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Abstract

This paper proposes a new spatial approximation method without the curse of dimensionality
for solving high-dimensional partial differential equations (PDEs) by using an asymptotic expan-
sion method with a deep learning-based algorithm. In particular, the mathematical justification
on the spatial approximation is provided. Numerical examples for high-dimensional Kolmogorov
PDEs show effectiveness of our method.
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1 Introduction

Recently, for solving high-dimensional partial differential equations (PDEs), deep learning-
based algorithms have been actively proposed (see [2][3] for instance). Moreover, a number of
papers for mathematical justification on the deep learning-based spatial approximations have
appeared, where the authors demonstrate that deep neural networks overcome the curse of
dimensionality in approximations of high-dimensional PDEs. For the related literature, see
[4][5][6][11][19] for example. In particular, these works treat some specific forms of PDEs such as
high-dimensional heat equations or Kolmogorov PDEs with constant diffusion and nonlinear drift
coefficient. Also, integral kernels are assumed to have explicit forms for justification of the spatial
approximations for solutions to high-dimensional PDEs.

However, most high-dimensional PDEs may not have explicit integral forms in practice. In
other words, integral forms of solutions themselves should be approximated by a certain method.

In the current paper, we give a new spatial approximation using an asymptotic expansion
method with a deep learning-based algorithm for solving high-dimensional PDEs without the
curse of dimensionality. More precisely, we follow approaches given in [40] and the literature
such as [8][17][18][23]]24](26][27][30][32][33][35][38][39][41][43]. Particularly, we provide a uniform
error estimate for the asymptotic expansion for solutions of Kolmogorov PDEs with nonlinear
coefficients, motivated by the works of [2][11][31]. For a solution to a d-dimensional Kolmogorov
PDE with a small parameter \, namely uy : [0,7] x RY — R given by uy(t,z) = E[f(X}"")] for
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(t,z) € [0,T] x R? where {X;""};>0 is a d-dimensional diffusion process starting from z, we justify
the following spatial approximation on a range [a, b]d:

ux(t,-) =~ “high-dimensional asymptotic expansion” E[f(X;" )M}"] (1.1)

~ “deep neural network approximation” R(¢)(:),

by applying an appropriate neural network ¢. Here, for ¢ > 0 and = € RY, Xt)‘ ¥ is a certain
Gaussian random variable and /\/l;\ " is a stochastic weight for the expansion given based on
Malliavin calculus. In order to chose the network ¢, the analysis of “product of neural networks”
and a dimension analysis of asymptotic expansion with Malliavin calculus are crucial in our
approach. We show a precise error estimate for the approximation (1.1) and prove that the
complexity of the neural network grows at most polynomially in the dimension d and the reciprocal
of the precision ¢ of the approximation (1.2). Moreover, we give an explicit form of the asymptotic
expansion in (1.1) and show numerical examples to demonstrate effectiveness of the proposed
scheme for high-dimensional Kolmogorov PDEs.

The organization of the paper is as follows. Section 2 is dedicated to notation, definitions and
preliminary results on deep learning and Malliavin calculus. Section 3 provides the main result,
namely, the deep learning-based asymptotic expansion for solving Kolmogorov PDEs. The proof
is shown in Section 4. Section 5 introduces the deep learning implementation. Various numerical
examples are shown in Section 6. The useful lemmas on Malliavin calculus and ReLU calculus
are summarized, and furthermore the sample code is listed in Appendix.

2 Preliminaries

We first prepare notation. For d € N and for a vector z € R?, we denote by ||z|| the Euclidean
norm. Also, for k, £ € N and for a matrix A € R¥**, we denote by ||A| the Frobenius norm. For d €
N, let I be the identity matrix. For m, k, ¢ € N, let C(R™,R**) (resp., C([0,T] x R™,R*¥*%)) be
the set of continuous functions f : RF — R*** (vesp., f : [0, T] x R™ — R¥*¢) and Cp;, (R™, R¥*)
be the set of Lipschitz continuous functions f : R™ — RF*¢. Also, we define CyP(R™, Re) as the set
of smooth functions f : R™ — R¥*¢ with bounded derivatives of all orders. For a multi-index a, let
|a| be the length of a. For a bounded function f : R™ — RF*¢ we define || oo = sup,cpm || f(2)]-
For m, k,¢ € N, for a function f € Cr;,(R™, R**%), we denote by C'rip|f] the Lipschitz continuous
constant. For d € N and for a smooth function f : R? — R, we define 8;f = a%if fori=1,...,d,
moreover we define d%f = O, - - Oa, f for a = (au,..., o) € {1,...,d}*, k € N. For a,b € R,
we may write a V b = max{a, b}.

2.1 Deep neural networks

Let us prepare notation and definitions for deep neural networks. Let A/ be the set of deep
neural networks (DNNs):

No,N1,....N
N = ULenn2,00) YNo,Ny,..., N yent+1 N O me, (2.1)

where N0 NUoNE — o b (RN N1 5 RN,

Let p € C(R,R) be an activation function, and for k € N, define gi(z) = (0(z1),. .., 0(zk)),
z € RF.

We define R : N' = Uy nenC(R™,R"), C : N = N, L : N = N, dim;, : N = N and
dimgy; : N — N as follows:

For L € NN [2,00), No,...,N € N, » = (W1, By),...,(Wr,Br)) € NJoNoNe et

E(d’) =L, dimin(w) = Np, dimout(d}) =Ny, C(W = Zf:lNZ(NZ—l + 1)7 and
R)(-) = Aw,.B, © 0Ny, © Aw, B, © -0 0N, © Aw,y B, () € C(RYO,RVE), (2.2)

where Aw, B, (z) = Wiz + By, 2 ¢ RVs-1 bk =1,... L.



2.2 Malliavin calculus

We prepare basic notation and definitions on Malliavin calculus following Bally (2003) [1]
Tkeda and Watanabe (1989) [16], Malliavin (1997) [25], Malliavin and Thalmaier (2006) [26] and
Nualart (2006) [29].

Let Q% = {w : [0,7] = R% w is continuous, w(0) = 0}, HY = L*([0,T],R?%) and let u? be
the Wiener measure on (Q%, B(Q?)), where B(Q¢) is the Borel o-field induced by the topology of
the uniform convergence on [0,T]. We call (Q%, H? u?) the d-dimensional Wiener space. For a
Hilbert space V with the norm || - ||y and p € [1,00), the LP-space of V-valued Wiener functionals
is denoted by LP(Q%, V), that is, LP(Q¢, V) is a real Banach space of all y?-measurable functionals
F : QY - V such that |[F|, = E[||F|?]'? < oo with the identification F = G if and only if
F(w) = G(w), a.s. When V = R, we write L”(Q%). For a real separable Hilbert space V and
F: Q% =V, we write | F|,v = E[||F||1";]1/p7 in particular, ||F||l, when V = R. Let B* = {B{},
be a coordinate process defined by Bl(w) = w(t), w € Q% ie. B?is a d-dimensional Brownian
motion, and B%(h) be the Wiener integral B(h) = Zj’:l fOT i (s)dB%7 for h € H.

Let .7 (Q%) denote the class of smooth random variables of the form F' = f(B%(hy), ..., B%(hy,))
where f € Cf°(R™,R), h1,...,h, € HY, n > 1. For F € .7(Q%), we define the derivative DF as
the H-valued random variable DF = Z;.l:l 0;f(BY(h1),...,B%hy))h;, which is regarded as the
stochastic process:

D F =320 10;f(B(h1),..., BY(hn))Ri(1), i=1,...,d, te[0,T] (2.3)

For F € #(Q%) and j € N, we set DIF as the (H%)®/-valued random variable obtained by
the j-times iteration of the operator D. For a real separable Hilbert space V', consider .y of
V-valued smooth Wiener functionals of the form F = Zle Fu, v € V, F; € Z(Q%), i < ¢,
¢ € N. Define DIF = 25:1 DIF;®v;, 7 € N. Then for j € N, D7 is a closable operator
from % into LP(Q4, (H))®) @ V) for any p € [1,00) (see p.31 of Nualart (2006) [29]). For

ke N, p e [1,00), we define [FI7, = EIFIY) + S5, ENDIF|yuoro)s F € F. Then,
the space D*P(Q% V) is defined as the completion of .7y, with respect to the norm || - || p.v-

Moreover, let D*°(Q¢, V) be the space of smooth Wiener functionals in the sense of Malliavin
D> (04, V) = Np>1 Nken DFP(QL V). We write DPP(Q9), k € N, p € [1,00) and D*®(Q?), when
V = R. Let ¢ be an unbounded operator from L*(Q¢, H?) into L?*(Q%) such that the domain of
8, denoted by Dom(6), is the set of H%valued square integrable random variables u such that
|E[(DF,u) a]| < ¢||F|l12 for all F € DY?(Q¢) where ¢ is some constant depending on u, and if
u € Dom(9), there exists 6(u) € L?(Q?) satisfying

E[(DF,u) 4] = E[FS(u)] (2.4)

for any F € DV2(Q%). For u = (u',...,u?) € Dom(d), 6(u) = Zgzléi(ui) is called the Skorohod
integral of u, and it holds that E[fOTDLSFuids] = E[F§'(u')], i =1,...,d for all F € D"? (sce
Proposition 6 of Bally (2003) [1]). For all k € NU{0} and p > 1, the operator ¢ is continuous from
DAL (4 HY) into DP(Q7) (see Proposition 1.5.7 of Nualart (2006) [29]). For G € D?(Q9)
and h € Dom(J) such that Gh € L*(Q¢, HY), it holds that

T
5i(Ghi)=G(5i(hi)—/ Di Ghids, i=1,....d (2.5)
0

and in particular, if » € Dom(§) is an adapted process, §°(h%) is given by the Ito integral, i.e.
§'(hY) = foThédB;i’i fori=1,...,d (e.g. see Section 3.1.1 of Bally (2003) [1], Proposition 1.3.3
and Proposition 1.3.11 of Nualart (2006) [29]).

