi(YT ))

]
= sup

πi∈Ai

E
[
−e−γi(X

(πi)

i,T
+Yi,T−Fi(YT ))

]
, (7)

where Fi : R → R is continuous and Ai is a set of admissible portfolio strategies defined below.

Definition 1 For the i-th agent, a portfolio strategy πi ∈ R is admissible if X
(πi)
i is a supermartingale under Qi,

where Qi is a probability measure equivalent to P such that the risky asset price process S is a local martingale under
Qi, which will be specified in each individual optimization problem.

We denote the set of i-th agent’s all admissible strategies as Ai.

Here, we define an admissible strategy such that the wealth process is a supermartingale, which ensures that an
arbitrage opportunity is excluded. In detail, if a strategy πi is an arbitrage strategy, the corresponding wealth process

X
(πi)
i is not a supermartingale under Qi. Since X

(πi)
i,0 = 0 and X

(πi)
i,T ≥ 0 is strictly positive with a positive probability

under P, and Qi is equivalent to P, X
(πi)
i,T ≥ 0 is also strictly positive with a positive probability under Qi, leading

to EQi [X
(πi)
i,T ] > 0 which indicates X

(πi)
i is not a supermartingale under Qi.

We note that the expectation in (7) is well-defined in the sense that it is bounded by zero and may take the value
−∞. This individual optimization problem indicates that the i-th agent aims to maximize its expected utility on the
total amount of its wealth, the income, and the final payment at maturity. Then, we aim to obtain a representation
of the instantaneous Sharpe ratio θ in equilibrium, where we define the market equilibrium as follows.

Definition 2 We call the financial market is in an equilibrium if (i)for each i = 1, . . . , I, π∗
i ∈ Ai attains the

supremum in the individual optimization problems (7), and (ii) the following market clearing conditions for the risky
asset and the money market are satisfied.

I∑
i=1

π∗
i,t = 0,

I∑
i=1

(X
(π∗

i )
i,t − π∗

i,t) = 0, (8)

for all t ∈ [0, T ].

First of all, the first equation indicates that the total of the risky asset positions among the agents is zero and the
second equation shows that the total of the money market position is also zero, where π∗

i,t is a risky asset position

of agent i and X
(π∗

i )
i,t − π∗

i,t, which is a difference between the wealth and the risky asset position, is a money market
position of agent i. We remark that we assume a net zero position for the risky asset and the money market, meaning
net zero supply in the pure exchange economy. This assumption is reasonable when opposing interests exist among
agents. In the log utility case discussed in Appendix A, we consider a case where a nonzero dividend at maturity
is provided, which complies with the positive wealth restriction in the log utility. Extending the exponential utility
model to the one with a net nonzero supply of the risky asset is a future research topic.
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3 Solving individual optimization problems and equilibrium by an HJB method

In this section, we obtain the optimal portfolio processes π∗
i , i = 1, . . . , I and the Sharpe ratio θ in equilibrium by

an HJB approach. Specifically, after providing the transformation of probability measures to solve the individual
optimization problems, we show that given the Sharpe ratio in equilibrium, the optimal portfolio processes attain
the supremum in each individual optimization problem, then show that the market clearing conditions are satisfied.

Hereafter, we assume the following.

Assumption 1 The local martingale Z(i,Y ) defined as

Z
(i,Y )
t = exp

(
−γ2

i

2

∫ t

0

σ2
i,sds− γi

∫ t

0

σi,sρ̂i,sdWi,s − γi

∫ t

0

ρi,sσi,sdWY,s

)
, (9)

is a martingale under P.

Remark 1 When σi is nonrandom and
∫ T

0
σ2
i,sds < ∞, since ρ̂2i,s + ρ2i,s = 1, Novikov’s condition is satisfied and

Assumption 1 holds. When σi is stochastic, we need to check if Assumption 1 holds, which depends on the form of
σi. When σi is stochastic, Assumption 1 holds if a weak version of Novikov’s condition (e.g., Corollary 3.5.14 in
Karatzas and Shreve (2012)) is satisfied, for example; there exists a partition of [0, T ], 0 = t0 < t1 < · · · < tN = T ,
such that

E

[
exp

(
1

2

∫ tn

tn−1

γ2
i σ

2
i,sds

)]
< ∞,

for all 1 ≤ n ≤ N. (10)
We remark that as mentioned in Section 4.1, the weak version of Novikov’s condition is used to confirm that As-
sumption 1 holds in the square-root case, where the condition is satisfied by Theorem 3.2 of Shirakawa (2002).

Assumption 2 For µi and σi, i = 1, . . . , I, there exists a nonrandom process ci such that

γiµi,t −
γ2
i

2
σ2
i,t = ci(t), ∀t ∈ [0, T ]. (11)

This indicates that we assume µi to be of the form 1
γi
ci(t) +

γi

2 σ
2
i,t, which enables us to simplify the individual

optimization problem that includes Yi, the individual income of the agent i at maturity, by transformation of a
probability measure in the next section.

3.1 Transformation of a probability measure

Firstly, to simplify the individual optimization problem (7), by Assumption 1, we define a probability measure P(i,Y )

by dP(i,Y )

dP = Z
(i,Y )
T , which corresponds to measure transformation based on each agent’s income profile.

Noting that
d(γiYi,t) = γiµi,tdt+ γiσi,t(ρi,tdWY,t + ρ̂i,tdWi,t), (12)

and

e−γi(X
(πi)

i,T
+Yi,T−Fi(YT )) = e−γi(X

(πi)

i,T
−Fi(YT ))e

−
∫ T

0

(
γiµi,s−

γ2
i
2 σ2

i,s

)
ds
Z

(i,Y )
T ,

by Assumption 2, we have

E
[
−e−γi(X

(πi)

i,T
+Yi,T−Fi(YT ))

]
= E(i,Y )

[
−e−γi(X

(πi)

i,T
−Fi(YT ))

]
e
−
∫ T

0
ci(s)ds. (13)

Also, by Girsanov’s theorem, (W
(i,Y )
Y,t ,W

(i,Y )
S,t ) defined by

dW
(i,Y )
Y,t = dWY,t + γiρi,tσi,tdt, dW

(i,Y )
S,t = dWS,t, (14)

is a two-dimensional Brownian motion under P(i,Y ).

Thus, the individual optimization problem (7) becomes

sup
πi∈Ai

E(i,Y )
[
−e−γi(X

(πi)

i,T
−Fi(YT ))

]
, (15)

where
dYt = µ̂i

Y,tdt+ σY,tdW
(i,Y )
Y,t , (16)

dSt

St
= σS,tµ̂

i
S,tdt+ σS,t(ρS,tdW

(i,Y )
Y,t + ρ̂S,tdW

(i,Y )
S,t ), (17)

dX
(πi)
i,t = πi,tσS,tµ̂

i
S,tdt+ πi,tσS,t(ρS,tdW

(i,Y )
Y,t + ρ̂S,tdW

(i,Y )
S,t ). (18)
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Here, we set
µ̂i
Y,t = µY,t − γiρi,tσi,tσY,t, (19)

µ̂i
S,t = θt − γiρS,tρi,tσi,t. (20)

3.2 Candidate of optimal trading strategies by an HJB method

Next, we define the value function Vi(x, y, t) for (15) as

Vi(x, y, t) = sup
πi∈Ai

E(i,Y )
[
−e−γi(X

(πi)

i,T
−Fi(YT ))|X(πi)

i,t = x, Yt = y
]
. (21)

First noting that

dYt = µ̂i
Y,tdt+ σY,tdW

(i,Y )
Y,t , (22)

dX
(πi)
i,t = πi,tσS,tµ̂

i
S,tdt+ πi,tσS,t(ρS,tdW

(i,Y )
Y,t + ρ̂S,tdW

(i,Y )
S,t ), (23)

we obtain the following HJB equation:

sup
p∈R

[
p2σ2

S

2
(∂xxVi) +

σ2
Y

2
(∂yyVi) + ρSpσSσY (∂xyVi) + pσµ̂i

S(∂xVi) + µ̂i
Y (∂yVi) + ∂tVi

]
= 0. (24)

Then, a candidate of optimal portfolio is given by the following lemma.

Lemma 1 Suppose that there exist fi : R× [0, T ] → R, i = 1, . . . , I of class C2 for y and class C1 for t, satisfying
a system of partial differential equations (PDEs)

σ2
Y

2
(∂yyfi) + ρ̂2S

γiσ
2
Y

2
(∂yfi)

2 +
[
(µY − γiρ̂

2
SρiσiσY )− ρSσY θ

]
(∂yfi) + ∂tfi −

1

2γi
[θ − γiρSρiσi]

2
= 0, (25)

with terminal conditions
fi(y, T ) = Fi(y), i = 1, . . . , T. (26)

Let
Vi(x, y, t) = − exp (−γi(x− fi(y, t))) . (27)

Vi in (27) is a solution of HJB equation (24). Particularly,

p∗i,t =
1

σS,t

(
µ̂i
S,t

γi
+ ρS,tσY,t(∂yfi)

)
=

1

σS,t

(
θ(y, t)− γiρi,tσi,tρS,t

γi
+ ρS,tσY,t(∂yfi)

)
, (28)

attains the supremum in (24).

Proof. Noting that each partial derivatives of Vi are given by
∂xVi = −γiVi, ∂xxVi = γ2

i Vi, (29)

∂yVi = γiVi(∂yfi), ∂yyVi = γ2
i Vi(∂yfi)

2 + γiVi(∂yyfi), (30)

∂xyVi = −γ2
i Vi(∂yfi), (31)

∂tVi = γiVi(∂tfi), (32)
and −γiVi > 0, we substitute these partial derivatives into the left hand side of the HJB equation (24) and obtain

−γiVi × sup
p∈Ai

[
−γip

2σ2
S

2
− σ2

Y

2
((∂yyfi) + γi(∂yfi)

2) + γiρSpσSσY (∂yfi) + pσSµ̂
i
S − µ̂i

Y (∂yfi)− ∂tfi

]
. (33)

Since this is a quadratic function of p and the first order condition with respect to p becomes
−γiσ

2
Sp+ γiρSσSσY (∂yfi) + σSµ̂

i
S = 0, (34)

the supremum is attained at p∗i,t =
1

σS,t

(
µ̂i
S,t

γi
+ ρS,tσY,t(∂yfi)

)
. Then, we calculate

− γiσ
2
S(p

∗
i )

2

2
= −γiσ

2
S

2

1

σ2
S

(
(µ̂i

S)
2

γ2
i

+ ρ2Sσ
2
Y (∂yfi)

2 + 2
µ̂i
SρSσY

γi
(∂yfi)

)
= − (µ̂i

S)
2

2γi
− γiρ

2
Sσ

2
Y

2
(∂yfi)

2 − ρSσY µ̂
i
S(∂yfi), (35)

γiρSp
∗
i σSσY (∂yfi) = ρSσY µ̂

i
S(∂yfi) + γiρ

2
Sσ

2
Y (∂yfi)

2, (36)

p∗i σSµ̂
i
S =

(µ̂i
S)

2

γi
+ ρSσY µ̂

i
S(∂yfi), (37)

6



the sup part in (33) becomes

− (µ̂i
S)

2

2γi
− γiρ

2
Sσ

2
Y

2
(∂yfi)

2 − ρSσY µ̂
i
S(∂yfi)−

σ2
Y

2
((∂yyfi) + γi(∂yfi)

2)

+ ρSσY µ̂
i
S(∂yfi) + γiρ

2
Sσ

2
Y (∂yfi)

2 +
(µ̂i

S)
2

γi
+ ρSσY µ̂

i
S(∂yfi)− µ̂i

Y (∂yfi)− ∂tfi. (38)

Rearranging this, we have
σ2
Y

2
(∂yyfi) + ρ̂2S

γiσ
2
Y

2
(∂yfi)

2 +
[
µ̂i
Y − ρSσY µ̂

i
S

]
(∂yfi) + ∂tfi −

(µ̂i
S)

2

2γi
, (39)

where we used ρ2S + ρ̂2S = 1.