For F = (F',...,F%) ¢ (D*(Q%)¢ define the Malliavin covariance matrix of F, of" =
(05)1§i,j§d7 by o = (DF', DF/) ya = Zgzl fOT Dy sF'Dy sFids, 1 <i,j <d. We say that F €
(D> (2%))? is nondegenerate if the matrix o is invertible a.s. and satisfies ||(det o) 7||, < oo,
p > 1. Malliavin’s theorem claims that if F € (D°(Q9))? is nondegenerate, then F has the
smooth density p’'(-). Malliavin calculus is further refined by Watanabe’s theory. Let S(R?)



be the Schwartz space or the space of rapidly decreasing functions and S’(Rd) be the dual of
S(RY), i.e. S'(R?) is the space of Schwartz tempered distributions. For a tempered distribution
T € 8'(RY) and a nondegenerate Wiener functional in the sense of Malliavin F € (D*°(Q%))<,
T(F) = T o F is well-defined as an element of the space of Watanabe distributions D™ (Q%),
that is the dual space of D*®(Q%) (e.g. see p.379, Corollary of Tkeda and Watanabe (1989) [16],
Theorem of Chapter IIT 6.2 of Malliavin (1997) [25], Theorem 7.3 of Malliavin and Thalmaier
(2006) [26]). Also, for G € D>®(Q%), a (generalized) expectation E[T (F)G] is understood as a
pairing of T(F) € D™>°(Q¢) and G € D>(Q%), namely pe (T (F),G)p-~, and it holds that

p-=(T(F),G)p= = s(T, E[G|F = ]p" ("))s (2.6)

where s/ (-, -)s is the bilinear form on S'(R%) and S(R?), E[G|F = €] is the conditional expectation
of G conditioned on the set {w; F(w) = £} (e.g. see Chapter 111 6.2.2 of Malliavin (1997) [25], (7.5)
of Theorem 7.3 of Malliavin and Thalmaier (2006) [26]). In particular, we have p-c (0y(F), 1)pe =
5:(8y, 0" ())s = p* (y) for y € R, and thus p* is not only smooth but also in S(R?), i.e. a rapidly
decreasing function (see Theorem 9.2 of Tkeda and Watanabe (1989) [16]), Proposition 2.1.5 of
Nualart (2006) [29]). For a nondegenerate F € (D*(Q%))%, G € D*°(Q?) and a multi-index
v = (71,.--,7), there exists H,(F,G) € D*(Q%) such that

D= (0T (F), G)pee = p—o (T(F), Hy(F, G))pee (2.7)

for all T € S'(R?) (e.g. see Chapter 4.4 and Theorem 7.3 of Malliavin and Thalmaier (2006) [26]),
where H,(F,G) is given by H.(F,G) = H(,)(F, H( (F,Q)) with

ViseesVh—1)

H)(F,G) = 6(5_,(cF);; DFIG). (2.8)

3 Main result

Let a € R, b € (a,00) and T > 0. For d € N, consider the solution to the following stochastic
differential equation (SDE) driven by a d-dimensional Brownian motion B¢ = (B%!,..., B%%) on
the d-dimensional Wiener space (¢, H%, u?):

X[ = (XN de+ o (XP)dBY, XgMT = v e RY, (3.1)

where /rg‘ :RY - R? and O'd : RY — R4 are Lipschitz continuous functions depending on a
parameter A € (0,1]. The solution X" = (X=X 3A4) is equivalently written in the
integral form as:

XEAT = g4 / iy (XA ds+2/ PIxIAT) BB XN — g e R, (3.2)

forj=1,...,d. Furthermore for a given appropriate continuous function f; : R — R and for
A€ (0,1], we consrder ud e C([O T] x R4 R) given by

ul\(t,x) = Blfa(X])] (3-3)
for t € [0,T] and 2 € R?, which is a solution of Kolmogorov PDE:
o (t, x) = LY ud(t, ), (3.4)

for all (t,z) € (0,T) x R? and u$(0,-) = fa(-), where £%* is the following second order differential
operator:

1 d A Aj 9?
Zud” =ty 2 oul oat () g—s—. (3.5)
4,J1,J2=1

8'1:11 8.17]‘2

Our purpose is to show a new spatial approximation scheme of uA( -) for t > 0 by using
asymptotic expansion and deep neural network approximation. The main theorem (Theorem 1)
is stated at the end of this section.



3.1 Asymptotic expansion
We first put the following assumptions on {,ug}xe(o’l], {Uﬁ}xe(o,u and fy.

Assumption 1 (Assumptions for the family of SDEs and asymptotic expansion). Let C' > 0. For
deN, let {u)}re01) C Crip(RYRY) and {0} re(0.1) C Crip(RY,RY?) be families of functions,
and fq € CLZ-p(]Rd,]R) be a function satisfying

1. there are Vo € C°(RERY) and Vg = (Vai, ..., Vaa) € Cf°(RE,RYXY) such that (i) ) =
)\Vd@ and Uc)l\ = AV forall \ € (0, 1], (ZZ) CLip[Vd,O]\/CLip[Vd] =C and ||Vd70(0)||\/||Vd(0)|| <
C, (i) |0°Vailleo < C for any multi-index o and i =0,1,...,d;

2. Y0 () @0} (@) > N2y for all w € R? and X € (0,1];
3. Crip[fa] = C and || fa(0)] < C.

Remark 1. Assumption 1 justify an asymptotic expansion under the uniformly elliptic condition
for the solutions of the perturbed systems of PDFEs. Assumption 1.3 is also useful for constructing
deep neural network approximations for the family of PDE solutions.

From Assumption 1.2, we may write each SDE (3.1) for d € N as

d
IXEN XY Vs (X B, 39
=0

with Xg’)"gJ =z € R, where the notation dB"" = dt is used. We define

B = / dBJv - dBer . >0, a€{0,1,...,d}", k€N, (3.7)
0<t1 <<t <t

d j d 2 .
and Lao = 325, Vdj,o(')% +3 i =1 de( )Vdji( )B%?W’ Lai = Z] 1 ij( )aij =1....d
We define

XM — g4\ Z Vai(x)B&M, (3.8)

Proposition 1 (Asymptotic expansion and the error bound). For m € NU{0}, there exists ¢ > 0
such that for alld e N, t > 0, X € (0,1],

sup_|Bfa(X{M)] = { B[ fa( X))
z€[a,b]d
(4)
+ZAJE{ (XA 3 H,y<k>(Zvdl B;“,H > Vi @Bt)] }
Bk () =1 |a|=p,
< chAm“t(m“)/ : (3.9)

where Vdea(x) =Lga, ~~Ld,aT_1Vjar (x),ee{l,...,d}, ae{l,...,d}?, and

G) j
> = > > % i>1. (3.10)

BE) B k=130 =(B1,....8) s.t. Bi+-F+Br=7+k,Bi>2 v =(v1,..;,7) E€{L,...,d}F

Proof of Proposition 1. See Section 4. [

The weights in the expansion terms in Proposition 1 can be represented by some polynomials
of Brownian motion. We show it through distribution theory on Wiener space. Let d € N, for
€ (0,7 and a = (ay,...,a) € {0,1,...,d}* k€ NN [2,00), let

B?’a _ 5o (Btd7(a1,...704k71)) Bd ade Sk —1) / Da, s Bd (o0 1)d8 (3.11)



with Bf’(al) = B**' which can be obtained by (2.5). For example, we have Btd’(al’OQ) =
Bf’alBtd’a"‘ — tla,—anz0 for a = (a1, a2) € {0,1,...,d}* Let op € R ¢ =0,1,...,d and &
be a matrix given by ¥, ; = E?Zloéaz, 1 <i,j < d and satisfying det ¥ > 0. Let 7 € S'(RY). We
show an efficient computation of p-e (T(Zf 0 0B, H, (Z?:o o:B& BEY))pee in order to give
a polynomial representation of the Malliavin weights in the expansion terms of the asymptotic

expansion in Proposition 1. Note that we have

. <T<§;%B£j’i) (ZUzBfl,Bd a>>Dm —— w<8’YT<Zalet) BY a>

i=0
o d
= 5/(0T (0B + o -), BB} Bf = - ]p"())s, (3.12)
by (2.7) and (2.6), where ¢ is the matrix o = (01, ..,04), and for y € R, it holds that
d d
E[B*|B{ = ylp® (y) = 5:(6,, EB]|Bf = - p"())s = p-= (6,(B{), By *)p=
by (2.6). Also, one has
a a* ].
b (8, (BB “)p= =p-= (9" 8,(B), 1)p= "

1 o
:D—O"@y(Bg)aHa*(Bgv1)>D°°Htk:D—m<5y(3d) Bd o=, (3.13)

k!
by (2.5), (2.7) and (2.8), where o* is a multi-index such that o™ = (a7, ..., aj,)) = (@), -, Q)
satisfying (o) = #{i;0; # 0} and o5, # 0, i =1,...,¢(a). Then, we have

J )i e 1 a
ZUzBd Z%Bf B = s/ (07T (00 B + 0 ), ZE[BL[Bf = - p" ())s

|
Pt k!
:D_MWT(ZQB? k'Bd“mm_D_ ZJZB““ Zalel,de“»
=0
. : o Bl BrrBi)
_ d,i Q1 yees Oy B0, )
7D700<T(ZaiBt )’ Z |’Y‘ H ’an]q qul ! > Do, (314)
=0 J15esdly 5B B)y =1

where, we iteratively used (2.5), (2.6), (2.7) and (2.8). An explicit polynomial representation
of the asymptotic expansion is derived through (3.14). For instance, the first order expansion
(m =1) as follows:

(First order asymptotic expansion with Malliavin weight )

E[fd()_(tdv\,x){1+)\iH (ZVd, ()BY, Z Ldalvdaz()d(alaz))H

=1 o1 ,00= =0

[fd(Xd” +)\Z/ falz + Ay) Z Lao: Vi ay ()

a1 ,00= =0

_— <5y(z Vai(x) B H(g)<Zle (@B B ) Yy

[fd(Xd” +)\Z/ fa(z + Ay) Z La,a, Vs (%)

a1 ,02= =0

d d
< Zde )B) ZZ% d d‘as(fE)Bf’(alm’as)>D°°dy

_E[fd(Xd)\x {1+)\ Z Z Z Ldalvdaz [Ad ] ( )Vd]ag( ) g(al’QQ’as)}.

l,j=1 a1,a2=0 zg=1



Thus, the first order expansion is expressed with a Malliavin weight given by third order poly-
nomials of Brownian motion. In general, we have the following representation.