Since
µ̂i
Y = µY − γiρiσiσY , (40)

µ̂i
S = θ − γiρiσiρS , (41)

(39) is rewritten as

σ2
Y

2
(∂yyfi) + ρ̂2S

γiσ
2
Y

2
(∂yfi)

2 +
[
(µY − γiρ̂

2
SρiσiσY )− ρSσY θ

]
(∂yfi) + ∂tfi −

1

2γi
[θ − γiρSρiσi]

2
, (42)

which is 0 by (25). 2

3.3 Verification of the optimality

As we have observed in Section 3.2, the candidate for the optimal trading strategy is given by

π∗
i,t = p∗i (Yt, t) =

1

σS,t

(
θt − γiρi,tσi,tρS,t

γi
+ ρS,tσY,t(∂yfi)

)
. (43)

Then, as we will observe in a square-root case in Section 4, it easily follows that if {ηi,t}0≤t≤T set as

ηi,t =
Z

(i,Y )
t Vi(X

(π∗
i )

i,t , Yt, t)

Vi(xi,0, y0, 0)
, 0 ≤ t ≤ T, (44)

is a martingale under P, X
(π∗

i )
i is a local martingale under Qi, where Qi is defined by dQi

dP = ηi,T .

Moreover, if X
(π∗

i )
i is a martingale under Qi, we confirm that π∗

i is the optimal trading strategy for a given market
price of risk θt = θ(Yt, t).

Furthermore, if the market price of risk θ is set so that the clearing conditions (8) are satisfied for π∗
i , i = 1, . . . , I

in (43), we can confirm that the financial market is in equilibrium, which is summarized as follows.

Theorem 1 Suppose that there exist fi : R× [0, T ] → R, i = 1, . . . , I of class C2 for y and class C1 for t, satisfying
a system of partial differential equations (PDEs)

σ2
Y

2
(∂yyfi) + ρ̂2S

γiσ
2
Y

2
(∂yfi)

2 +
[
(µY − γiρ̂

2
SρiσiσY )− ρSσY θ

]
(∂yfi) + ∂tfi −

1

2γi
[θ − γiρSρiσi]

2
= 0, (45)

with terminal conditions
fi(y, T ) = Fi(y), i = 1, . . . , I, (46)

where

θ(y, t) = −Γ · ρS,t ·
I∑

k=1

((σY,t∂yfk)− ρk,tσk,t) . (47)

Suppose that {ηi,t}0≤t≤T in (44) with Vi(x, y, t) = − exp (−γi(x− fi(y, t))) is a martingale under P and X
(π∗

i )
i is a

martingale under Qi, where Qi is defined by dQi

dP = ηi,T .

Then, the Sharpe ratio and the optimal trading strategies in equilibrium are given by

θt = θ(Yt, t) = −Γ · ρS,t ·
I∑

k=1

((σY,t∂yfk(Yt, t))− ρk,tσk,t) , (48)

and

π∗
i,t =

1

σS,t

(
θt − γiρi,tσi,tρS,t

γi
+ ρS,tσY,t(∂yfi(Yt, t))

)
. (49)

Proof. Firstly, we show that π∗
i attains supremum of each agent’s expected utility in (15).

Lemma 2 π∗
i ∈ Ai attains supremum of the expected utility for agent i in (15).
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Proof. First, we set the convex conjugate of Ui as Ũi,

Ũi(y) = sup
x∈R

(Ui(x)− xy), for y > 0. (50)

Then, it holds that

Ui(x) ≤ Ũi(y) + xy, (51)

Ui(x) = Ũi(U
′
i(x)) + xU ′

i(x), (52)
for any x ∈ R and y > 0.

For any πi ∈ Ai, let us set x = X
(πi)
i,T − Fi(YT ) and y = E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]

dQi

dP(i,Y ) in (51).

Then, we have

E(i,Y )[Ui(X
(πi)
i,T − Fi(YT ))]

≤ E(i,Y )

[
Ũi

(
E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]

dQi

dP(i,Y )

)]
+E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]E

(i,Y )

[
dQi

dP(i,Y )
(X

(πi)
i,T − Fi(YT ))

]
≤ E(i,Y )

[
Ũi

(
E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]

dQi

dP(i,Y )

)]
+E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]E

(i,Y )

[
dQi

dP(i,Y )
(xi,0 − Fi(YT ))

]
= E(i,Y )

[
Ũi

(
E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]

dQi

dP(i,Y )

)]
+E(i,Y )[U ′

i(X
(π∗

i )
i,T − Fi(YT ))]E

(i,Y )

[
dQi

dP(i,Y )
(X

(π∗
i )

i,T − Fi(YT ))

]
= E(i,Y )[Ui(X

(π∗
i )

i,T − Fi(YT ))]. (53)

The second inequality and the first equality follow from the fact that X
(πi)
i is a supermartingale and X

(π∗
i )

i is a
martingale in Qi, respectively. In the last equality, we used (52) and

dQi

dP(i,Y )
=

dQi

dP

(
dP(i,Y )

dP

)−1

=
Vi(X

(π∗
i )

i,T , YT , T )

Vi(xi,0, y0, 0)
=

U ′
i(X

(π∗
i )

i,T − Fi(YT ))

E(i,Y )[U ′
i(X

(π∗
i
)

i,T − Fi(YT ))]
. (54)

This shows that π∗
i attains supremum the expected utility. 2

Secondly, we show that π∗
i , i = 1, . . . , I satisfy the market clearing condition with the instantaneous Sharpe ratio θ

in (48). Substituting (49) into the market clearing condition in (8), we have
I∑

i=1

π∗
i,t =

1

σS,t

(
θt

I∑
i=1

1

γi
− ρS,t

I∑
i=1

ρi,tσi,t + ρS,tσY,t

I∑
i=1

(∂yfi)

)
= 0. (55)

This completes the proof of Theorem 1. 2

Remark 2 We can also confirm that X
(πi)
i and S are local martingales under Qi for a general factor process Y and

income processes Yi, i = 1 . . . , I satisfying Assumptions 1 and 2 as follows.

Suppose that {ηi,t}0≤t≤T in ηi,t =
Z

(i,Y )
t Vi(X

(π∗
i
)

i,t
,Yt,t)

Vi(xi,0,y0,0)
, 0 ≤ t ≤ T, with Vi(x, y, t) = − exp (−γi(x− fi(y, t))) is a

martingale under P.

By Ito’s formula, dηi is expressed as

dηi,t = ηi,t

(
∂xVi

Vi
π∗
i,tσS,tρ̂S,tdWS,t +

(
∂xVi

Vi
π∗
i,tσS,tρS,t +

∂yVi

Vi
σY,t − γiσi,tρi,t

)
dWY,t

)
. (56)

Then, by Girsanov’s theorem, WQi

Y and WQi

S defined by

dWQi

Y,t = dWY,t −
(
∂xVi

Vi
π∗
i,tσS,tρS,t +

∂yVi

Vi
σY,t − γiσi,tρi,t

)
dt,

dWQi

S,t = dWS,t −
∂xVi

Vi
π∗
i,tσS,tρ̂S,tdt, (57)

are Brownian motions under Qi, and thus

ρS,tdW
Qi

Y,t + ρ̂S,tdW
Qi

S,t = ρS,tdWY,t + ρ̂S,tdWS,t −
(
∂xVi

Vi
π∗
i,tσS,t +

∂yVi

Vi
σY,tρS,t − γiσi,tρi,tρS,t

)
dt

= ρS,tdWY,t + ρ̂S,tdWS,t + (γiπ
∗
i,tσS,t − γi∂yfiσY,tρS,t + γiσi,tρi,tρS,t)dt

= ρS,tdWY,t + ρ̂S,tdWS,t + θtdt, (58)
where we used the relation between π∗

i,t and θt in (49).
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Hence, we have

dX
(πi)
i,t = πi,tσS,tθtdt+ πi,tσS,t(ρS,tdWY,t + ρ̂S,tdWS,t).

= πi,tσS,t(ρS,tdW
Qi

Y,t + ρ̂S,tdW
Qi

S,t ),

dSt

St
= µS,tdt+ σS,t(ρS,tdWY,t + ρ̂S,tdWS,t) = σS,t(θtdt+ ρS,tdWY,t + ρ̂S,tdWS,t)

= σS,t(ρS,tdW
Qi

Y,t + ρ̂S,tdW
Qi

S,t ). (59)

Therefore, X
(πi)
i and S are local martingales under Qi.

We can interpret the optimal trading strategy of the i-th agent

π∗
i,t =

1

σS,t

(
θt − γiρi,tσi,tρS,t

γi
+ ρS,tσY,t(∂yfi(Yt, t))

)
, (60)

and the Sharpe ratio in equilibrium

θt = −Γ · ρS,t ·
I∑

k=1

((σY,t∂yfk(Yt, t))− ρk,tσk,t) , (61)

which yields the expected return µS,t = θtσS,t:

µS,t = −Γ · (ρS,tσS,t) ·
I∑

k=1

((σY,t∂yfk(Yt, t))− ρk,tσk,t) , (62)

as follows.

First, the optimal trading strategy of the i-th agent (60) consists of the mean-variance term θt/(γiσS,t), proportional
to the market price of risk θ, and the hedging term ρS,tσY,t(∂yfi(Yt, t))/σS,t − ρi,tσi,tρS,t/σS,t.

The hedging term describes the demand for hedging risks arising from the movement of Y and Yi. As an interpre-
tation, suppose (∂yfi) > 0 and ρS > 0 for instance, noting that ∂yVi = γiVi(∂yfi) and Vi < 0, the value function Vi

decreases when the economic factor Y increases. Then, since the risky asset price S is positively correlated with Y ,
the long position of the risky asset, ρS,tσY,t(∂yfi(Yt, t))/σS,t can have a hedging effect on the risk arising from the
movement of the economic factor Y .

Moreover, since the individual income Yi,T is included in the agent’s expected utility in (7) and the risky asset price S
is positively correlated with the income process Yi as ρiρS > 0, the short position of the risky asset, −ρi,tσi,tρS,t/σS,t

has a hedging effect on the risk arising from Yi. The other cases can be explained in the same manner.

Next, the Sharpe ratio θ in equilibrium in (61) indicates that the market price of risk is set so that it offsets

the aggregate hedging demand. For example, if ρS,t
∑I

k=1 ((σY,t∂yfk(Yt, t))− ρk,tσk,t) > 0, which indicates excess
aggregate hedging demand, then θ is negative, which implies that the excess return process µS is negative and the
selling demand in the mean-variance term increases.

4 Square-root case

4.1 Settings and result

In this section, we introduce a square-root model below as a specific case of the settings (1)-(3) in Section 2, which
will be used in the numerical examples in Section 5. We assume that {Ft}-progressively measurable processes Y ,
Yi, i = 1, . . . , I, S satisfy the following SDEs,

dYt = (µ1
Y Yt + µ2

Y )dt+ σ̄Y

√
YtdWY,t, (63)

dYi,t = µi,tdt+ σ̄i

√
Yt(ρidWY,t + ρ̂idWi,t), (64)

dSt

St
= µS,tdt+ σS,t(ρSdWY,t + ρ̂SdWS,t), (65)

where µ1
Y ,µ

2
Y , σ̄Y ,σ̄i ∈ R are constant, particularly σ̄Y ,σ̄i > 0, and also ρi, ρ̂i, ρS , ρ̂S satisfying |ρi|, |ρS | ≤ 1,

ρ̂i =
√

1− ρ̂2i , ρ̂S =
√
1− ρ̂2S are constant for simplicity. We assume that µi is given by µi,t =

γi

2 σ̄
2
i Yt+

c(t)
γi

for some

nonrandom function c(t), which satisfies Assumption 2, µS and σS are {Ft}-progressively measurable processes with
σS,t > 0, 0 ≤ t ≤ T , and Fi(y) = g1i (0)y+g2i (0) with g1i (0), g

2
i (0) ∈ R, i = 1, . . . , I. We can interpret this as a special

case of (1)-(3) where µY,t = µ1
Y Yt + µ2

Y , µi,t =
γi

2 σ̄
2
i Yt +

c(t)
γi

, σY,t = σ̄Y

√
Yt, σi,t = σ̄i

√
Yt, and ρi,t, ρ̂i,t, ρS,t, ρ̂S,t are

set to be constant. We also note that Assumption 1 follows from the weak version of Novikov’s condition, which is
satisfied by Theorem 3.2 in Shirakawa (2002). Then, the market price of risk and the optimal trading strategies of
the agents are given as follows.
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Theorem 2 There exists TBlow-up > 0 such that for 0 ≤ τ < TBlow-up, a solution {(g1i , g2i )}i=1,...,I , for the system
of ODEs

∂τg
1
i = ρ̂2S

γiσ̄
2
Y

2
(g1i )

2

−
(
−ρS σ̄Y µ

1
Y + γiρ̂

2
Sρiσ̄iσ̄Y

)
g1i

− 1

2γi

−Γ · ρS ·
I∑

j=1

(
σ̄Y g

1
j − ρj σ̄j

)
− γiρSρiσ̄i

2

, (66)

∂τg
2
i = µ2

Y g
1
i , (67)

with initial value conditions g1i (0),g
2
i (0) ∈ R i = 1, . . . , I uniquely exists.

Moreover, if T < TBlow-up the instantaneous Sharpe ratio θ in equilibrium and the optimal trading strategies of the
i-th agent π∗

i , i = 1, . . . , I are given by

θt = −Γ · ρS ·
I∑

j=1

(
σ̄Y g

1
j (T − t)− ρj σ̄j

)√
Yt, (68)

and

π∗
i,t =

√
Yt

σS,t

(
−Γ · ρS ·

∑I
j=1

(
σ̄Y g

1
j (T − t)− ρj σ̄j

)
− γiρiσ̄iρS

γi
+ ρS σ̄Y g

1
i (T − t)

)
. (69)

Proof. For each i, the right-hand side of (66) is C1-class in g11 , . . . , g
1
I . Thus, the right-hand side of the system of

ODEs is locally Lipschitz continuous as a function of (g11 , . . . , g
1
I ). Then, by Picard-Lindelöf theorem (e.g., Theorem

2.2 in Teschl(2012)), the system of ODEs has a unique local solution. Moreover, by the extensibility of the solution
(e.g., Theorem 2.13 in Teschl(2012)), there exists a constant, blow-up time, TBlow-up ∈ (0,∞] such that the ODE
system (66) has a unique solution for 0 ≤ τ < TBlow-up.

First, we show that fi(y, t) = g1i (τ)y + g2i (τ), i = 1, . . . , I, where τ = T − t, satisfy the system of PDEs (45).

Noting that
∂yfi(y, t) = g1i (τ), ∂yyfi(y, t) = 0,

∂tfi(y, t) = −y∂τg
1
i (τ)− ∂τg

2
i (τ), (70)

and θ(y, t) in (47) becomes
θ(y, t) =

√
yϕ(t), (71)

where

ϕ(t) = −Γ · ρS ·
I∑

j=1

(
σ̄Y g

1
j (T − t)− ρj σ̄j

)
, (72)

we calculate the left hand side of (45) as

y

[
ρ̂2S

γiσ̄
2
Y

2
(g1i (τ))

2 −
(
ρS σ̄Y ϕ(T − τ)− µ1

Y + γiρ̂
2
Sρiσ̄iσ̄Y

)
g1i (τ)−

1

2γi
(ϕ(T − τ)− γiρSρiσ̄i)

2 − ∂τg
1
i (τ)

]
+
[
µ2
Y g

1
i (τ)− ∂τg

2
i (τ)

]
, (73)

which is 0 due to (66) and (67), and the terminal conditions (46) hold. Thus, fi(y, t) = g1i (τ)y + g2i (τ), i = 1, . . . , I
satisfy the system of PDEs (45).

Next, we show that ηi in (44) with Vi(x, y, t) = − exp (−γi(x− fi(y, t))) and π∗
i in (69) is a martingale under P for

i = 1, . . . , I.

Applying Ito’s formula to Vi(X
(π∗

i )
i,t , Yt, t), since the drift term of dVi is 0, we have

dVi = (∂xVi)(π
∗
i,tσS,t)(ρSdW

(i,Y )
Y,t + ρ̂SdW

(i,Y )
S,t ) + (∂yVi)σY,tdW

(i,Y )
Y,t

= ((∂xVi)(π
∗
i,tσS,t)ρS + (∂yVi)σY,t)dW

(i,Y )
Y,t + (∂xVi)(π

∗
i,tσS,t)ρ̂SdW

(i,Y )
S,t

= ((−γiVi)(π
∗
i,tσS,t)ρS + (γiVi(∂yfi))σY,t)dW

(i,Y )
Y,t + (−γiVi)(π

∗
i,tσS,t)ρ̂SdW

(i,Y )
S,t

= Vi

[
−γi((π

∗
i,tσS,t)ρS − (∂yfi)σY,t)dW

(i,Y )
Y,t − γi(π

∗
i,tσS,t)ρ̂SdW

(i,Y )
S,t

]
. (74)
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Moreover, by (69),

π∗
i,tσS,t =

√
Yt

(
ϕ(t)− γiρiσ̄iρS

γi
+ ρS σ̄Y g

1
i (T − t)

)
. (75)

Since ϕ(t) given by

ϕ(T − τ) = ϕ(t) = −Γ · ρS ·
I∑

j=1

(
σ̄Y g

1
j (τ)− ρj σ̄j

)
, (76)

is a linear combination of g1i (T − t), which is bounded in [0, T ],(
ϕ(t)− γiρiσ̄iρS

γi
+ ρS σ̄Y g

1
i (T − t)

)
, (77)

is also bounded in [0, T ]. Then, by (74) and (75), Vi is a martingale in P(i,Y ) since the weak version of Novikov’s
condition holds by Theorem 3.2 in Shirakawa (2002) as Y is a square-root process satisfying an SDE

dYt = (µ1
Y Yt + µ2

Y − γiρiσ̄iσ̄Y Yt)dt+ σ̄Y

√
YtdW

(i,Y )
Y,t . (78)

Thus, we have

E[ηi,T |Ft] = E

[
Z

(i,Y )
T Vi(X

(π∗
i )

i,T , YT , T )

Vi(xi,0, y0, 0)

∣∣∣∣Ft

]

=
Z

(i,Y )
t E(i,Y )[Vi(X

(π∗
i )

i,T , YT , T )|Ft]

Vi(xi,0, y0, 0)

=
Z

(i,Y )
t Vi(X

(π∗
i )

i,t , Yt, t)

Vi(xi,0, y0, 0)
= ηi,t, (79)

which indicates that ηi is a martingale under P.

By (9), (74), and Girsanov’s theorem, WQi

Y,t ,W
Qi

S,t defined as

dWQi

Y,t = dWY,t + γi{(π∗
i,tσS,t)ρS − σY,t(∂yfi) + σi,tρi}dt, (80)

dWQi

S,t = dWS,t + γi(π
∗
i,tσS,t)ρ̂Sdt, (81)

are Brownian motions under Qi.

Substituting

π∗
i,tσS,t =

(
θt − γiρi,tσi,tρS,t

γi
+ ρS,tσY,t(∂yfi)

)
, (82)

we calculate
ρSdW

Qi

Y,t + ρ̂SdW
Qi

S,t = ρSdWY,t + ρ̂SdWS,t + θtdt. (83)

Thus,

dX
(π∗

i )
i,t = π∗

i,tσS,tθtdt+ π∗
i,tσS,t(ρSdWY,t + ρ̂SdWS,t)

= π∗
i,tσS,t(ρSdW

Qi

Y,t + ρ̂SdW
Qi

S,t ). (84)

Lemma 3 For π∗
i in (69), X

(π∗
i )

i,t is a martingale under Qi.

Proof. Since X
(π∗

i )
i satisfies (84), it is sufficient to show that EQi [

∫ T

0
|π∗

i,tσS,t|2dt] < ∞.

First, we note that

|π∗
i,tσS,t|2 = Yt

∣∣∣∣ϕ(t)− γiρiσ̄iρS
γi

+ ρS σ̄Y g
1
i (T − t)

∣∣∣∣2 , (85)

where ∣∣∣∣ϕ(t)− γiρiσ̄iρS
γi

+ ρS σ̄Y g
1
i (T − t)

∣∣∣∣2, (86)

is bounded in [0, T ] since ϕ(t) given by (76) is a linear combination of g1i (T − t) which is bounded in [0, T ].

Next, under Qi, Yt is also a square root process with time-varying parameters

dYt = {µ2
Y + (µ1

Y − γiρiσ̄iσ̄Y ρ̂
2
S − σ̄Y ρSϕ(t) + γiσ̄

2
Y ρ̂

2
Sg

1
i (T − t))Yt}dt+ σ̄Y

√
YtdW

Qi

Y,t . (87)

Then, there exists C > 0 such that EQi [Yt] < C, ∀t ∈ [0, T ], which is proved as follows.
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Setting

dYt = {α(t)− βi(t)Yt}dt+ σ̄Y

√
YtdW

Qi

Y,t , (88)

where α(t) = µ2
Y and βi(t) = −(µ1

Y − γiρiσ̄iσ̄Y ρ̂
2
S − σ̄Y ρSϕ(t) + γiσ̄

2
Y ρ̂

2
Sg

1
i (T − t)), by Ito’s formula, we calculate

d(e

∫ t

0
βi(u)duYt) = βi(t)e

∫ t

0
βi(u)duYtdt+ e

∫ t

0
βi(u)dudYt

= α(t)e

∫ t

0
βi(u)dudt+ σ̄Y e

∫ t

0
βi(u)du

√
YtdW

Qi

Y,t . (89)

Thus, we have

Yt = e
−
∫ t

0
βi(u)duy0 +

∫ t

0

α(s)e
−
∫ t

s
βi(u)duds+

∫ t

0

σ̄Y e
−
∫ t

s
βi(u)du

√
YsdW

Qi

Y,s. (90)

We define stopping times τ (k), k ∈ N by

τ (k) = inf{s > 0 : Ys ≥ k} ∧ T, for k ∈ N. (91)
Then, we have

Yt∧τ(k) = e
−
∫ t∧τ(k)

0
βi(u)duy0 +

∫ t∧τ(k)

0

α(s)e
−
∫ t∧τ(k)

s
βi(u)duds+

∫ t∧τ(k)

0

σ̄Y e
−
∫ t∧τ(k)

s
βi(u)du

√
YsdW

Qi

Y,s. (92)

Since Ys ≤ k for s ∈ [0, t ∧ τ (k)], the stochastic integral part in (92) is a martingale and its expectation under Qi is
0. Hence,

EQi [Yt∧τ(k) ] ≤ C, (93)
for some C > 0 and by Fatou’s lemma, we obtain

EQi [Yt] ≤ lim inf
k→∞

EQi [Yt∧τ(k) ] ≤ C. (94)

Thus EQi [
∫ T

0
|π∗

i,tσS,t|2dt] < ∞ and X
(π∗

i )
i,t is a martingale under Qi. 2

Therefore, by Theorem 1, θ in (68) and π∗
i , i = 1, . . . , I in (69) are the Sharpe ratio and the optimal trading strategy

of the i-th agent in an equilibrium. 2

Remark 3 We will estimate the blow-up time TBlow-up numerically for each concrete problem by an arc-length
transformation method proposed by Hirota and Ozawa (2006). See Section 4.2 for the computation procedure. Then,
if we set the maturity T < TBlow-up, which can be estimated by a numerical method for given parameters, the ODE
system has a unique bounded solution g1i (τ) in [0, T ]. We also note that the system is described as a collection of I
quadratic ordinary differential equations (ODEs), where the variables interact through the common term −Γ · ρS ·∑I

j=1

(
σ̄Y g

1
j (τ)− ρj σ̄j

)
denoted by ϕ(T −τ) in (76), which is not expressible in the matrix form of Riccati equations.

(For the comparison principle used to establish the well-posedness of the Riccati system, see Lemma 1 of Ma et al.
(2019) or Theorem 4.1.4 of Abou-Kandil et al. (2012), for example).

4.2 Computation procedure

In the following numerical examples, we will use the square-root model, where we compute the instantaneous Sharpe
ratio and the optimal portfolios by the following procedure.

(1) First, we exogenously set the common parameters T, µ1
Y , µ

2
Y , σ̄Y , ρS and the individual parameters γi, σ̄i, ρi,

and g1i (0), g
2
i (0) satisfying Fi(y) = g1i (0)y + g2i (0) in (15).