Proposition 2. Form € N, d € N, A € (0,1], t € (0,T] and = € RY, there exists a Malliavin
weight M\ (t, , BY) such that

E[fo(X) M (¢ @, BY)

m (4)
_E[fd (XM {1+ZAJ 3 HW(ZVU” VB, H NIRRT IB%?“)H, (3.15)
=1 Bl 4k £=1 |a|=pe
and
(b7, BY) = 14 3y A ge (B he(w)Poly, (BY) (3.16)
for some integers n(m) € N and p(e) € N, e = 1,...,n(m), polynomials Poly, : R? — R,
e =1,...,n(m), continuous functions g. : (0,T] = R, e = 1,...,n(m), and continuous func-
tions he : R* = R, e = 1,...,n(m) constructed by some products of Agl, {Vi,ito<i<a and

{0%Vaito<i<d,ae{l,...d}t e<am given in Assumption 1 of the form:
5 he(@) = 172 Laas, -+ La,ar da ( 2)Y % 147 e () V5 (@) (3.17)

with some constants ¢, € (0,00), qo € N and some multi-indices (7, ...,7¢) € {1,...,d}" and
(af1,---nafye) €{0,1,....d}Pr with p; €N, £=1,... e, which satisfies that for p > 1,

sup MA@, B, < cd? (3.18)
(t.2)€(0,T]x[a,b]4,A€(0,1]

for some constant ¢ > 0 independent of d.

Proof of Proposition 2. See Section 4. [J

Remark 2 (Remark on computation of Malliavin weights). Malliavin weight is initially used
in Fournie et. al [7] in sensitivity analysis in financial mathematics, especially in Monte-Carlo
computation of “Greeks”. Then a discretization scheme for probabilistic automatic differentiation
using Malliavin weights is analyzed in Gobet and Munos [10]. The computation of asymptotic
expansion with Malliavin weights is developed in Takahashi and Yamada [35][37], and is further
extended to weak approzimation of SDEs in Takahashi and Yamada [38]. Note that a PDE expan-
sion is shown in Takahashi and Yamada [36] to partially connect it with the stochastic calculus
approach. The computation method of the expansion with Malliavin weights is improved in Ya-
mada [41], Naito and Yamada [27, 28], Iguchi and Yamada [17, 18], and Takahashi et al. [34]
where technique of stochastic calculus is refined. The main advantages of the stochastic calculus
approach are that (i) it provides efficient computation scheme using Watanabe distributions on
Wiener space as in (3.13) and (3.14), (ii) it enables us to give precise bounds for approzimations
of expectations or the corresponding solutions of PDEs. Actually, the computational effort of the
expansions is much reduced in the sense that It6’s iterated integrals are transformed into simple
polynomials of Brownian motion, and also the desired deep neural network approximation will be
obtained in the next subsection through the approach.

3.2 Deep neural network approximation

In order to construct a deep neural network approximation for the function with respect to
the space variable of the asymptotic expansion, i.e. z — E[f4(X2) ax(t z, BH)], we consider
the further assumptions.



Assumption 2 (Assumptions for deep neural network approximation). Suppose that Assumption

1 holds. There exist a constant k > 0 and sets of networks {w:“gi}56(071),d6N7i6{0,17___7d} C N,

Vg ATl
{%,d b }66(0,1),d€N,i€{0,1 ,,,,, d},ae{l,...,dyv C N, {pe? Yee(0,1),den C N and {¢gd}se(o,1),deN cN
such that
Va,i

1. foralle € (0,1), d € N, CY%4") < kd®e™, i = 0,1,....d, CWJ,"™) < wd"e™, i =
0,1,....d, « € {1,...,d}*, L €N, C(w;“f?l) < kd®e™", and C(f?) < rd®e™";

2. foralle € (0,1),d €N, z € R, ||[Vai(z) —Vii(@)| <ewd,i=0,1,...,d, and [|0“Vy(z) —
Viia(@)| <end®, i=0,1,....d, a € {1,...,d}", £ € N, where V§, = R(y{"") € C(R%,R?)

and V5, o = R ") € C(RY,RY);

3. for alle € (0,1), d € N, z € R%, || A (z) — Agi(x)ﬂ < erd”®, where A7'(+) is the inverse

matriz of Aq(-) := Elevd,i(-) ® Vai(-) and A;l = R(w?; ) € C(RY, R, and for all
€€ (0,1),deN, supze[ayb]dHA;i(:z:)H < kd®;

4. foralle € (0,1), d €N, z € RY, |fy(x) — f5(x)| < erd®, where f5 = R(yI?) € C(RYR).

Remark 3. Assumption 2 provides the deep neural network approximation of the asymptotic ex-
pansion with an appropriate complexity. Note that Assumption 1.1, 1.3, 2.2 and 2. give that there
exists > 0 such that |f3(x)] < nd"(1 + ||z]]) for all € € (0,1), d € N, and sup,¢, p)a ||V (@)]| <
nd" for alli=0,1,...,d, sup,e(qpallVi;o(@) < nd? for alli=0,1,...,d, o € {1,.. ., d}* with
£ € N. In the following, Assumption 2.2, 2.8 and 2.4 plays an important role for the analysis of
“product of neural networks” in the construction of the approximation with asymptotic expansion.

Remark 4. In particular, Assumption 2.3 is satisfied for the cases Aq(x) = Iq and Aq(x) = s(d)Iy
with a function s : N — R. For instance, the case Ag(x) = I; corresponds to the d-dimensional
heat equation when Vg0 = 0. Also, the SDEs with the diffusion matriz Vy = (1/\/g)Id discussed
in Section 5.1 and Section 5.2 of [9] and Section 5.2 of [13] are examples of (8.1) (or (3.6)). For
those cases, the neural network approzimations in Assumption 2 are not necessary, since Vg,
i=1,...,d and hence Aq do not depend on the state variable x, whence Vy ;. and A;l are Vg

and A;l themselves. Furthermore, in such cases (e.g. the high-dimensional heat equations) the
asymptotic expansion will be simply obtained (usually as the Gaussian approximation), which are
exactly reduced to the methods in Beck et al. [2] and Gonon et al. [11].

The main result of the paper is summarized as follows.

Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimensionality).
Suppose that Assumption 1 and Assumption 2 hold. Let m € N. For d € N, consider the SDE
(3.1) on the d-dimensional Wiener space and let u§ € C([0,T] xR, R) given by (3.3) be a solution
to the Kolmogorov PDE (3.4). Then we have

sup Nuf(t) = B M (1, BE]| = O 1407072, (3.19)
rE|a,

Furthermore, fort € (0,T] and X € (0,1], there exist {¢E’d}5€(071),d6N C N and c > 0 which depend
only on a,b,C,m, k,t and X, such that for all ¢ € (0,1) and d € N, we have R(¢>?) € C(R%,R),
C(¢p5%) < ce™d® and

sup | B[fa(X{ )M (2, BY)] = R(67%)(2)| < e. (3.20)

z€[a,b]?d

Proof. See Section 4. [J

We provide the weight Mg', (¢, z, B&) with m = 0,1 in Theorem 1 for our scheme (the expres-
sion for general m will be given in Section 4 below). That is, for d € N, A € (0,1], ¢ > 0 and



z e RY,

Mt BY) =1, (3.21)

d d d
1 -~ .
M:l,)\(tv L, Bg) =1+A Z Z Z %Ld,alvd{az (x)[Ad 1]@' (m)vdj,ag (x)

a17062:o 043:1 Z,jzl

d, d, d, d, d, d,
{Bt alBt aQBt - tB; a11a2=a3;ﬁ0 —tB; “ Lo =asz0 — 1By a31a1=a2¢0}7

(3.22)
where
d d
. o 1 i . 82
Ljo= Jo(y—— 4 = JLN\YI2 (2 9
10 =2 VioOg-t5 2. ViV g5 (3.23)
Jj=1 i,41,j2=1
)
Lasi = Zvj,i(')%v i=1...,d (3.24)
=1 J

Hence, the weight for m = 0, i.e. Mg’A(t,x,Bg) = 1 provides a simple (but coarse) Gaussian
approximation, and the Malliavin weight for m = 1 will be worked as the correction term for the
Gaussian approximation. The derivation is provided in the next section.

4 Proofs of Proposition 1, 2 and Theorem 1

We give the proofs of Proposition 1, 2 and Theorem 1. Before providing full proofs, we show
their brief outlines below.

e Proposition 1 (Asymptotic expansion)

— take a family of uniformly non-degenerate functionals Ftd’A’I = (Xtd’)"w—:c)/)\, A€ (0,1],
as the family Xtd’A’m, A € (0, 1] itself degenerates when A | 0, and consider the expansion
Fd,)\,w _ Fd,O,:Jc e in D>

¢ = Iy + mn .

— expand 8, (F"™) ~ §,(F%") 4. .- in D™ and take expectation to obtain the expan-

sion of the density p™* (y) = E[5,(F{"™")] ~ E[5,(F**")] + - i R.

— derive precise expression of the right-hand side of F[f, (Xf’)"m)] = cg’A’t + cf’)"t

cﬁl,;“ + Residualﬁf"t by using Malliavin’s integration by parts.

— give a precise estimate for Residual®™* () (w.r.t A, t and the dimension d) uniformly
in z by using the key inequality on Malliavin weight (Lemma 5 in Appendix A) which
yields a sharp upper bound of Residuali;’\’t(x).

e Proposition 2 (Representation and property of Malliavin weight)

— use the formula (3.14) to prove that cg”\’t + c'f”\’t 4+ cdMt above can be represented

by an expectation E[fq(X5M") ax(t z, B3] with a Malliavin weight MG\ (t, B%)
constructed by polynomials of Brownian motion.

— check that the moment of the Malliavin weight My’ (¢, z, B%) grows polynomially in d
from the representation.

e Theorem 1 (Deep learning-based asymptotic expansion overcomes the curse of dimensional-
ity)
— (0) for d € N, first check the expansion E[fq(X5") 7\ (t, , B{)] obtained in Propo-

sition 1 and 2 gives an approximation for u)(t,z) on the cube [a,b]? with a sharp
asymptotic error bound.



— (1) for an error precision ¢, construct an approximation E[f (X&) M7 Nt B ~
B[f3(XIM=0) Q’TA’l;(t?x,Bf)] on the cube [a,b]? by using stochastic C{f;lcmlus7 where
£, XA and MQ’?A,é(t,x,Btd) are given by replacing {Vi,}i, A;", {Viia}ia with
their neural network approximations {Vd‘ii}i, AUZ};, {Via,ias}ie with 6 = (e°d™°) for
some ¢ > 0 independent of € and d.

— (2) for an error precision ¢, construct a realization of the Monte-Carlo approximation
BN M 5t BO) & g 0 F1X 0 (wea)) MG (8, B ()
on the cube [a,b]? with a choice M = O(¢¢d°) for some ¢ > 0 independent of ¢ and d,
by using stochastic calculus.

— (3) for an error precision e, construct a realization of the deep neural network approxi-
mation 45 Zz L FA(X, xXpAe 5 (z)( We d))len)\zi( z, B (&) (We,q)) = R(¢e,a)(x) on the cube
[a,b] whose complexity is bounded by C(¢. 4) < ce~d® for some ¢ > 0 independent of
¢ and d, where ReLU calculus (Lemma 9, 10, 12 in Appendix B) is essentially used.

— apply (0), (1), (2) and (3) to obtain the main result.

In the proof, we frequently use an elementary result: sup,c(, yja[lz[| < d*/? max{|al, b}, which
is obtained in the proof of Corollary 4.2 of [11].

4.1 Proof of Proposition 1

For z € R ¢ € (0,T] and X € (0,1], let FPM = (FPA&1  FEAmd) e (D))
be given by Fd)‘m’] = (XM )N, § = 1,...,d. We note that {F/"*"}, is a family of
uniformly non—degenerate Wiener functionals (see Theorem 3.4 of [40]). Then, for 7 € S'(R),
the composmon T(FM") is well-defined as an element of D™°(Q%), and the density of F{"*"
namely p " € S(Rd) has the representation p™*  (y) = oo {8y (FEM), 1) p-oe for y € Rd.
Then, for z € R, ¢ > 0 and X € (0,1], it holds that

E[fa(X]"7)] = /R Fal@ + Ao (6 (), Lp-edy. (4.1)

For z € R ¢ € (0,7], let F-%" = Zgzon7i(x)Bf’i. Thus, for S € S'(RY), the composition
S(F* Y is well-defined as an element of D~°°(Q%) and has an expansion:

D*OO(‘S (Fd)\w) >JD>°° =D~ °C<5y(Ftd’07w)a 1>JD>°°

N o7 d Az mil ed Az
+ZFWD_W<5y(Ft7 ), D)pee [ amo + ATEEL YT, (4.2)
j=1""

for 2 € R%, t > 0 and A € (0, 1], where

1 m—+1
A, (I—w)™ o™ e
gg’u); = /0 m! Onm1 D—ee <5y(Ftd K ), Dpee |n:/\ud“- (4.3)

By the integration by parts (2.7) and Theorem 2.6 of [35] yield that

1 09 -
7@@*w<5y(Ftd’A’ )s Dpee|x=0
k1o
d,0,z d,0,z d,\,x,
Z D_m<5 (F0), H o (FO Hz'a)\”F )\ )>Dw. (4.4)
i) () =1

J RV 1 Wi
where 2210 40 T 2km1 2ai= (i, i) s.b b inmdie 21 2y =(y1 ) €L dyk 1 With a cal-
culation

1 62 d,\,x,j j da
ﬂa)\iF [x=0 = Z Lio, Lao, Vi ar( x)B; (4.5)

|a]=i41
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for j=1,...,d and ¢ € N, it holds that

D—o° <5y(Ftd7>\’m)v 1>]D>°° =D <5y (Ftd7071)7 1>1D>°°
m 7 k
NN o (0, (BT, Hywo (BT . Laas L, Vi, (2)B )
=1

J=1 () (k) | =i

+ ATHLEL R, (4.6)

Again by the integration by parts (2.7), %D—m<5y(Ftd’A)x),1>[D)00|77:)\u (with Au € (0,1]) in

Sf,;f;’m’y in (4.3) is given by a linear combination of the expectations of the form
d,\u, d,A\u, k 1 d,n,x,
D—o° <5y(Ft “ z)v Hw(Ft “ He:l W@?“Ft e W|n:>\u)>D"°

with k <m+1,v € {1,...,d}F and Bi,..., Br > 1 such that 25:155 = m+ 1. By the inequality
of Lemma 5 with £ = 0 in Appendix A, we have for all p > 1 and multi-index =y, there are ¢ > 0,
p1,p2,p3 > 1 and r € N satisfying

d,\,xz c RSN d, N,z 2dr—
IHo (FPA, Gy < ed?|[ det(a™ )7 o D120 1G s (4.7)

for all G € D>, t € (0,T], A € (0,1] and = € [a,b]?. In order to show the upper bound of the
weight appearing in the residual term of the expansion, we list the following results:

Lemma 1.

1. For all p > 1, there exists k1 > 0 such that for alld €N, t € (0,T], 2 € [a,b]* and X € (0,1],
[ det(aF ) Y|, < mydre . (4.8)

2. Forall p > 1, r € N, there exists iy > 0 such that for all d € N, t € (0,T], x € [a,b]? and
A e (0,1],

HDFtd)\’I”r,p,H < kadft'/2. (4.9)

3. For all{ € N, p > 1 and r € N, there exists n > 0 such that for all d € N, t € (0,T],
z € [a,b]? and X\ € (0,1],

||a/e\Ftd7)\’w||T,p < ndnt(€+1)/2- (4.10)

Proof of Lemma 1. For d € N, let Vg : R? — R¥? be such that V; = (Va1,--.,Vaq) and for
A€ (0,1], let V3 : RY — R4 be such that V) = (Vdi‘l, . .,Vdi‘d). Moreover, for d € N, we use

the notation Jy_,; = Q%Xf’/\’aj = (82_Xf7/\’w’j)1§i’j§d for x € R% ¢ > 0 and A € (0,1].

1. Note that for d € N, t € (0,T], z € R? and X € (0,1], we have

t

P /0 [Dy (XM — 2) /A[Do (X3 — ) /N Tds (4.11)
t

= / JoetJJisVd(Xf’*""”)Vd(Xf’*’”’)TJJisTJLtd& (4.12)
0

Under the condition o)) (-)o}(-) " > A%I,, (i.e. Va(-)Va(-)" > I4) in Assumption 1.3, we have
that there is ¢ > 0 such that

sup || (det o)L, < edot™9, (4.13)
z€[a,b]?

foralld e N, ¢t € (0, 7] and A € (0, 1], by Theorem 3.5 of Kusuoka and Stroock (1984) [22].

11



2. We recall that for d € N, A € (0,1] and 0 < s < t, Do(X{™ — 2) /X = JoJg b V(X A7),
Then, there is ¢ > 0 such that

sup |DE |y ppra < edt'?, (4.14)
z€(a,b]d

foralld e N, ¢t € (0,T] and A € (0, 1], by Theorem 2.19 of Kusuoka and Stroock (1984) [22].
3. Note that

]- 8 d)\:vr d)\:v e r d,\,x d,j
) S Z / b uwe . Zm V(X &My aBd (4.15)
i(k) v(’“) j=0

+A Z / zvame d“%Zav VI(XINABR. (4.16)

309 () j=0
Since the above is a linear SDE, it has the explicit form and we have

1o P

79N < ed°tt/?, (4.17)

k.p

sup
z€[a,b]?

for some ¢ > 0 independent of ¢ and d, due to the result:

k .
L o e Z z
sup / JO%tJ()Al)S H —' 8)\19 v 8'7 Xd A, )dBd,] o

w€[ablt Ty Do) j=0

S Cdcté/Q7

(4.18)

which is obtained by using Lemma 6 and Lemma 7 in Appendix A. Then, the process

10 dA\z _ dAz%Z NC dAT) R, d
i(k) 'v(k)
(4.19)
satisfies
1 0% _gxe
S M < ede /2 4.20
mes[ltllg]d ONT! kp © ’ ( )

for some ¢ > 0 independent of ¢ and d. O

Using above, we have that for all k < m 41, v € {1,...,d}* and fi,...,8x > 1 such that
Zif:lﬁg =m+ 1, p > 1 and multi-index ~, there exists v > 0 such that

1 (F7, Ty B OV N, < wdVt R 2Bt B2 = gy (m1)/2, (4.21)

for all t € (0,T), = € [a,b] and X\ € (0,1]. Let us define rffl”);’m for t € (0,T], = € [a,b]¢ and
A € (0,1] from (4.1) and (4.6) as