(2) Second, we solve the system of ODEs (66) in [0, T ] by some numerical methods. In this study, we use the
explicit Runge-Kutta method of order 5(4)implemented in scipy.integrate.solve ivp of SciPy package (see
the reference of Scipy package (2022) for details).

(3) Finally, we compute ϕ(t) by (72), which also determines the instantaneous Sharpe ratio θt = ϕ(t)
√
Yt and the

optimal portfolio π∗
i,t in (69).

We note that the solution may blow up at some TBlow-up, TBlow-up < T depending on the given parameters. In this
case, we estimate the blow-up time TBlow-up numerically by an arc-length transformation method in Hirota and
Ozawa (2006). Then, we reset T so that T < TBlow-up and solve the system of ODEs again in the reset [0, T ].

5 Examples

In this section, we present numerical examples for two important topics in practice, reinsurance claim pricing and
life-cycle investment, as applications of the square-root model for the multi-agent equilibrium in an incomplete
market in Section 4. Specifically, we consider two agent cases and investigate the effect of an economic factor Y and
the individual income factors Yi, i = 1, 2, sources of incompleteness in the market on a reinsurance claim price and
agents’ trading strategies.
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5.1 Reinsurance pricing

Reinsurance is a tool used by insurance companies to hedge their insurance risk. The insurance risk is generally
non-tradable, and how to price the risk is an important issue for both insurance and reinsurance companies. For
instance, there are some reinsurance contracts that transfer both insurance risk and investment risk from an insurer
to a reinsurer (e.g., Allianz (2021)). In addition, catastrophe equity put options are also traded to transfer losses
from insurance risk (e.g., Arnone et al. (2021)). Payoffs of insurance risk transferred to a reinsurer are classified into
proportional (linear payoff) and non-proportional (nonlinear payoff) (see Chapter 2 in Albrecher et al. (2017)), and
pricing such payoffs can be complex.

In the following sections, we present numerical examples for financial stop-loss reinsurance introduced in Møller
(2003) and Becherer (2003). Financial stop-loss reinsurance is a contract where an insurance company receives a
guarantee within certain limits from a reinsurance company at maturity when the insurance company is unable to
compensate for payment on insurance claims (insurance risk denoted as Y ) by investing in a risky asset whose price
is expressed as S. Then, this contract has the following payoff,

Φ(YT , ST ) = min {max(YT + δ(S0 − ST )−K1, 0), (K2 −K1)} , (95)
where δ ≥ 0 is a constant that determines the degree of investment in the risky asset, and K1 and K2, K1 < K2 < ∞,
describe the guarantee level the insurer requires from the reinsurer. In detail, only if the insurance risk YT hedged
by the return from investment in the risky asset exceeds K1, δ(S0−ST ), the exceeding amount capped at K2 is paid
to the insurance company.

In our model, the agents’ stochastic discount factors (SDFs) in market equilibrium ηi,T , i = 1, . . . , I are obtained
and can be used to calculate the price for a reinsurance claim.

5.1.1 Settings in our model

We consider two agent cases where there are an insurance company (agent 1) and a reinsurance company (agent 2)
in the economy. We suppose that agent 1 owns some dynamic insurance risk (liability) and aims to transfer some of
the risks by purchasing a reinsurance contract from agent 2.

We use the square-root model in Section 4 for pricing and assume each variable describes the following. X
(πi)
i,T

is the wealth of agent i’s portfolio at maturity with the trading strategy πi. We assume Yi ≡ 0, i = 1, 2 and
−F1(YT ) = −YT , −F2(YT ) = −YT or 0, which indicate exogenous payoffs at maturity on the insurance risk Y of
agents 1 and 2. The state variable Y expresses the insurance risk that drives the insurer’s and reinsurer’s exogenous
payoff.

For the reinsurance contract whose payoff is given by (95), noting that the interest rate is assumed to be 0 for

simplicity, under the risk-neutral measure for each agent i, Qi defined by dQi

dP = ηi,T , the present value of this claim
(with zero interest rate) is given by

pi = E [ηi,TΦ(YT , ST )] = EQi [Φ(YT , ST )], (96)
where agent i’s SDF ηi satisfies

dηi,t
ηi,t

=
√

Yt[−γiσ̄iρ̂idWi,t − γi{Pi(t)ρS − σ̄Y g
1
i (T − t) + σ̄iρi}dWY,t − γiPi(t)ρ̂SdWS,t], ηi,0 = 1. (97)

Here, Pi(t) is defined as

Pi(t) = πM
i (t) + πH

i (t), (98)

πM
i (t) =

ϕ(t)

γi
, (99)

πH
i (t) = ρS σ̄Y g

1
i (T − t)− ρiσ̄iρS . (100)

We note that this valuation method may be regarded as marginal indifference pricing or fair pricing (e.g., Section
33.2 in Björk (2020) or Chapter 6 in Karatzas (1997) , respectively).

Then, we can obtain the prices for both agents by simulating the payoff Φ(YT , ST ) and each SDF ηi,T under P with
the equations above. In fact, as Yi ≡ 0 (i = 1, 2) in the current example, we set σ̄i = 0 (i = 1, 2) when solving the
system of corresponding ODEs (66) and implementing the Monte Carlo simulations with equations (96)-(100).

Thus, a transaction price of the reinsurance claim p can be agreed between the two agents as long as their prices
p1, p2 and the transaction price p satisfy

p2 ≤ p ≤ p1, (101)
which implies that the insurer can buy the reinsurance claim at a lower price than p1 and the reinsurer sells it at a
higher price than p2.

In the following, we conduct a Monte-Carlo simulation to calculate the expectation (96) for each agent’s price, where
we divide 1 year into 250 grids and adopt 100,000 paths. We set the volatility process σS of the risky asset price in
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(65) as a constant σS,t ≡ σ̄S and the parameters in the model in accordance with Example 4.9 in Becherer (2003). In
this case, the optimal trading strategies π∗

i,t in (69) can be decomposed into the mean-variance part πM
i to maximize

the expectation of the terminal wealth with the insurance risk and the hedging part πH
i to reduce the terminal

insurance risk as

π∗
i,t =

√
Yt

σ̄S
(πM

i (t) + πH
i (t)). (102)

Here, ϕ(t), which also determines the expected return on the risky asset by µS,t = σ̄Sϕ(t)
√
Yt, is expressed as

ϕ(t) = −Γ ·
I∑

i=1

πH
i (t). (103)

5.1.2 Numerical results

Table 1 shows the prices of agents 1 and 2 for sets of parameters in the square-root model in (65).

For Set 1 as a base case to set parameters, where the correlation ρS between the insurance risk and the risky asset
price process is 0, it is confirmed that the prices of two agents are the same, since the parameters related to each
agent are identical, and its price is consistent with the one for δ = 0.4 in Figure 3 of Example 4.9 in Becherer (2003).

For Sets 2-7, we consider cases where the insurance company has to pay insurance risk at (g11(0) = 1) maturity T ,
while the reinsurance company has no insurance risk to pay (g12(0) = 0). Then, we investigate the change in their
prices when the correlation between the risky asset price process S and the insurance risk Y or the level of risk
aversion γi is shifted.

Table 1
Parameter sets and the prices for agent 1 and agent 2. Parameters in bold show the differences from Set 1.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

µ1
Y -1 -1 -1 -1 -1 -1 -1

µ2
Y 0.83 0.83 0.83 0.83 0.83 0.83 0.83

σ̄Y 0.14 0.14 0.14 0.14 0.14 0.14 0.14

σ̄1 0 0 0 0 0 0 0

σ̄2 0 0 0 0 0 0 0

σ̄S 0.25 0.25 0.25 0.25 0.25 0.25 0.25

ρ1 0 0 0 0 0 0 0

ρ2 0 0 0 0 0 0 0

ρS 0 0.5 0 -0.5 0.5 0 -0.5

ρ̂S 1.00 0.87 1.00 0.87 0.87 1.00 0.87

γ1 1 1 1 1 10 10 10

γ2 1 1 1 1 1 1 1

g11(0) 1 1 1 1 1 1 1

g12(0) 1 0 0 0 0 0 0

y0 0.83 0.83 0.83 0.83 0.83 0.83 0.83

s0 1 1 1 1 1 1 1

K1 0.85 0.85 0.85 0.85 0.85 0.85 0.85

K2 1.15 1.15 1.15 1.15 1.15 1.15 1.15

δ 0.4 0.4 0.4 0.4 0.4 0.4 0.4

T 1 1 1 1 1 1 1

p1 0.0447 0.0306 0.0447 0.0544 0.0589 0.0827 0.0802

p2 0.0447 0.0283 0.0414 0.0520 0.0286 0.0414 0.0523

p1 − p2 0 0.0023 0.0033 0.0024 0.0303 0.0412 0.0279

Firstly, agent 2’s price p2 in Set 3 with no payout of YT (g12(0) = 0) is lower than the one in Set 1 with the payout of
YT (g12(0) = 1), since in pricing agent 2 puts a larger weight, i.e. agent 2’s SDF η2,T on the payoff Φ in bad states,
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Fig. 1. Set 1 and Set 3 : Scatter plots for YT and ST with colored values of η2,T .

0.0 0.1 0.2 0.3
Payoff: (YT, ST)

0

1000

2000

3000

4000

5000
Set2 ( 1 = 1)
Set5 ( 1 = 10)

0.0 0.1 0.2 0.3
Payoff: (YT, ST)

0

1000

2000

3000

4000

5000
Set3 ( 1 = 1)
Set6 ( 1 = 10)

0.0 0.1 0.2 0.3
Payoff: (YT, ST)

0

1000

2000

3000

4000

5000
Set4 ( 1 = 1)
Set7 ( 1 = 10)

Fig. 2. Histogram for the reinsurance payoff Φ(YT , ST ): We show Φ(YT , ST ) > 0.001.
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Fig. 3. Scatter plots for YT and ST with colored values of η1,T : Upper panels shows Set 2-4 (γ1 = 1) and lower panels show
Set 5-7 (γ1 = 10).

namely large YT and small ST . In fact, Figure 1 shows the scatter plot of ST and YT with the colored values of η2,T ,
where the larger η2,T corresponds to the right bottom area in the left panel (Set 1) than in the right one (Set 3).
On the contrary, we note that the payoffs in Sets 1 and 3 are the same since the expected return of the risky asset
µS,t = σ̄Sϕ(t)

√
Yt is 0 due to ϕ(t) ≡ 0 by (100) and (103) with ρS = 0 and σ̄i = 0.

In the following, we describe the effects of other parameters. Figure 2 shows the histogram of the payoff Φ(YT , ST )
for Sets 2-7 when the payoff is simulated by Monte-Carlo simulation under P. Moreover, Figure 3 exhibits the scatter
plot of YT and ST with colored values of agent 1’s SDF η1,T for Sets 2-7.

First, we observe that agent 1’s price is higher than agent 2’s in Sets 2-7. This agrees with the intuition that agent
1 with the insurance risk at maturity is willing to pay for a reinsurance claim to hedge the risk, and agent 2 with
no insurance risk can sell it at a lower price.

Next, we observe that each agent’s price in Set 4 is the highest among Sets 2-4, which can be interpreted as follows:
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We note that the price pi in (96) is the expectation of the payoff Φ(YT , ST ) in (95) weighted by the SDF ηi,T . Figure
2 shows that the payoff Φ(YT , ST ) with ρS < 0 in Sets 4 and 7, is distributed at higher values than in other sets.
Figure 3 shows that agent 1’s SDF values (darkness of the color) in Sets 2-4 are close, which also holds for agent
2. Thus, the payoff’s distribution is the main determinant in each agent’s price pi (i = 1, 2) for Sets 2-4, and Set 4
provides the highest prices among Sets 2-4 in Table 1.

However, we observe that agent 1’s price in Set 6 is the highest among Sets 5-7 with higher risk aversion parameter
γ1 = 10. Figure 2 shows that the payoff’s distributions are almost unchanged among Sets 2-7 with different γ1. On
the contrary, Figure 3 indicates that the agent 1’s SDF value with γ1 = 10 is higher (darker colors) at the area where
YT is relatively large and ST is small in Sets 5-7, particularly in Set 6 (ρS = 0), which results in the highest price p1
shown in Set 6 among Sets 5-7 (γ1 = 10).