P = Bl

m,t
m () d k
— Bl i3 N S o (S Vai@ BT Y L+ Laa Vi, (@B }]
J=1 B0 4 (k) i=0 0=1|a|=p,
m+1 1(1_u)m o d, A\ u,x d,\,u,x
= /0 m! E[fd(Xt’ ,’ )Wm,Jr’l,;t ]du’ (4'22)
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where X"M"® = ¢ 4 AR 4 € [0,1] and

[m+1]
d, )\ u,x d)\ux d,n,x,ve
Werl,t = Z H F@?’Ft " ’N|7]:>\u)a (RS [Oa 1]7 (423)
B (k)

[m+1] j 1
with Zﬂ(“ (k) * (m + 1)! Zi:l Zﬁ(k):(ﬁlw-’ﬁk)s‘ﬁ S Be=4,Bi>1 E"/(k):('\flsww'}/k)e{lv“' JdYF Kl
Here, Xtd AT e [0,1] and W,’fl’j\r’l’if, u € [0, 1] satisfy that for p > 1, there exists n > 0 such
that

d,\u,x d Au,x m
SUPzela,b]?,ue0,1] ||Xt ” < 77dn and SUPgela,b]¢,ue0,1] || +1 t Hp < ndnt( /2
for all A € (0,1] and ¢ > 0. Therefore, there exists ¢ > 0 such that

sup |7‘d AT < pde N mED/2 (4.24)
z€a,bld

for all A € (0,1] and ¢ € (0,7, and then the assertion of Proposition 1 holds.

4.2 Proof of Proposition 2
For d € N and for m € N, first note that the following representation holds:

{fd Xd A, ™) (Z Vil B;i,i7 ﬁ Z Lao, ...Ld,m_lvd“jir(x)ﬁf’”‘)} (4.25)

£=1|a|=p

/fdx+/\ym— < (ZVM B”“) (4.26)

(Zde B;“,H > Lo Laar Vil (@)BI®) Jody,  (4.27)

£=1]a|=p

fort € (0,T], z € R, A€ (0,1, k=1,...,5 <m, B1,...,8k >2such that By +-- -+ Bp = j +k,
and v € {1,..., d}k. Using the It6 formula for the products of iterated integrals (Proposition
5.2.3 of [21] for example) and the formula from (3.14): for a multi-index v € {1,...,d}? and a
multi-index « € {0,1,...,d}?,

Zvdz de Zvdz BEM,Bda»

d el

dz Jq dy(a1,500,815--58)4])
-0 °°< ZV‘“ )By > MH[ hasia @)V, ()k'B >°°

J1,-~7j\~,|,61,-~7ﬁ\~,| =1

iteratively, we have (3.15) and the representation (3.16).

We can see that for p > 1 and e = 1,...,n(m), |g.(t)Poly,(BI)|, = O(t*/?) for some v, > 1,
and by Assumption 1 and 2 and the expression of h., there is n > 0 independent of d such
that |he(z)| < nd" for all e = 1,...,n(m) and = € [a,b]?. Then, for p > 1, there exists ¢ > 0
independent of d such that

MGt 2, Bl < cde, (4.28)

uniformly in (¢, x) € (0,T] x [a,b]¢ and A € (0, 1].
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4.3 Proof of Theorem 1

The first statement is immediately obtained by combining Proposition 1 with 2:

sup [0t ) = BU(X )M b B = O D), (429)
x€|a,

Hereafter, we fix t € (0,7] and X € (0,1]. For d € N, z € R%, § € (0,1), let
Xf’x’w’é =+ )\Z?:OVd‘ii(m)Bf’i (4.30)
and M:Zf(t, x, BY) € D*(29) be a functional which has the form:
MRt 2, B = 14 Yoy W ge ()hE () Poly (B, (4.31)

where hg RY 5 R, e = 1,...,n(m) are functions constructed by some products of Ad5,

{V(ii}ogigd and {Vj,i,a}0§i§d7a6{1,...,d}e,€§2m in Assumption 2, by replacing with Ad » {Va,ito<i<d
and {Vd7i7a}Ogigd#}e{17“_,d}27gg2,m in Proposition 2, satisfying

vd,\,x,0 m,d
Elfa(Xy JIMG (2, B

m J
_ . 1
d 2,8
:E[fd(Xt ){1+ P ) > o
Il h=1 But ek Bom kB >2 (1, )€ (Lo )
k

d
4, d,a
Heyy,oooo (Y Vi) B T X Lo B, ViR 0B o as
=1

=1 |a|=P

Next, we prepare the following lemmas (Lemma 2, Lemma 3 and Lemma 4) to prove the second
assertion ((3.20)) in Theorem 1.

Lemma 2. There exists ¢; > 0 which depends only on a,b,C,m,k,t and A such that for all
€(0,1),deN, § =0(e*d™),

vd,\,x vd,\,x,0 m,d
sup | E[fa(X{ )Mt 2, BY)] = BIfJ(XEH )M (¢ 2, B <, (4.33)

z€[a,b)?

where f§ = R( j;d) € C(R,R) is defined in Assumption 2.4.
Proof of Lemma 2. In the proof, we use a generic constant ¢ > 0 which depends only on
a,b,C,m, k,t and \. Note that for z € [a, b]?,

|E[fa(XTN)MEA(E 2, BY) = E[f3(X0) MR (¢, 2, BY))|

< B[fa(XI) MGt 2, BY] = Blfa(XT50) MG (¢ 2, BY)|

HE[fa(XPMTOOMEA (2, BY)] = B[S (XEN0) Mg (2, BY]|

HIBLFHXM) M (¢ 2, BY)] — EIf3(X; “%M?ﬁ(t v BYl (434)
By 2 of Assumption 2 (with Assumption 1), it holds that

v ,)\,{L’ m v ,)\,I,(S m
|E[fa(XN)MEA( 2, BY)] = E[fa(X7 )M (8 2, BY)|
< CXIAT = XM (t 2, B |l < ded®, (4.35)

for all # € [a,b]?. By 4 of Assumption 2 (with Assumption 1), it holds that

|B[fa(X2) MA@, BY)) = E[f§(XN )M (8w, BY))| < bede, (4.36)
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for all = € [a,b]?. Here, the estimate M\ (t, B3|z < ed® in (3.18) is used in (4.35) and (4.36).
By 2, 3, 4 of Assumption 2 (with Assumption 1), (3.16) and (4.31), we have that for p > 1,

M\t 2, B — M (2, B, < dede (4.37)
and
B[ (XA )Mt 2, B — E[fS(XPA MR (¢, 2, BY))| < ded, (4.38)

for all € [a,b]?. Then, by taking § = (1/3) [1ed™ with ¢; = max{1,c} where ¢ is the
maximum constant appearing in (4.35), (4.36) and (4.38)), we have

SF%' fa(XPA)ME (2, B — BIFS(XIM ML (e, B <e. O (4.39)

Lemma 3. Forde N, t € (0,T] and M € N, let Btd’(e), £=1,..., M be independent identically

distributed random variables such that Bd © lgv Bf. There exists ca > 0 which depends only on

a,b,C,m,k,t and X\ such that for e € (0 1), d € N and M = O(s7°2d), there is w.q € Q°
satisfymg

M
sup | E[fS(XPN)\ M (1,2, B — Z FHXENO (o, Mt 2, BEO (e 0))| <,

z€[a,b]?
(4.40)
where 6 = O(ed™°") with the constant ¢ in Lemma 2.

Proof of Lemma 3. There exists a constant ¢ > 0 which depends only on a, b, C, m, k,t and A such
that for all « € [a,b]? and M € N,

EHE[fg(Xf’A’””"S)M 3¢, 2, BY)] — —Zfd XA O M3 (¢, 2, BY: <‘>)‘ ] (4.41)
S EIF AN\ M 1., B < % (1.2

Then, by choosing ¢; = max{1, ¢}, we have that for all e € (0,1), d € N and M = coe™?d",

M

v x m 1 -x,0,(¢ m, YA 211/2
BB M 1w, B = o2 S SIS OM e, B ] <6 (1a3)
(=1

for all = € [a,b]?, and therefore, there is We,d € Q4 satisfying

M

x, m 1 xZ, m
sup BN OMES (4 BY] = 52 30 S o) MG (12, B (o) <o D

z€[a,b]? =1

(4.44)

Lemma 4. Ford e N, t € (0,T] and M € N, let Bd © ,0=1,..., M be independent identically

distributed random variables such that Bd (Z) faw Bd There exist {¢ea}ec(0,1),aen C N and
¢ > 0 (which depends only on a,b,C,m,k,t and \) such that for all e € (0,1), d € N, we have
Clpe,a) < ce™¢d°, and for a realization we q € Q% given in Lemma 3, it holds that

M

sup Z X0 (o M (82, BE (we.a) — R(Ge.a)(2)] < & (4.45)
wEab é

where 6 = O(e*d™°") and M = O(e~*d®®) with the constants ¢; and co in Lemma 2 and Lemma
3.
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Proof of Lemma 4. In the proof, we use a generic constant ¢ > 0 which depends only on
a,b,C,m,k,t and \. Let € € (0,1),de N, £=1,....,M, let § = O(e?d™), M = O(e~“d)
where ¢; and co are the constants appearing in Lemma 2 and Lemma 3, let wg 4 be a realiza-
tion given in Lemma 3, and let b4 = Bf (&) (we,q). Since there exists 77 € N such that
13 ; —c jc
RO ) = &+ NRWK @)+ AT R @O for & € RY and Corf)) = 06~ (by
Lemma 9 in Appendix B), there exists 1/1‘1;:?[) € N such that R(w‘ls:‘(ie))(x) = (Q/J(W)( (77((52)( ) =
SN (e 4)) for z € R and C(l/)f’((iz)) = 0(07¢d°) (by Lemma 10 in Appendix B). Next,
we recall that by (4.31), the weight M;"f(t 2,04, 2 € R? has the form M(Tf(t,x,bd’(z)) =
1+ Zegn(m)/\p(e)ge(t)h‘S( z)Poly, (b%() constructed by some products of Ad5, {Vii}ogigd and
{Vdé,i,oe}Ogiﬁd,ae{l,“.,d}‘{,fg%’n in Assumption 2. Using Lemma 12, Lemma 9 in Appendix B and
Assumption 2, there is a neural network ¢;,1(1£) € N such that suple[a,b]d|/\/lgff(t,x,bdv(f)) _
R(w;’(dé))( )| < e/2 and C(¥3 2)) O(e7d°). Hence, we have

s £SO (e 0)) MG (8 2, 650) = R ) @) R ) (@) < e/2. (4.46)

We again use Lemma 12 in Appendix B to see that there exists \Ilfegl € N such that

IR () (@RS () (@) = ROEG)) ()] < /2, (4.47)

for all z € [a,b]?, and C (\Ila;i) O(e7¢d°). Finally, applying Lemma 9 gives the desired result,

i.e. there exist {¢ca}cc(0,1),aen C N and ¢ > 0 such that for all € € (0,1), d € N, we have
C(¢™%) < ce7¢d®, and for a realization w,. 4 € Q7 given in Lemma 3, it holds that

Zf5 XA e ) M, B O (we0) = R(Gea) ()| <o O (448)

sup
z€[a,b]d

Proof of Theorem 1. The first assertion (in (3.19)) follows from (4.29). The second assertion (in
(3.20)) is obtained by combining Lemma 2, Lemma 3 and Lemma 4. O

5 Deep learning implementation

We briefly provide the implementation scheme for the approximation in Theorem 1. Let £ be a
uniformly distributed random variable, i.e. € € U([a,b]?), and define X¢ = £ + A Zf:o Via(&)BP,
t > 0. For t > 0, the m-th order asymptotic expansion of Theorem 1 can be represented by

™ (t,) = argminge oo, BllW(€) — FXHMTAEE B, (5.1)

which is obtained by Theorem 1 of this paper combining with Proposition 2.2 of Beck et al. (2021)

[2]. We construct a deep neural network uNV:?" (¢,.) to approximate the function u™(t,-) given
by for a depth L € N and Ny, Ny,..., Ny € N,
uNN’a(t7:L‘) .Aws B9 O ONy_; © .sz 1’39 L O0---0QnN, © AW{’,Bf(x)7 x € Rd, (5.2)

where Ay po(z) = Wiz + B, = € RV, k = 1,....L with (W}, B}),...,(W{,B})) €
NéV”’NI""’NL given by

a1 9t Ne—1

Ao po (@) = ; : : + : ;o (5.3)
gat(Ne=DNg_1+1 e+ Np Ny 99t NeNi—1+Ng

@4t NeNg—1+1

TNy _1
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and the optimized parameter 6* obtained by the following minimization problem:
6" = argming_sr o, o0 B0 (8,6) — FXOMEL(8€ BY)P)- (5.4)

In the implementation of the deep neural network approximation, we use stochastic gradient
descent method and the Adam optimizer [20] as in Section 3 and 4 of Beck et al. (2021) [2]. In
Appendix C, we list the sample code of the scheme for a high-dimensional PDE with a nonlinear
coefficient in Section 6.2 (which includes linear coefficient case).

6 Numerical examples

In the section, we perform numerical experiments in order to demonstrate the accuracy of
our scheme. We compare the deep learning method of Beck et al. (2021) [2] where the Euler-
Maruyama scheme is used with the stochastic gradient descent method with the Adam optimizer.
All experiments are performed in Google Colaboratory using Tensorflow.

6.1 High-dimensional Black-Scholes model

6.1.1 Uncorrelated case

First, we examine our scheme for a high-dimensional Black-Scholes model (geometric Brownian
motion) whose corresponding PDE is given by

Ol _)\d 9 4 /\2d2282d d _ 1

i (t, ) = izluxi%uA(t’x) t5 - i 6722%(75733)7 ui(0,2) = fa(x), (6.1)
where fq(z) = max{max{z; — K},...,max{zqy — K}}. Let d = 100, ¢t = 1.0, a = 99.0, b = 101.0,
K =100.0,A=0.3, u=1/30 (or 7 := Axpu = 0.01), ¢; = 1.0 (or 0; := Ax¢; =0.3),i=1,...,100.
We approximate the function u$ (t,-) (or the maximum option price e "ué (¢, -) in financial math-
ematics) on [a, b]d by constructing a deep neural network (1 input layer with d-neurons, 2 hidden
layers with 2d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 with m =1
and Section 5. For the experiment, we use the batch size M = 1,024, the number of iteration steps
J = 5,000 and the learning rate ’}/(j) = 10711[0)0.&]] (j) + 10721(0.3J70.6J] (j) + 10731(0.6‘],]] (]),
j < J for the stochastic gradient descent method. After we estimate the function u‘f\ (t,-), we input
zo = (100.0,...,100.0) € [a,b]? to check the accuracy. We compute the mean of 10 independent
trials and estimate the relative error, i.e. |(uf%(t,xo) — ugef’d(t,xo))/u;ef’d(t,xoﬂ where the
reference value ugef ’d(t, o) is computed by the It6 formula with Monte-Carlo method with 107-
paths. The same experiment is applied to the method of Beck et al. (2021) [2]. Table 1 provides
the numerical results (the relative errors and the runtimes) for AE m = 1 and the method in Beck
et al. (2021) [2] with the Euler-Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et
al. n = 32 in the table).

Table 1: Comparison in deep learning methods for d = 100

AEm =1 | Beck et al. n =16 | Beck et al. n = 32

Relative error 0.0048 0.0056 0.0017
Runtime 75.49s 217.79s 352.79s

6.1.2 Correlated case
We next provide a numerical example for a Black-Scholes model with correlated noise in high-
dimension. Let us consider the following PDE:

d 2

y B
ijzkilakaiximjmui(t,x), u(0,z) = fa(x), (6.2)

/\2

d
0
d . d
Opus (t, ) = A igl UL oz, u§(t,z) + 5
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where fy(z) = max{K — 52?:1 :,0} and ¢ = [07]x; € R satisfies 05 = 0 for i < j, 04 > 0
fori=1,...,d and

1 p DRI p
p 1 p p

oo =1 . . . | eR¥ (6.3)
pp p 1

Let d =100, t = 1.0, a = 99.0, b = 101.0, K = 90.0, A = 0.3, 4 = 0.0, p = 0.5. We approximate
the function ué(t,-) (the basket option price in financial mathematics) on [a, b]¢ by constructing
a deep neural network (1 input layer with d-neurons, 2 hidden layers with 2d-neurons each and
1 output layer with 1-neuron) based on Theorem 1 (m = 1) with the expansion technique of
the basket option price given in Section 3.1 of Takahashi (1999) [32] and Section 5. For the
experiment, we use the batch size M = 1,024, the number of iteration steps J = 5,000 and the
learnlng rate ’}/( ) =50x10" 21[003]]( )+5OX 10~ 31(03J06J]( )+50X 10~ 41(0@]J](j),j S J
for the stochastic gradient descent method. After we estimate the function ué(t,-), we input
zo = (100.0,...,100.0) € [a,b]? to check the accuracy. We compute the mean of 10 independent
trials and estimate the relative error, i.e. |(uf?%(t,xo) — ugef 4, azo))/urefd(t,:roﬂ where the

reference value u;ef ’d(t, o) is computed by the It6 formula with Monte-Carlo method with 107-
paths. The same experiment is applied to the method of Beck et al. (2021) [2]. Table 2 provides
the numerical results (the relative errors and the runtimes) for AE m = 1 and the method in Beck
et al. (2021) [2] with the Euler-Maruyama discretization n = 32, 64 (Beck et al. n = 32, Beck et
al. n = 64 in the table).

Table 2: Comparison in deep learning methods for d = 100

AE m =1 | Beck et al. n =32 | Beck et al. n = 64

Relative error 0.0039 0.0042 0.0035
Runtime 83.56s 470.73s 848.43s

6.2 High-dimensional CEV model (nonlinear volatility case)

We consider a Kolmogorov PDE with nonlinear diffusion coefficients whose corresponding
stochastic process is called the CEV model:

d
0
&tu(/{(t,x):)\Zumi% Zﬁ? fﬁl uA(t z), ud(0,2) = fa(x),  (6.4)
i=1 v

where fq(z) = max{max{z; — K},...,max{zy — K}}. Let d = 100, ¢t = 1.0, a = 99.0, b = 101.0,
K =100.0, A= 0.3, p = 1/30 (or 7 := A x u = 0.01), B; = 0.5, v, = K% ¢; = 1.0 (or 0y :=
Ax ¢ =03),i=1,...,d. We approximate the function u$(t,-) (or the maximum option price
e "ud(t,-)) on [a,b]? by constructing a deep neural network (1 input layer with d-neurons, 2 hid-
den layers with 2d-neurons each and 1 output layer with 1-neuron,) based on Theorem 1 with m =
1. For the experiment, we use the batch size M = 1,024, the number of iteration steps J = 5,000
and the 1earn1ng rate ’Y( ) =5.0x10" 1[0 0. 3]]( ) +50 X 10_21(0.3J,0.6J] (]) +50 X 10_31(0.6],]] (]),
j < J for the stochastic gradient descent method. After we estimate the function uﬁl\ (t,-), we input
zo = (100.0,...,100.0) € [a,b]? to check the accuracy. We compute the mean of 10 independent
trials and estimate the relative error, i.e. |(us?%(t, zo) — ref (g, a:o))/umf (t, xy)| where the ref-

erence value ui\ef “(t,x0) is computed by Monte—Carlo method with the Euler-Maruyama scheme
with time-steps 2'° and 10”-paths. The same experiment is applied to the method of Beck et al.
(2021) [2]. Table 3 provides the numerical results (the relative errors and the runtimes) for AE
m = 1 and the method in Beck et al. (2021) [2] with the Euler-Maruyama discretization n = 32,
64 (Beck et al. n = 32, Beck et al. n = 64 in the table).
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Table 3: Comparison in deep learning methods for d = 100