Finally, we examine the price difference between agents 1 and 2, namely p1 − p2 appearing in the last row of Table
1, which is caused by the difference in each agent’s SDF. We find that the price difference is much larger in Sets 5-7
with agent 1’s higher risk aversion parameter (γ1 = 10) than in Sets 2-4. This agrees with the intuition that if agent
1 has a higher risk aversion parameter, agent 1 is more willing to pay for a reinsurance claim to hedge its insurance
risk. Moreover, we observe that the price difference in Set 3 (Set 6) with ρS = 0 is larger than Sets 2 and 4 (Sets
5 and 7). This is because when ρS = 0, agent 1 is not able to hedge the insurance risk at maturity by trading the
risky asset, and hence, agent 1 pays a higher premium for the reinsurance claim to agent 2 with no insurance risk.

5.2 Life-cycle investment

Next, we provide numerical examples of life-cycle investment as an application of the square-root model in Section
4. When individuals consider long-term investments for their retirement, it is important to take labor income (also
called human capital) into account in addition to investment in financial assets. This is called life-cycle investment.

Since labor income is volatile and not tradable though correlated with financial asset prices, it is difficult for individ-
uals to hedge the fluctuations on their own. For this reason, asset management companies including subsidiaries of
life insurance companies offer individual investors funds that are designed to substitute life-cycle investment, which
is called life-cycle funds or target-year (date) funds.

For related literature, Henderson (2005) deals with an optimal portfolio problem of an individual who receives labor
income and invests in a risky asset with the exogenously given constant expected return. Bruder et al. (2012) also
consider an optimal portfolio problem for life-cycle funds, where the expected returns of risky assets are exogenously
given a function of time.

As mentioned in Bruder et al. (2012) , the expected return on a risky asset has a significant impact on the construc-
tion of the optimal portfolio. Thus, in the following numerical examples, we suppose the equilibrium model in an
incomplete market, where the expected return of the risky asset is determined endogenously by the market clearing
condition of the financial assets and investigate the impact of the expected return on the optimal trading strategies,
which helps asset management firms to establish life-cycle funds.

5.2.1 Setting

As in the reinsurance pricing in Section 5.1, we consider a two-agent case in the square-root model in Section 4,
where agent 1 represents individual investors or asset management companies for the life-cycle fund, and agent 2
does the other market participants.

Moreover, we suppose that at retirement date T , agent 1 receives Y1,T that stands for his or her specific lifetime
income, and −F1(YT ) = −g1i (0)YT − g2i (0) with Fi(y) in (1) of Section 4.2, which is agent 1’s net income directly
linked to YT representing the economic condition for Cases A and B in Section 5.2.2 and the inflation for Case C in
Section 5.2.3, respectively.

As for Cases A and B, we set positive net income −F1(YT ) = YT with g11(0) = −1 and g21(0) = 0 in Case A, and
negative net income −F1(YT ) = −YT with g11(0) = 1 and g21(0) = 0 in Case B for simplicity. On the contrary, agent
2 does not have F2(YT ), that is, F2(YT ) ≡ 0 in both cases. However, we assume that agent 2 receives Y2,T with a
large volatility coefficient σ̄2. As seen in Section 5.2.2, the resulting equilibrium expected return of the risky asset is
positive.

As for Case C we suppose that agent 1 receives Y1,T and negative net income −F1(YT ) = −YT with g11(0) = 1 and
g21(0) = 0, while agent 2 does not have those income, namely F2(YT ) ≡ 0 and Y2 ≡ 0.

In addition, we set σS,t =
√
Yt in (65), and c(t) ≡ 0, which implies µi,t =

γi

2 σ̄
2
i Yt +

c(t)
γi

= γi

2 σ̄
2
i Yt in (64).

5.2.2 Numerical results in Case A and B

In the following, we investigate the optimal trading strategies and the excess return process of the risky asset in
equilibrium for the parameter sets of Cases A and B in Table 2.
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Table 2
Settings of parameters of life-cycle investment example.

µ1
Y µ2

Y σ̄Y σ̄1 σ̄2 ρ1 ρ2 ρS γ1 γ2 g11(0) g21(0) T

Case A -0.2 0.4 0.4 0.2 2 0.3 0.8 0.5 3 1 -1 0 10

Case B -0.2 0.4 0.4 0.2 2 0.3 0.8 0.5 3 1 1 0 10

In both cases, we assume that the economic condition Y has the positive correlations with the risky asset return and
the change in the individual’s specific income, ρS = 0.5 and ρ1 = 0.3, ρ2 = 0.8, respectively. The difference between
Case A and Case B is just the sign of agent 1’s net income associated with YT . Particularly, in Case A, agent 1
receives a fund (−g11(0) = +1) thanks to a retirement allowance, for instance. In Case B, there is a payout at agent
1’s retirement (−g11(0) = −1) due to mortgage repayment, for example.

Figures 4 and 5 exhibit ϕ, the determinant of the expected return process µS , and the optimal trading strategies of
agents 1 and 2 in equilibrium π∗

1 (i = 1, 2) in (69), given as

π∗
i,t =

√
Yt

σS,t
(πM

i (t) + πH
i (t)) = πM

i (t) + πH
i (t), (104)

for Cases A and B, respectively, where σS,t =
√
Yt and, π

M
i (t) and πM

i (t) are defined in (99) and (100). In particular,
we note that ϕ(t) determines the equilibrium expected return of the risky asset by µS,t = σS,tθt = σS,t

√
Ytϕ(t) =

ϕ(t)Yt, and agent i’s mean-variance portfolio as πM
i (t) = ϕ(t)

γi
.
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2 .

Firstly, we can interpret the positive expected return process determined by ϕ(t) > 0 from a general equilibrium
perspective. Since agent 2 representing other market participants takes a short position on the risky asset (π∗

2,t < 0)
to hedge the realization of Y2,T due to ρ2ρS > 0, which has a relatively large volatility σ̄2, agent 1 needs to take an
opposite position, that is long, so that the market is cleared. Therefore, the expected return of the risky asset has
to be positive for agent 1 to take a long position (π∗

1,t > 0).

Next, we examine the decreasing or increasing behavior of agent 1’s long position on the risky asset towards maturity
T , which can be explained in terms of the hedging portfolio for agent 1, πH

1 (t) as follows:

Figure 4 shows that agent 1 reduces its long position towards maturity T , which corresponds to life-cycle funds
where the asset management companies invest more in stocks when the customers are young, while they shift the
allocation to bonds as the customers’ ages become closer to retirement. In Case A, since agent 1 receives a fund YT ,
agent 1 reduces its hedging demand πH

1 (t) towards maturity T to hedge the realization of YT due to ρS > 0.

On the contrary, we find that Figure 5 shows that agent 1 increases its long position towards maturity T , since agent
1 has a payout of YT in Case B.

5.2.3 Numerical results in Case C

In the following, we investigate the optimal trading strategies and the excess return process of the risky asset in
equilibrium for the parameter set of Case C in Table 3.
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Table 3
Setting of parameters of life-cycle investment example.

µ1
Y µ2

Y σ̄Y σ̄1 σ̄2 ρ1 ρ2 ρS γ1 γ2 g11(0) g21(0) T

Case C -0.2 0.4 0.2 0.4 0 0.8 0 -0.5 3 1 1 0 10

Particularly, Case C is where Y representing inflation has a negative correlation with the change in the stock price
(ρS = −0.5), while agent 1’s specific income positively correlates with Y mainly by inflation allowance, and hence
has a negative correlation with the stock price movement (ρ1ρS = −0.4) as in the last year, 2022. In addition, there
is a payout at agent 1’s retirement (−g11(0) = −1) due to mortgage repayment, for example.

Figure 6 exhibits ϕ, the determinant of the expected return process µS , and the optimal trading strategies of agents
1 and 2 in equilibrium as in Cases A and B.
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Fig. 6. Case C : ϕ, determinant of the expected return process µS , and optimal trading strategies π∗
1 and π∗

2 .

Figure 6 illustrates that agent 1 takes a long position for the risky asset (π∗
1,t > 0) and gradually reduces this long

position as maturity T approaches. In the right panel breakdown, it can be observed that the hedging portfolio πH
1

mainly contributes to π∗
1 due to the higher risk-aversion parameter γ1 than γ2. This observation can be understood

by considering the correlation between the risky asset (S) and agent 1’s total terminal labor income (Y1,T − YT ).

The correlation between the risky asset and the total terminal labor income is quantified and calculated as σ̄1ρ1ρS −
σ̄Y ρS = −0.16− (−0.1) = −0.06 < 0. The negative sign in the first term, σ̄1ρ1ρS = −0.16 < 0, indicates that agent
1 takes a long position to hedge against the realization of Y1,T . Conversely, the positive sign in the second term,
−σ̄Y ρS = −(−0.1) > 0, suggests that agent 1 takes a short position to hedge against the payout −YT in Case C.

Thus, although the resulting net total hedging portfolio πH
1 gradually reduces its long position towards maturity T ,

it remains in a long position at T due to the overall negative correlation, σ̄1ρ1ρS − σ̄Y ρS = −0.06 < 0. Consequently,
the resulting net total position remains long, π∗

1,t = πM
1 (t) + πH

1 (t) > 0, with πH
1 accounting for the majority of π∗

1 .

Next, we observe that agent 2 takes a short position for the risky asset (π∗
2 < 0) under the negative expected return

on the risky asset (ϕ(t) < 0) in Case C. This is because the mean-variance portfolio part πM
2 that aims to increase

agent 2’s profit accounts for the majority of agent 2’s portfolio π∗
2 , which is due to the low risk-aversion parameter

γ2 = 1 and no terminal payoffs to hedge.

Moreover, we can interpret the negative expected return process ϕ(t) < 0 from a general equilibrium perspective.
Since agent 1 has a demand to take a long position on the risky asset to hedge the total terminal labor income
in both cases, agent 2 needs to take an opposite position, i.e. short, so that the market is cleared. Therefore, the
expected return of the risky asset has to be negative for agent 2 to take a short position.

Finally, as mentioned in Bruder et al. (2012) , determining the expected returns on risky assets are essential in life-
cycle investment. In this study, we have used the market clearing condition to set the expected return endogenously
and confirmed that the relationship among individuals’ optimal portfolios, the risky asset return and the labor
income is consistent with the results in Henderson (2005) , which analyzes an individual’s optimal portfolio with
an exogenously given expected return of the risky asset and stochastic labor income. Thus, our model provides a
theoretical basis for setting the expected return of a risky asset in life-cycle investment.

6 Conclusion

This study has developed a dynamic incomplete equilibrium model with multi-agents of exponential utilities. More-
over, in numerical experiments, we have explicitly obtained agents’ optimal trading strategies, their stochastic dis-
count factors (SDFs) and expected returns of the risky asset in equilibrium.

Our research is new in that we propose a concrete equilibrium model for an incomplete market with heterogeneous
income/payout profiles and different risk attitudes of agents, which is applied to two meaningful examples in prac-
tice for insurance and asset management companies, namely, reinsurance claim pricing and life-cycle investment.
Particularly, our model endogenously determines an equilibrium excess return process of the risky asset, which has
been exogenously given in previous works and has been considered to affect the optimal trading strategies largely.
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The implications of this study are as follows: The model can be used in pricing reinsurance claims with estimations
of the relevant factors and those correlations with stock prices, and in predicting how the reinsurance price changes
when those correlations shift. Also, pension funds and asset management companies may utilize our model in life-
cycle investment/target-year (date) funds to construct portfolios by incorporating the effects of individuals’ income
and payout profiles, economic factors and, their correlations with stock prices.

As for future studies, introducing intermediate consumption to determine an equilibrium stochastic interest rate in
an incomplete market will be one of the important research topics. Moreover, while two examples in the current
paper have extracted the essence from practical situations, developing more detailed and realistic modeling with
empirical analyses will be even more useful in practice. In addition, when securities related to unhedgeable factors
are newly issued and the market becomes complete, investigating how the equilibrium return process and the optimal
portfolios change will be a future research topic.
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[2] Arnone, M., Bianchi, M. L., Quaranta, A. G., & Tassinari, G. L. (2021). Catastrophic risks and the pricing of catastrophe equity put
options. Computational Management Science, 18(2), 213-237.

[3] Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: actuarial and statistical aspects. John Wiley & Sons.

[4] Allianz. (2021). Allianz Suisse Life and Resolution Re agree on innovative reinsurance solution for legacy portfolio of individual
life products. Retrieved June 30, 2022 from https://www.allianz.com/en/investor_relations/announcements/ir_announcements/

210930.html

[5] Becherer, D. (2003). Rational hedging and valuation of integrated risks under constant absolute risk aversion. Insurance: Mathematics
and economics, 33(1), 1-28.

[6] Bensoussan, A., Siu, C. C., Yam, S. C. P., & Yang, H. (2014). A class of non-zero-sum stochastic differential investment and reinsurance
games. Automatica, 50(8), 2025-2037.

[7] Björk, T. (2020). Arbitrage Theory in Continuous Time. Oxford University Press, USA.

[8] Bruder, B., Culerier, L., & Roncalli, T. (2012). How to design target-date funds?. Available at SSRN 2289099.

[9] Brunnermeier, M. K., & Sannikov, Y. (2014). A macroeconomic model with a financial sector. American Economic Review, 104(2),
379-421.

[10] Choi, J. H., & Larsen, K. (2015). Taylor approximation of incomplete Radner equilibrium models. Finance and Stochastics, 19(3),
653-679.

[11] Christensen, P. O., Larsen, K., & Munk, C. (2012). Equilibrium in securities markets with heterogeneous investors and unspanned
income risk. Journal of Economic Theory, 147(3), 1035-1063.

[12] Christensen, P. O., & Larsen, K. (2014). Incomplete continuous-time securities markets with stochastic income volatility. The Review
of Asset Pricing Studies, 4(2), 247-285.

[13] Epstein, L.G. & Miao, J. (2003). A two-person dynamic equilibrium under ambiguity. The Journal of Economic Dynamics and
Control, 27(7), 1253-1288.

[14] Han, J., Ma, G., & Yam, S. C. P. (2022). Relative performance evaluation for dynamic contracts in a large competitive market.
European Journal of Operational Research, 302(2), 768-780.

[15] He, Z., & Krishnamurthy, A. (2013). Intermediary asset pricing. American Economic Review, 103(2), 732-770.

[16] Henderson, V. (2005). Explicit solutions to an optimal portfolio choice problem with stochastic income. Journal of Economic
Dynamics and Control, 29(7), 1237-1266.

[17] Hirota, C., & Ozawa, K. (2006). Numerical method of estimating the blow-up time and rate of the solution of ordinary
differential equations - An application to the blow-up problems of partial differential equations. Journal of computational and applied
mathematics, 193(2), 614-637.

[18] Jarrow, R. A. (2021). Continuous-Time Asset Pricing Theory: A Martingale-Based Approach. Springer Nature.

[19] Kaplan, G., Moll, B., & Violante, G. L. (2018). Monetary policy according to HANK. American Economic Review, 108(3), 697-743.

[20] Karatzas, I. (1997) Lectures on the Mathematics of Finance. American Mathematical Society.

19



[21] Karatzas, I., & Shreve, S. (1998). Methods of mathematical finance (Vol. 39, pp. xvi+-407). New York: Springer.

[22] Karatzas, I., & Shreve, S. (2012). Brownian Motion and Stochastic Calculus (Vol. 113). Springer Science & Business Media.

[23] Kardaras, C., Xing, H., & Žitković, G. (2022). Incomplete stochastic equilibria with exponential utilities close to Pareto optimality.
In Stochastic Analysis, Filtering, and Stochastic Optimization: A Commemorative Volume to Honor Mark HA Davis’s Contributions
(pp. 267-292). Cham: Springer International Publishing.

[24] Kizaki, K., Saito, T., & Takahashi, A. (2022) Multi-agent Robust Optimal Investment Problem in Incomplete Market. Available at
SSRN 4213956.

[25] Kizaki, K., Saito, T., & Takahashi, A. (2023) Equilibrium multi-agent model with heterogeneous views on fundamental risks.
Forthcoming in Automatica. Preprint version is available at https://www.carf.e.u-tokyo.ac.jp/research/f571.

[26] Klimenko, N., Pfeil, S., & Rochet, J. C. (2017). A simple macroeconomic model with extreme financial frictions. Journal of
Mathematical Economics, 68, 92-102.

[27] Larsen, K., & Sae-Sue, T. (2016). Radner equilibrium in incomplete Lévy models. Mathematics and Financial Economics, 10,
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A Equilibrium in an incomplete market with log utility settings

In this section, as another example of solving the equilibrium in an incomplete market, we present a case that each
agent has a different state-dependent log utility, which can be interpreted as a log utility with an agent-specific
subjective probability measure. It may also capture the heterogeneous impacts of exogenous shocks on each agent’s
utility, where the shocks may be represented by common factors or each agent’s specific factors.

First, let (Ω,F ,P) be a probability space, [0, T ] be the time horizon, and W = (WY ,WS)
⊤ be a two-dimensional

standard Brownian motion. Let {Ft}0≤t≤T be the augmented filtration generated by W . We also suppose that the
zero net supply money market account with a risk-free interest rate r exists. Namely, Bt, the value of the money

market account at t, is expressed as Bt = exp
(∫ t

0
rsds

)
.

Suppose also that one unit of a stock is issued and that its price process is the solution to the SDE:
dSt

St
= µtdt+ σS,tdWt = rtdt+ σt

[
(
µt − rt

σt
)dt+ (ρtdW

Y
t + ρ̂tdW

S
t )

]
, (A.1)

where σS,t = σt(ρt, ρ̂t) with ρ̂t =
√
1− ρ2t and dWt = (dWY

t , dWS
t )⊤.

In addition, we introduce an FT -measurable random variable ξ, which represents an exogenously given dividend that
an agent holding one unit of stock at terminal date T receives.

Let

θt = σ⊤
S,t(σS,tσ

⊤
S,t)

−1(µt − rt) =
µt − rt

σt
(ρt, ρ̂t)

⊤ ∈ Range(σ⊤
S ), (A.2)

and note that σS,tθt = µt − rt, and hence θ is a market price of risk.

We assume agent i’s expected utility as E[ηiT logXi
T ] with ηiT = exp

[∫ T

0
λi
s · dWs − 1

2

∫ T

0
|λi

s|2ds
]
, where

λi
s = (λi

1,s, λ
i
2,s)

⊤, i = 1, 2, . . . , I.

Remark 1 Particularly, we can make λi depend on a factor H common among all agents and agent i’s specific
factor Hi. Namely, λi(H,Hi) = (λi

1(H,Hi), λ
i
2(H,Hi))

⊤, i = 1, 2, . . . , I, where λi
j = λi,1

j + λi,2
j , j = 1, 2, and λi,1

j

determines agent i’s attitude towards Brownian risk j, while λi,2
j does a shock on i’s preference associated with j-th

Brownian motion. In fact, under the probability measure P̃i defined by dP̃i

dP = ηiT , supposing that ηit is a martingale

under P, by Girsanov’s theorem, W̃ i defined by W̃ i
t = Wt −

∫ t

0
λi
sds is a Brownian motion under P̃i. Then, (A.1) is

written as dSt

St
= (µt+σS,tλ

i,1
t +σS,tλ

i,2
t )dt+σS,tdW̃

i
t . Hence, we can consider λi,1 reflects agent i’s attitude towards

the expected return of the risky asset price process.

Also, even if the factors H and Hi do not directly affect the agent’s terminal wealth, we can incorporate the effects
of exogenous shocks on agent i’s utility through λi,2

j . For example, if we consider the equilibrium market model in a
domestic economy, we may regard the common factor H as the general economic condition or the inflation rate, and
the factor Hi as the economic situation specific to the sector or region i, where each agent works or lives, respectively.
Moreover, we may introduce additional Brownian motions associated with each agent’s specific factor Hi.

In the following, with an exogenously given dividend ξ at T , and exogenously given λi, i = 1, . . . , I, parameters for
ηi in the state-dependent log utility, we obtain equilibrium interest rate r, volatility of the stock price process σS ,
particularly |σS | = σ along with (ρ, ρ̂), expected return of the stock price process µ and market price of risk θ, which
satisfy the market clearing condition.

We define the agent’s wealth process as the riskless asset amount πi
0 plus (tradable) risky asset amount πi ∈ Ai ,

namely, for t ∈ [0, T ], Xi
t = πi

0,t + πi
t.

Here, we consider admissible strategies as the set of progressively measurable processes such that

Ai :=

{
πi : Xi

t ≥ 0, a.s., t ∈ [0, T ], E

[∫ T

0

(πi
s)

2σ2
sds

]
< ∞

}
. (A.3)

Then, the wealth dynamics is given as follows.

dXi
t = rtX

i
tdt+ πi

t(µt − rt)dt+ πi
tσS,tdWt

= Xi
t

[
rtdt+ π̃i

tσS,t {θtdt+ dWt}
]
, Xi

0 = xi
0 > 0, (A.4)

where πi
t = π̃i

tX
i
t .
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Particularly, with θ̂s :=
µs−rs

σs
and Bt = e

∫ t

0
rsds,

Xi
t = xi

0Bt exp

[∫ t

0

π̃i
sσsθ̂sds−

1

2

∫ t

0

(π̃i
sσs)

2ds+

∫ t

0

π̃i
sσS,sdWs

]
. (A.5)

Then, applying a well-known result for the log utility that is, the optimal portfolio is always given by the (instan-
taneous) mean-variance portfolio, with the measure change by ηiT , we obtain agent i’s optimal stock holding for the
problem as follows.

(Problem)

sup
πi∈Ai

E[ηiT logXi
T ] = Ẽi[logXi

T ], under the wealth dynamics

dXi
t = rtX

i
tdt+ πi

t(µt − rt)dt+ πi
tσS,t[dW̃

i
t + λi

tdt]

= Xi
t

[
rtdt+ π̃i

tσt{(θ̂t + ρtλ
i
1,t + ρ̂tλ

i
2,t)dt+ (ρt, ρ̂t)dW̃

i
t }
]
, (A.6)

where Ẽi[·] denotes the expectation operator under the probability measure P̃i induced by ηiT , and W̃ i
t := Wt−

∫ t

0
λi
sds

is a two-dimensional Brownian motion under P̃i.

We obtain agent i’s optimal stock holding as πi
t = π̃∗,i

t Xi
t by the (instantaneous) mean-variance portfolio with the

excess expected return {µt + σt(ρtλ
i
1,t + ρ̂tλ

i
2,t) − rt} and variance σ2

t , where π̃∗,i
t =

θ̂t+(ρtλ
i
1,t+ρ̂tλ

i
2,t)

σt
, θ̂t =

µt−rt
σt

,

and the optimal money market account holding is πi
0,t = Xi

t − πi
t. Then, by (A.5), we obtain the optimal wealth Xi

as
Xi

t

Bt
= xi

0

Zi
t

Zθ
t

, with (A.7)

Zθ
t := exp

[
−
∫ t

0

θs · dWs −
1

2

∫ t

0

|θs|2ds
]
, (A.8)

Zi
t := exp

[∫ t

0

λ̂i,s · dWs −
1

2

∫ t

0

|λ̂i,s|2ds
]
, (A.9)

where

θt = σ⊤
S,t(σS,tσ

⊤
S,t)

−1(µt − rt) = θ̂t(ρt, ρ̂t)
⊤, θ̂t =

µt − rt
σt

, (A.10)

λ̂i,t = (ρtλ
i
1,t + ρ̂tλ

i
2,t)(ρt, ρ̂t)

⊤. (A.11)

Here, note that σS,tθt = µt − rt, and hence θ ∈ Range(σ⊤
S ) is a market price of risk. We also see λ̂i in terms of an

orthogonal decomposition of λi: That is, λi = λ̂i⊕λ̂⊥
i , where λ̂i ∈ Range(σ⊤

S ) and λ̂⊥
i ∈ Kernel(σS) = {x : σSx = 0}.

Finally, for the market clearing condition, exogenously given a terminal dividend, FT -measurable ξ > 0 , the market
clearing condition is given by

ξ =
∑
i

πi
T =

∑
i

Xi
T −

∑
i

πi
0,T =

∑
i

Xi
T , (A.12)

since the sum of the optimal money market account holding should be zero, that is
∑

i π
i
0,T = 0.