AEm =1 | Becket al. n =64 | Beck et al. n = 128
Relative error 0.0006 0.0019 0.0006
Runtime 83.09s 764.76s 1265.26s

6.3 High-dimensional Heston model

We finally show an example for a small time asymptotic expansion for a high-dimensional
Heston model:

o3 (t, x) = LT M3t x), w30, x) = fog(x), (6.5)
where faq(2) = max{max{z; — K},...,max{zs 1 — K}} and £>*** is a generator given by
: 9
L£2A =) i(0i — w2i) 57—
>0~ ) g, ]
d
1 02 0? 1 0?
A2 STy A V2102 + SV T 6.6
T 2[2552 21508 + PiViT2i-122 D2y 1003 +grias é)x%i] (6.6)

i=1

Let d = 25 (2d = 50), t = 0.5, a = 99.0, b = 101.0, o’ = 0.035, ¥’ = 0.045, K = 100.0,
A =10,k =10, 0; = 0.04, v; = 0.1, p; = =05, 7 = 1,...,d. We approximate the function
u$(t,-) on [a,b]? by constructing a deep neural network (1 input layer with 2d-neurons, 2 hidden
layers with 4d-neurons each and 1 output layer with 1-neuron) based on Theorem 1 with m =1
and Section 5. For the experiment, we use the batch size M = 1,024, the number of iteration
steps J = 5,000 and the learning rate vy(j) = 5.0 x 10721[070,;”] (j) + 5.0 x 10’31(0,3J)0,6J] (j) +
5.0 x 10741(046.]7‘]] (j), 7 < J for the stochastic gradient descent method. After we estimate
the function g (t,-), we input o = (100.0,0.04,...,100.0,0.04) € ([a,b] x [a/,¥'])* to check the
accuracy. We compute the mean of 10 independent trials and estimate the relative error, i.e.
|(uSeP? (¢, 20) — ui\ef’d(t, xo))/u;ef’d(t, x0)| where the reference value uf\ef’d(t7 xo) is computed by
Monte-Carlo method with the Euler-Maruyama scheme with time-steps 2'° and 10”-paths. The
same experiment is applied to the method of Beck et al. (2021) [2]. Table 4 provides the numerical
results (the relative errors and the runtimes) for AE m = 1 and the method in Beck et al. (2021)
[2] with the Euler-Maruyama discretization n = 16, 32 (Beck et al. n = 16, Beck et al. n =32 in
the table).

Table 4: Comparison in deep learning methods for 2d = 50

AEm =1 | Becket al. n =16 | Beck et al. n = 32
Relative error 0.0006 0.0034 0.0007
Runtime 46.96s 119.37s 201.61s

7 Conclusion

In the paper, we introduced a new spatial approximation for solving high-dimensional PDEs
without the curse of dimensionality, where an asymptotic expansion method with a deep learning-
based algorithm is effectively applied. The mathematical justification for the spatial approxima-
tion was provided using Malliavin calculus and ReLU calculus. We checked the effectiveness of
our method through numerical examples for high-dimensional Kolmogorov PDEs.

More accurate deep learning-based implementations based on the method of the paper should
be studied as a next research topic. We believe that higher order asymptotic expansion or higher
order weak approximation (discretization) will give robust computation schemes without the curse
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of dimensionality, which should be proved mathematically in the future work. Also, applying our
method to nonlinear problems as in [14][15] will be a challenging and important task.

A Malliavin calculus

In the following, we provide precise estimates of Wiener functionals, which are useful for
proving and computing the deep learning-based approximation with our asymptotic expansion.

Lemma 5. Let d € N, F € (D*(Q%)? be a non-degenerate Wiener functional, G € D> (Q4),
a = (a1,...,00) € {1,...,d}" with length £ € N. For k € NU {0} and p > 1, there eist
c= C(k,p) > 07 Q= ql(kap) > 17 q2 = q2(kapa d) > 17 q3 = Q3(k’p) >1andr = T(k) € N such
that

c —1r 2dr—|a
1Hao(F,G)|lxp < cd®l| det(a™) 7[5, IDFIEY 1 ol Gllicsiags- (A1)

Proof of Lemma 5. For i € {1,...,d}, we have

d d
1H o) (F, )iy < D 11807 )" DFIG)llip < crp ) 075 DE Glliyap,aa, (A.2)

Jj=1 Jj=1

for some universal constant ci, > 0. Let p; and ps be real numbers such that pfl +py L=p=t

Hereafter, we use a generic constant C' > 0 such that C' = cd® for some ¢ > 0 depending on k and
p, whose value varies from line to line. Since it holds that

lo ™) DF s pn.re < Clldet(0™) ™ 5 sappn IDF I gainayvypraras (A3)

for some e € N depending on k, we have

HH(i)(F7 G)Hk,p < C” det(UF)_lllg(k+2)pl”DFHifligl(zd(k+2),1)pl,yd||G||k+1’pz' (A'4)
For a = (a1,...,ay4) € {1,...,d}e, we have
| H a0y (B Ol = [Hia) (Fr Hay..rr ) (F. Gy
< CJldet(o ") 30021 I DF IR 22airy-1ypr e | Hion ey (B Ollige: (A5)

Then, iterating this procedure, we have that for k € NU {0} and p > 1, there exist ¢1,¢2,q3 > 1
and r € N such that

—1r 2dr—|a
|Ho(F,G) |k, < Clldet(a™) Y2 IDF| 1 1G kst O (A.6)

k+|al,qg2,H?

Lemma 6. For d € N, i = 1,2, let {Gf’x’i}te(oyT]ﬁzeRd c D>(Q%) satisfy that for k > 1 and
p € [1,00), there exist ¢;,s; > 0 independent of d such that supze[a’b]dHGf’m’in,p < ¢ d%it%i/? for
allt € (0,T). Then, we have that fork > 1 andp € [1,00), there exists ¢ independent of d such that
for all t € (0,T7], sup,ejqpll H?:l Gf’x’sz,p < rdrts1+52)/2 gpd SUP e (q,5)¢ Z?:l Gf’x’ZHk,p <
Cdctmin{51782}/2.

Proof of Lemma 6. We only prove the former case. By Proposition 1.5.6 of Nualart [29], for
k>1andp € [1,00), ||Hf=1Gf’z’l||k7p < ck,p”Gf’ﬂE’l||k_,p1||C77§51’””’2||;w,2 for some constant ¢y, > 0
depending only on k and p, where p1, ps > 1 satisfies 1/p1+1/pa = 1/p. Then, by the assumptions,
sup,epa il [imy G Ik < rdrter+s2/2. 0

Lemma 7. Ford € N, let {Utd’z}tE(O,T]vxERd c D®(QY) satisfy that fort € (0,T], z € R, j =
1,...,d, fg ubrdB%1 € D*(Q%) and that for k > 1 andp € [1,00), there exist ¢,v > 0 independent
of d such that supze[a’b]dﬂuf’m\\k’p < qd?¥/? for allt € (0,T). Then, fork > 1 andp € [1,00), there
exists ¢ > 0 independent of d such that for allt € (0,T1], sup,¢q 44l fot ub*dBaO|. , < cdtv+2)/2
and for j =1,...,d, sup,¢(q el fot ub*dB& ||y, , < edetv+1)/2,
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Proof of Lemma 7. We only prove the latter case. Note that for r =1,... k, D"fot udrdBdI =

Dr=lu 4 [ D ud#dBE. Then, it holds that E[|D" [ ud?dBE [0, 0.1 = E[| D" a0,

t T j r— ,T -1t r— T
FE[| fy Db dBE P, 0, ). Here, B[ID" |0 0] < nd?e 1 [LE(D™ a7, o ]ds

for some 7 (independent of d) and E[||fOtDTug’””ng7j ;?Hd)‘@T] < cptp/%lfotE[HDTug’I||’(’Hd)®T}ds
for some ¢, > 0 (independent of d) by Hélder inequality and Burkholder-Davis-Gundy inequal-

ity. By the assumptions, sup,¢(q ¢ E[| DT ud" P 1< nd”tp_lfgqupqsp”pds < edetrv/2+1)

(Hd)®r
and supxe[a,b]dE[||f(fD”ug’deff’j|p yor] < cptp/zflfgqupqs’”’/zds < cdt?P /2 Then, we
kp < cdtvtH/2. 0O

(H?

t .
have sup, e el i udBLI|

B ReLU calculus

Appendix B gives some results on ReLLU calculus which are basic in the analysis of our paper.
We prepare the following result from Lemma A.7 of [5].

Lemma 8. Let n,d,L € N and fori = 1,...,n, let d; € N and ¢; € N with L(¢;) = L,
dim;, (¢;) = d and dimgy(p;) = d;. Then, there exists v € N such that L(¢) = L, C(¢p) <
St C(¢i), dimiy(¢) = d and dimgy () = > i d; and

R(W)(z) = (R($1)(2),...,R(dn)(x)), x€R™ (B.1)

Also, we list Lemma 5.1 in [12] and Lemma 5.3 in [6].