Similarly, at t ∈ [0, T ) it should hold that St =
∑

i X
i
t .

By (A.12), we obtain

ξ =
∑
i

xi
0

Zi
TBT

Zθ
T

, that is, Zθ
T =

∑
i

xi
0

Zi
TBT

ξ
, (A.13)

and since Zθ
t should be a martingale, we have

Zθ
t = Et

[
BT

ξ

∑
i

xi
0Z

i
T

]
=
∑
i

xi
0Et

[
BT

ξ
Zi
T

]
. (A.14)

Based on this equation we will derive θt =
µt−rt
σt

(ρt, ρ̂t)
⊤.

Remark 2 The following condition must be satisfied at t = 0:

Zθ
0 = 1 = E

[
BT

ξ

∑
i

xi
0Z

i
T

]
=
∑
i

xi
0E

[
BT

ξ
Zi
T

]
. (A.15)
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Moreover, given a constant interest rate r, this is rewritten as

1

BT
=
∑
i

xi
0E

[
Zi
T

ξ

]
; i.e., r = − 1

T
log

(∑
i

xi
0E

[
Zi
T

ξ

])
(A.16)

Thus, we have the following two choices to satisfy the condition.

(i) Given ξ > 0, xi
0 > 0, λi = (λi

1, λ
i
2)

⊤, (ρ, ρ̂), (and hence Zi), the condition determines BT = erT , namely r.

(ii) Given ξ > 0, λi = (λi
1, λ

i
2)

⊤, (ρ, ρ̂), r, the condition provides an allocation of the initial wealth, xi
0 > 0

(i = 1, 2, . . . , I).

Remark 3 The stock price dynamics in equilibrium is also obtained and thus, we can solve for the volatility σS

along with the market price of risk θ.

Since Zi is a martingale, and the market clearing condition implying that ξ =
∑

i X
i
T =

∑
i x

i
0
Zi

TBT

Zθ
T

and St =∑
i X

i
t =

∑
i x

i
0
Zi

tBt

Zθ
t
, we have

Zθ
T

ξ

BT
=
∑
i

xi
0Z

i
T , and (A.17)

Zθ
t

St

Bt
=
∑
i

xi
0Z

i
t =

∑
i

xi
0Et[Z

i
T ] = Et[Z

θ
T

ξ

BT
]. (A.18)

Thus, ZθS/B is a martingale as expected, and we have
St

Bt
=

1

Zθ
t

∑
i

xi
0Z

i
t =

1

Zθ
t

Et[Z
θ
T

ξ

BT
] = E∗

t [
ξ

BT
], (A.19)

where E∗
t [·] denotes the conditional expectation operator under a risk-neutral measure induced by θ. In particular,

S0 =
∑

i x
i
0.

Moreover, using St =
Bt

Zθ
t

∑
i x

i
0Z

i
t , we obtain the stock volatility σS = σ(ρ, ρ̂) and hence the expected return µ, given

µ−r
σ .

Concretely, we have

d

(
St

Bt

)
=

(
1

Zθ
t

)
θt ·
∑
i

xi
0Z

i
t [θt + λ̂i,t]dt+

(
1

Zθ
t

){∑
i

xi
0Z

i
t [λ̂i,t + θt]

}
· dWt, (A.20)

d(St/Bt)

(St/Bt)
=

[
θt ·
∑

i x
i
0Z

i
t{(λ̂i,t + θt)}dt+

{∑
i x

i
0Z

i
t(λ̂i,t + θt)

}
· dWt

]
∑

i x
i
0Z

i
t

. (A.21)

Then, setting

σ⊤
S,t =

∑
i x

i
0Z

i
t(λ̂i,t + θt)∑
i x

i
0Z

i
t

=

∑
i x

i
0Z

i
t λ̂i,t∑

i x
i
0Z

i
t

+ θt, (A.22)

we obtain
dSt

St
− rtdt = σS,t(θtdt+ dWt). (A.23)

Moreover, recalling σS = σ(ρ, ρ̂)⊤, λ̂i = (ρλi
1 + ρ̂λi

2)(ρ, ρ̂)
⊤ and θ = µ−r

σ (ρ, ρ̂)⊤, we define σ as

σt =

∑
i x

i
0Z

i
t

(
ρtλ

i
1,t + ρ̂tλ

i
2,t

)∑
i x

i
0Z

i
t

+
µt − rt

σt
. (A.24)

Then, we have dSt

St
− rtdt = σt

[
µt−rt
σt

dt+ (ρtdW
Y
t + ρ̂tdW

S
t )
]
, which is consistent with (A.1).

Next, we confirm that the market clearing condition holds. Let Xt :=
∑

i X
i
t . Then, on one hand, by (A.4),

dXt = rtXtdt+ (
∑
i

πi
t)[(µt − rt)dt+ σS,tdWt]; X0 =

∑
i

xi
0. (A.25)

On the other hand, by (A.1),

dSt = St[µtdt+ σS,tdWt] = rtStdt+ St[(µt − rt)dt+ σS,tdWt]; S0 =
∑
i

xi
0. (A.26)

Hence, thanks to Xt = St for all t ∈ [0, T ], it holds that St =
∑

i π
i
t for all t ∈ [0, T ], particularly, ξT =

∑
i π

i
T , which

shows that the market clearing condition is satisfied.

In the following assuming a specific form for ξ, we aim to obtain the market price of risk θ = µ−r
σ (ρ, ρ̂). First, let
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ξ = ξT , and suppose that
dξt
ξt

= µξ,tdt+ σξ,t · dWt; ξ0 > 0, (A.27)

dξ̂t

ξ̂t
= µξ̂,tdt+ σξ̂,t · dWt, (ξ̂ := 1/ξ), (A.28)

where

σξ,t = (σξ
1,t, σ

ξ
2,t)

⊤; µξ̂,t = −µξ,t + σ̄2
ξ,t; σ̄ξ,t =

√
(σξ

1,t)
2 + (σξ

2,t)
2; σξ̂,t = −σξ,t. (A.29)

We calculate Zθ
t = Et

[
BT

ξ

∑
i x

i
0Z

i
T

]
= Et

[
BT

ξT

∑
i x

i
0Z

i
T

]
to obtain θ = µ−r

σ (ρ, ρ̂)⊤.

Namely, we calculate dZθ
t /Z

θ
t with

Zθ
t = Bt

∑
i

xi
0Et

[
BT

Btξ
Zi
T

]
= Btξ̂t

∑
i

xi
0Z

i
tEt

[
BT

Bt

ξ̂T

ξ̂t

Zi
T

Zi
t

]
, (A.30)

where

Et

[
BT

Bt

ξ̂T

ξ̂t

Zi
T

Zi
t

]
= Et

[
exp

{∫ T

t

(rs + µξ̂,s −
1

2
|σξ̂,s|

2 − 1

2
|λ̂i,s|2)ds+

∫ T

t

(σξ̂,s + λ̂i,s) · dWs

}]
, (A.31)

and compare the volatility term of (A.30) with the one in dZθ
t = −Zθ

t θt · dWt to obtain θ.

Remark 4 We compare the features of the log utility case in the appendix with the exponential utility case in the
main text as follows. In the exponential utility case, the ARA parameter γi differs among the agents, and the market
clearing for the risky asset is described as zero net supply. In addition, we consider the two types of terminal income
or payment, where −Fi(YT ) depends on the common economic factor YT , while Yi,T represents the income factor
characteristic to each agent. Those factors cannot be hedged with the risky assets, and thus, the factors are the source
of incompleteness. Then, we investigate the market price of risk in equilibrium dependent on the agents’ profiles and
observe the effect on the pricing of contingent claims.

On the other hand, in the log utility case, we incorporate ηi that affects the expected return of the risky asset for each
agent i through λi characteristic to the agent. Although it is difficult to incorporate an agent’s income or payout into
the wealth in the state dependent log utility as ηiT log(XT + YT + Yi,T ), we may consider some processes H and Hi

driving λi to be economic factors as well as determinants of agents subjective probabilities.

Also, instead of the zero net supply of the risky asset for the clearing condition in the exponential utility case, we
consider a positive net supply (ξ) as a terminal dividend in the log utility case, which could be understood as the
country’s physical output and the source of incompleteness that can not be perfectly hedged by the risky asset. Then,
we investigate the market price of risks in equilibrium that reflects the effects of the physical output through ξ, and
common and specific factors through H and Hi. Moreover, we may introduce additional Brownian motions to make
ξ’s expected return and volatility depend on economic factors common or/and specific to agents.

A.1 Example

As an example, we suppose that r is a constant, σξ and (ρ, ρ̂) are nonrandom processes, and for some constants
aY , aS , we set

µξ̂,t = −µξ,t + σ̄2
ξ,t = aY W

Y
t + aSW

S
t , i.e., µξ,t = σ̄2

ξ,t − (aY W
Y
t + aSW

S
t ). (A.32)

Moreover, for λi, setting λi
1,t = Htb

i
1,t and λi

2,t = Htb
i
2,t (b

i
1, b

i
2: nonrandom), we have

λ̂i,t = (ρtλ
i
1,t + ρ̂tλ

i
2,t)(ρt, ρ̂t)

⊤ = Ht(ρtb
i
1,t + ρ̂tb

i
2,t)(ρt, ρ̂t)

⊤, (A.33)

where for µH
t = µH

1,t + µH
2,tHt (µ

H
1,t, µ

H
2,t: nonrandom) and nonrandom σH

t , we define

dHt = µH
t dt+ σH

t · dWt; H0 = h. (A.34)

Hereafter, we will consider the random H case (σH
t ̸= 0, ∀t ∈ [0, T ]), since the deterministic H is obtained by just

setting σH ≡ 0.

A.1.1 Exogenous and endogenous variables

In the following, with exogenously given ξ and H, we endogenously obtain r, σS = σ(ρ, ρ̂), µ and θ in equilibrium.
Our concrete procedure is summarized as follows:

(Procedure)

Adopting case (i) in Remark 2, we summarize our equilibrium model in the following:

(1) Given a terminal dividend, FT -measurable random variable ξ > 0 that an agent holding one unit equity at T
receives, and ξ is determined by the stochastic process (A.27):
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The volatility and expected return of ξt are specified as nonrandom process σξ,t = (σξ
1,t, σ

ξ
2,t)

⊤, and

µξ,t = σ̄2
ξ,t − (aY W

Y
t + aSW

S
t ) with σ̄ξ,t =

√
(σξ

1,t)
2 + (σξ

2,t)
2 and some R-valued constants aY , aS , respec-

tively.
(2) Given each agent i’s initial wealth xi

0 > 0, and the determinat of state dependence of each agent i’s utility,

ηiT = exp
[∫ T

0
λi
s · dWs − 1

2

∫ T

0
|λi

s|2ds
]
with

λi = (λi
1, λ

i
2), λ

i
1,t = Htb

i
1,t and λi

2,t = Htb
i
2,t (b

i
1, b

i
2: nonrandom).

H ∈ R is a given stochastic process defined by (A.34) with
µH
t = µH

1,t + µH
2,tHt (µ

H
1,t, µ

H
2,t: nonrandom) and nonrandom process σH .

In fact, it will turn out that in equilibrium we need to have the form of σH such that σH
t = σ̄H

t (ρt, ρ̂t)
⊤,

where σ̄H
t is an arbitrary nonrandom process, and (ρt, ρ̂t) is specified by (A.52) and (A.53) in Appendix A.1.2

below.
(3) The constant equilibrium interest rate r is given by (A.16), where Zi and λ̂i are given by (A.9) and (A.33),

respectively.
(4) The equilibrium market price of risk θt is given by (A.54), where Ci

t is obtained by (A.45) and σi
p,t = Bi(t, T )σH

t .

In addition, Bi(t, T ) and P i(t, T ) = exp[Ai(t, T ) +Bi(t, T )Hi
t ] in Ci

t are obtained in Remark 5 below, and the
stochastic process Hi

t is defined in (A.39) in Appendix A.1.2.
(5) The equilibrium risky asset price process is given as follows:

initial price: S0 =
∑

i x
i
0.

volatility: σS,t = σt(ρt, ρ̂t) with (A.57), (A.52) and (A.53) in Appendix A.1.2.
expected return µt:

µt = r + σt

(
µt−r
σt

)
with (A.16), (A.57) and (A.55) in Appendix A.1.2.

A.1.2 θ, σS, and µ in equilibrium

Under this setting where µξ and λi are random, we calculate dZθ with (A.30) and (A.31) to obtain θ.

Firstly, using ∫ T

t

WY
s ds =

∫ T

t

{WY
t + (WY

s −WY
t )}ds = (T − t)WY

t +

∫ T

t

(T − u)dWY
u , (A.35)

we have ∫ T

t

µξ̂,sds = (aY W
Y
t + aSW

S
t )(T − t) +

∫ T

t

aY (T − s)dWY
s +

∫ T

t

aS(T − s)dWS
s . (A.36)

Then, when we define σy
s := (aY (T − s), aS(T − s))⊤, with σξ̂,s = (σξ̂

1,s, σ
ξ̂
2,s)

⊤ and λ̂i,s = (ρsλ
i
1,s + ρ̂sλ

i
2,s)(ρs, ρ̂s)

⊤,

we express (A.31) as follows:

Ci
t := Et

[
BT

Bt

ξ̂T

ξ̂t

Zi
T

Zi
t

]

=
BT

Bt
exp{(T − t)(aY W

Y
t + aSW

S
t )}Et

[
exp

{∫ T

t

(−1

2
|σξ̂,s|

2 − 1

2
|λ̂i,s|2)ds+

∫ T

t

(σy
s + σξ̂,s + λ̂i,s) · dWs

}]
.

(A.37)
Let

Di(t, T ) = exp

{∫ T

t

−1

2
|σy

s + σξ̂,s + λ̂i,s|2ds+
∫ T

t

(σy
s + σξ̂,s + λ̂i,s) · dWs

}
. (A.38)

Then,

dHt = µH
t dt+ σH

t · (dW i
t + (σy

t + σξ̂,t + λ̂i,t)dt)

= [µH
t + σH

t · (σy
t + σξ̂,t + λ̂i,t)]dt+ σH

t · dW i
t := dHi

t ; Hi
0 = h, (A.39)

where we use the fact that W i is a Brownian motion under Pi, the probability measure induced by Di(0, T ), and

dW i
t = dWt − (σy

t + σξ̂,t + λ̂i,t)dt. (A.40)

25



Hence, we have

Et

[
exp

{∫ T

t

(−1

2
|σξ̂,s|

2 − 1

2
|λ̂i,s|2)ds+

∫ T

t

(σy
s + σξ̂,s + λ̂i,s) · dWs

}]

= Et

[
Di(t, T ) exp

{∫ T

t

(
1

2
|σy

s |2 + σy
s · σξ̂,s + (σy

s + σξ̂,s) · λ̂i,s

)
ds

}]

= exp

{∫ T

t

(
1

2
|σy

s |2 + σy
s · σξ̂,s

)
ds

}
Ei

t

[
exp

{∫ T

t

(σy
s + σξ̂,s) · λ̂i,sds

}]
, (A.41)

where Ei
t[·] denotes the conditional expectation operator under Pi.

Since
(σy + σξ̂) · λ̂i = Hi(σy + σξ̂) · (ρb

i
1 + ρ̂bi2)(ρ, ρ̂)

⊤ (A.42)

is a Gaussian process under Pi, we know that for some nonrandom function Ai(t, T ) and Bi(t, T ) in Remark 5 below,

Ei
t

[
exp

{∫ T

t

(σy
s + σξ̂,s) · λ̂i,sds

}]
= exp[Ai(t, T ) +Bi(t, T )Hi

t ] := P i(t, T ), (A.43)

dP i(t, T ) = P i(t, T )[−{(σy
t + σξ̂,t) · λ̂i,t}dt+Bi(t, T )σH

t · dW i
t ]. (A.44)

Hence, we have

Ci
t =

BT

Bt
exp

{∫ T

t

(
1

2
|σy

s |2 + σy
s · σξ̂,s

)
ds

}
exp{(T − t)(aY W

Y
t + aSW

S
t )}P i(t, T ). (A.45)

Therefore, with

Zθ
t = Et

[
BT

ξT

∑
i

xi
0Z

i
T

]
= Btξ̂t

∑
i

xi
0Z

i
tEt

[
BT

Bt

ξ̂T

ξ̂t

Zi
T

Zi
t

]
= Btξ̂t

∑
i

xi
0Z

i
tC

i
t , (A.46)

and σi
p,t := Bi(t, T )σH

t , we obtain

dZθ
t = Btξ̂t

∑
i

xi
0Z

i
tC

i
t [σ

y
t + σξ̂,t + λ̂i,t + σi

p,t] · dWt

= −Zθ
t

∑
i

xi
0Z

i
tC

i
t∑

i x
i
0Z

i
tC

i
t

[−σy
t − σξ̂,t − λ̂i,t − σi

p,t] · dWt = −Zθ
t θt · dWt, (A.47)

where θ = µ−r
σ (ρ, ρ̂)⊤. Hence, with λ̂i = (ρλi

1 + ρ̂λi
2)(ρ, ρ̂)

⊤ we have

−σy
t − σξ̂,t −

∑
i

xi
0Z

i
tC

i
t∑

i x
i
0Z

i
tC

i
t

{
(ρtλ

i
1,t + ρ̂tλ

i
2,t)(ρt, ρ̂t)

⊤ − σi
p,t

}
= θt =

µt − rt
σt

(ρt, ρ̂t)
⊤. (A.48)

Then, for some nonrandom σ̄H
t ∈ R, we set σH in (A.34) as

σH
t = σ̄H

t (ρt, ρ̂t)
⊤, (A.49)

to satisfy (A.48). By using σy
t = (aY (T − t), aS(T − t))⊤ and σξ̂,t = (σξ̂

1,t, σ
ξ̂
2,t)

⊤,

(−σy
t − σξ̂,t) = −(aY (T − t), aS(T − t))− (σξ̂

1,t, σ
ξ̂
2,t), (A.50)

and, to satisfy (A.48) it should hold that there exists some nonrandom kt ̸= 0 such that

(−σy
t − σξ̂,t) = −(aY (T − t), aS(T − t))− (σξ̂

1,t, σ
ξ̂
2,t) = kt(ρt, ρ̂t). (A.51)

Specifically, given σy
t and σξ̂,t = −σξ,t, we set kt and (ρt, ρ̂t) as follows:

kt = |(−σy
t − σξ̂,t)|, (A.52)

(ρt, ρ̂t) =
1

kt
(−σy

t − σξ̂,t). (A.53)

Then, we obtain

θt =

{
kt −

∑
i

xi
0Z

i
tC

i
t∑

i x
i
0Z

i
tC

i
t

(ρtλ
i
1,t + ρ̂tλ

i
2,t +Bi(t, T )σ̄H

t )

}
(ρt, ρ̂t)

⊤, (A.54)

µt − rt
σt

=

{
kt −

∑
i

xi
0Z

i
tC

i
t∑

i x
i
0Z

i
tC

i
t

(ρtλ
i
1,t + ρ̂tλ

i
2,t +Bi(t, T )σ̄H

t )

}
. (A.55)
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Let us recall by (A.1) and (A.24) that

σ⊤
S,t = σt(ρt, ρ̂t)

⊤ =

∑
i x

i
0Z

i
t λ̂i,t∑

i x
i
0Z

i
t

+ θt =

{∑
i x

i
0Z

i
t(ρtλ

i
1,t + ρ̂tλ

i
2,t)∑

i x
i
0Z

i
t

+
µt − rt

σt

}
(ρt, ρ̂t)

⊤. (A.56)

Thus,

σt =

∑
i x

i
0Z

i
t

(
ρtλ

i
1,t + ρ̂tλ

i
2,t

)∑
i x

i
0Z

i
t

+
µt − rt

σt

=
∑
i

xi
0Z

i
t∑

i x
i
0Z

i
t

(
ρtλ

i
1,t + ρ̂tλ

i
2,t

)
+

{
kt −

∑
i

xi
0Z

i
tC

i
t∑

i x
i
0Z

i
tC

i
t

(ρtλ
i
1,t + ρ̂tλ

i
2,t +Bi(t, T )σ̄H

t )

}
, (A.57)

and given rt, the expected return µt is determend with this σt and (A.55) as µt = rt + σt

(
µt−rt
σt

)
. In addition, the

equation (A.19) provides S0 =
∑

i x
i
0. Consequently, the equilibrium price of the risky asset is completely specified.

We note that in the current model, the source of incompleteness is the expected return µξ,t = σ̄2
ξ,t−(aY W

Y
t +aSW

S
t )

of the stochastic process (A.27) of the exogenously given dividend ξ for the risky asset, and that heterogeneity

of the agents is reflected in ξ’s and hence the risky asset’s expected return through λ̂i, which determines agent
i’s specific state dependence (or subjective probability measure) in the expected utility E[ηiT logXi

T ] with ηiT =

exp
[∫ T

0
λi
s · dWs − 1

2

∫ T

0
|λi

s|2ds
]
.

We finally remark that a similar result can be obtained by setting µξ̂ (µξ) as a general Gaussian process.

Also, when we adopt case (ii) in Remark 2, the risk-free interest rate r can be exogenously given as a general Gaussian
process.

Considering practical applications with numerical experiments will be a future research topic.

Remark 5 Calculation of Ai(t, T ) and Bi(t, T ) in (A.43) :

First, let us define a nonrandom function f i as f i
t := −(σy

t + σξ̂,t) · (ρtb
i
1,t + ρ̂tb

i
2,t)(ρt, ρ̂t)

⊤.

Hence,
Hi

t(σ
y
t + σξ̂,t) · (ρtb

i
1,t + ρ̂tb

i
2,t)(ρt, ρ̂t)

⊤ = −Hi
tf

i
t , (A.58)

and we have

Ei
t

[
exp

{∫ T

t

(σy
s + σξ̂,s) · λ̂i,sds

}]
= Ei

t

[
exp

{
−
∫ T

t

f i
sH

i
sds

}]
= Ei

t

[
exp

{
−
∫ T

t

Ĥi
sds

}]
, (A.59)

where we define Ĥi = f iHi. Then, we obtain

dĤi
t = (∂tf

i
t )H

i
tdt+ f i

tdH
i
t

=
[
f i
t{µH

1,t + µH
2,tH

i
t + σH

t · (σy
t + σξ̂,t + λ̂i,t)}+ (∂tf

i
t/f

i
t )f

i
tH

i
t

]
dt+ f i

tσ
H
t · dW i

t

:=
[
αĤi,t + βĤi,tĤ

i
t

]
dt+ σĤi,t · dW

i
t , (A.60)

where we assume f i
t ̸= 0 for all t ∈ [0, T ] and define the following nonrandom functions;

αĤi,t = f i
t{µH

1,t + σH
t · (σy

t + σξ̂,t + λ̂i,t)}, (A.61)

βĤi,t = (∂tf
i
t/f

i
t + µH

2,t), (A.62)

σĤi,t = f i
tσ

H
t . (A.63)

Then, straightforward calculation with Gaussianity of Ĥi
t shows that

Ei
t

[
exp

{∫ T

t

(σy
s + σξ̂,s) · λ̂i,sds

}]
= Ei

t

[
exp

{
−
∫ T

t

Ĥi
sds

}]
= exp

[
Âi(t, T ) + B̂i(t, T )Ĥi

t

]
, (A.64)

where we defined nonrandom functions

B̂i(t, T ) = −
∫ T

t

exp

{∫ s

t

βĤi,udu

}
ds, (A.65)

Âi(t, T ) =

∫ T

t

αĤi,uB̂
i(u, T )du+

1

2

∫ T

t

|σĤi,u|
2(B̂i(u, T ))2du. (A.66)
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Finally, noting Ĥi
t = f i

tH
i
t , we obtain

Ei
t

[
exp

{∫ T

t

(σy
s + σξ̂,s) · λ̂i,sds

}]
= exp

[
Ai(t, T ) +Bi(t, T )Hi

t

]
, (A.67)

where
Ai(t, T ) = Âi(t, T ), (A.68)

Bi(t, T ) = B̂i(t, T )f i
t . (A.69)
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