Lemma 9. Let L,n, Ny, N € N, {as}}_; CR and {¢s}}_; C N be DNNs such that L(¢¢) = L,
dim;, (¢¢) = No and dimgy(¢e) = N for £ = 1,...,n. Then, there exists v € N such that
L) = L, C(y) < n*C(1) and

R(W)(x) =D a/R(¢e)(x), xeRN (B.2)
=1

Lemma 10. Let Ly, Ly, Nj,N§, N} N7 € N and ¢1,¢2 € N be DNNs such that L(¢1) = L1,
L(¢2) = Lo, dimin(¢1) = Ny, dimeu(d1) = N, dimin(¢2) = NG, dimou(d2) = N, and
N7, = Ngy. Then, there exists ¢ € N such that L(1)) = L1 + La, C(¢) < 2(C(¢1) + C(¢2)) and

R(¢)(x) = R(¢1)(R(¢2)(x)), =€ RND. (B.3)

The following result of Theorem 6.3 of [6] is useful.

Lemma 11. Let M € NN [2,00) and D € [1,00). There exist DNNs {t):}.c(01) C N and a
constant ¢ > 0 (independent of M and D) such that for all € € (0,1), C(vb:) < cM(|log(e)| +
M log(D) + log(M)) and

M
sup |R(e)(x1, ..., 2ar) —chl\ <e. (B.4)
x1,...,x €[—D,D] i=1

In our analysis, the next result will be applied.

Lemma 12. Let a € R, b € (a,00), ¢ > 0, m € NN [2,00), d,L € N and {¢s}}2; C N be
DNNs such that for i € {1,...,m}, L(¢;) = L, dimy,(¢;) = d, dimout(¢;) = 1, C(¢:) < ed® and
SUPge(q,)d|R(G:)(z)| < cd®. Then, there exist {*%ec0.1).0en € N and & > 0 (independent of
d) such that for all e € (0,1) and d € N, we have C(¢>%) < ke™*d" and

b

sup  |R(¥™9)(x) —

R(0)(x)| < e. (B.5)
z€[a,b]? ?

1
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Proof of Lemma 12. First we use Lemma 11. Let ¢(d) := ¢d®. Then, there exist a set of DNNs
{¥y(a),c}ee(0,1) € N and a constant ¢’ > 0 (independent of m and ¢(d)) such that for all e € (0, 1),
C(Vp(a),e) < m’e'd" and

|R(\Il<p(d),s)(7z(¢1)(x)ﬂ s 7R(¢m)(x)) - H R((b[)(x)l <g, (BG)
=1

for any x € [a,b]?. By Lemma 8, there exists ® € A such that C(®) < mcd® and
R(®)(x) = (R(¢1)(x),...,R(dm)(x)), xR (B.7)

By Lemma 10, there exist {1/15’d}ge(071),d6N C N and & > 0 such that for all € € (0,1) and d € N,
we have C(¢%?) < ke td",

R (@) = R(Tp(a) )(R(®)(2)), @ € RY, (B:3)
and
swp [REw (@) - [[RG0E)| <= O (B.9)
z€la,bld =1

C Sample code
We show the sample Python code used in the numerical computation in Section 6.2.

Listing 1: model.py

import tensorflow as tf

from tensorflow. contrib. layers . python . layers import initializers
from tensorflow. python . training. moving_averages \

import assign_moving_average

from tensorflow. contrib. layers . python . layers import utils

import time

0 O ULk W N

9 import numpy as np

10 import math

11 from scipy.stats import multivariate_normal as normal

12 from tensorflow.python.ops import control_flow_ops

13 from tensorflow import random_normal_initializer as norm_init
14 from tensorflow import random_uniform_initializer as unif_init
15 from tensorflow import constant_initializer as con

16

17

18 def neural_net(y, neurons, name, is_training,

19 reuse=tf.AUTO_REUSE, decay =0.9, dtype=tf. float32):
20 def batch_normalization(x):

21 beta = tf. get_variable( , [x. get_shape()[ -111, dtype,
22 tf. zeros_initializer ())

23 gamma = tf. get_variable(

24 , [x. get_shape()[ -1]]1, dtype,

25 tf. ones_initializer ())

26 mv_mean = tf. get_variable(

27 , [x. get_shape()[ -111, dtype=dtype,

28 initializer=tf. zeros_initializer (), trainable= False)
29 mv_var = tf. get_variable(

30 , [x. get_shape()[ -1]1], dtype =dtype,

31 initializer=tf. ones_initializer(), trainable= False)

32 mean, variance = tf.nn. moments(x, [0], name= )

33 tf. add_to_collection(

34 tf. GraphKeys. UPDATE_OPS,

35 assign_moving_average(mv_mean, mean, decay,
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36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99

def

def

zero_debias= True ))
tf. add_to_collection(
tf. GraphKeys. UPDATE_OPS,
assign_moving_average(mv_var, variance, decay,
zero_debias= False ))
mean, variance = utils. smart_cond( is_training,
lambda : (mean, variance),

lambda : (mv_mean, mv_var ))

return tf.nn. batch_normalization(x, mean, variance,
beta, gamma, le-6)

def layer(x, out_size, activation):

w = tf. get_variable(

, [x. get_shape(). as_list()[ -1], out_size],
dtype, initializers. xavier_initializer ())

return activation( batch_normalization(tf. matmul (x, w )))
with tf. variable_scope(name, reuse = reuse ):

y = batch_normalization(y)

for i in range (len( neuromns) - 1):
with tf. variable_scope( ho(@+ 1)):
y = layer (y, neurons[i], tf.nn. relu)
with tf. variable_scope( % len( neurons)):

return layer (y, neurons[ -1], tf. identity)
nn_model (XT, Xini, weight, K, f, neurons, dtype=tf. float32):

nn = neural_net(Xini, neurons, , True, dtype= dtype )
loss = (nn - tf. stop_gradient (f(K,XT)*weight) ) ** 2

return tf. reduce_mean(loss)

simulate(Simtype, T, n, d, X_min, X_max, X_valid, K, SDE, f, neurons,

train_steps, batch_size, lr_boundaries, lr_values, epsilon=1e-8):

tf. reset_default_graph ()

Xini = tf.random_uniform((batch_size, d), minval=X_min, maxval=X_max)

XT, weight = SDE(Xini, T, d, n, Simtype)
loss = nn_model(XT, Xini, weight, K, f, neurons)

global_step = tf. get_variable(
, [1, tf.int32,
tf. zeros_initializer(), trainable= False )

learning_rate = tf. train . piecewise_constant(
global_step, lr_boundaries, lr_values)
update_ops = tf. get_collection(
tf. GraphKeys. UPDATE_OPS, )
with tf. control_dependencies( update_ops):
train_op = tf. train . AdamOptimizer(
learning_rate, epsilon= epsilon). minimize(
loss, global_step= global_step)

with tf. Session() as sess:
sess. run(tf. global_variables_initializer ())
var_list_n = tf. get_collection(

tf. GraphKeys. GLOBAL_VARIABLES, )

for _ in range(train_steps):
sess. run(train_op)

v = sess.run(neural_net(tf.cast(X_valid, tf.float32), neurons,
False))

return np.reshape(v, [-11)
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Listing 2: CEV.py

from model import simulate
import numpy as np

import time

import tensorflow as tf

def f(K, x):
return tf.exp(-r*T)* tf.maximum(tf.reduce_max(x, 1, keepdims = True) -K
, 0.0)

def SDE(Xini, T, d, n, Simtype):

X = Xini
Weight = 1.0

if Simtype ==
for _n in range (n):
dW = tf. random_normal (( batch_size , d), stddev =np. sqrt(T/m))
X = X + r*#X*T/n + sigma *Kx*(1.0-beta)*Xx*beta*xdW
X = tf.maximum(X, 0.0)

elif Simtype == :
dW = tf. random_normal(( batch_size, d), stddev =np. sqrt(T))
Weight = M_weight(X, T, dw)
X = X + r*#X«T + sigma *K+¥*(1.0-beta)*X**betaxdW

X = tf.maximum(X, 0.0)

return X, Weight

def M_weight(x, T, dW):
inv = 1.0/(sigma *K**(1.0-beta)*x**beta)
LOVO = r**2x*x

LOVi = rxbeta*sigma*K**(1.0-beta)*x**beta + 1.0/2.0*beta*(beta-1.0)*
sigma**3*K** (3.0%(1.0-beta)) *x**(3.0*beta-2.0)

LiVO = rxsigmaxK**(1.0-beta)*x**beta

LiVi = beta*sigmax*2*K**(2.0%(1.0-beta))*x**(2.0%beta-1.0)
wll = dWxdW-T

w001 = dW*xT**2.0

w01l = wil1xT

wlll = dW*x*x3-3.0%dW*T

A=1.0/ (2.0 * T) * tf.reduce_sum(inv * ( LOVO * w001 + LOVi * wO11 +
LiVO * w011 + LiVi * w11l ) ,1 ,keepdims=True)

return 1.0 + A
T, d, K =1.0, 100, 100.0

r, sigma, beta = 0.01, 0.3, 0.5
X_min, X_max = 99.0, 101.0

grid = 10
X_valid = np.ones((1,d))*np.expand_dims(np.linspace(X_min, X_max, grid+1),
axis=1)

batch_size = 1024

train_steps = 5000

neurons = [2xd, 2*d, 1]

lr_values = [0.5 , 0.05, 0.005]

lr_boundaries = [train_steps // 10 * 3 ,train_steps // 10 * 6]

for Simtype in [ , 1:
if Simtype == :
n_range = [1,2,4,8,16,32,64,128]
else:

n_range = [1]
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63 for n in n_range:
64 print (
)
65 t_0 = time. time ()
66 vv = simulate(Simtype, T, n, d, X_min, X_max, X_valid, K, SDE, f,
neurons, train_steps, batch_size,lr_boundaries, lr_values)
67 t_1 = time. time ()
68
69 for i in range(grid+1):
70 print (

%(batch_size, train_steps, lr_values[0],
1r_values[1], 1lr_values[2], d, X_valid[i,0], K, T, n, vv[i],
t_1 - t_0, Simtype))
71 print(’7)
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