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Brownian motion

Akihiko Takahashi∗ and Toshihiro Yamada†‡

Abstract

This paper presents a novel generic asymptotic expansion formula of expectations of multidi-
mensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of
the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix
of the target Wiener functional. In particular, the method provides a tractable expansion for
the expectation of an irregular functional of the solution to a multidimensional rough differen-
tial equation driven by fractional Brownian motion with Hurst index H < 1/2, without using
complicated fractional integral calculus for the singular kernel. In a numerical experiment, our
expansion shows a much better approximation for a probability distribution function than its
normal approximation, which demonstrates the validity of the proposed method.

Keywords: Asymptotic expansion, Wiener functional, Malliavin calculus, Rough differential
equation, Fractional Brownian motion

1 Introduction

In the paper, we derive a new asymptotic expansion formula of the expectations of multidimen-
sional Wiener functionals as an extension of Watanabe (1987) [25], Yoshida (1992) [27], Takahashi
(1999) [19], Kunitomo and Takahashi (2001, 2003) [12, 13], Takahashi and Yoshida (2005) [23],
Malliavin and Thalmaier (2006) [15], Takahashi and Yamada (2012) [21] and Takahashi (2015)
[20]. The general asymptotic expansion through a Malliavin calculus approach provides wide ap-
plications and covers previous expansion schemes. More precisely, a technique with a Malliavin
derivative (annihilation) computation and a Skorohod integral (divergence, creation) computation
is introduced. A fractional order expansion on an abstract Wiener space is considered to apply the
method to general Gaussian processes, particularly, rough differential equations driven by frac-
tional Brownian motion. The asymptotic expansion of E[f(F ε)] for a multidimensional Wiener
functional F ε with a small parameter is obtained under a weaker condition in the sense that we
only impose an assumption for the inverse of the Malliavin covariance for F 0, the dominant part of
the expansion F ε ∼ F 0+ · · · , not for F ε itself. The condition is always easily checked in practical
stochastic models. The test function f is assumed to be a bounded measurable function, and the
uniform bound of the expansion is shown.

The method provides a tractable expansion for the expectation of an irregular functional
of the solution to a multidimensional rough differential equation driven by fractional Brownian
motion with Hurst index H < 1/2 without using complicated fractional integral calculus for the
singular kernel. We take an approach substantially different from Baudoin (2015) [3], Inahama
(2016) [10] for the asymptotics for the density of a solution to a rough differential equation.
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To obtain explicit expansion formulas for expectations of irregular functionals of solutions to
rough differential equations, we use the Stratonovich–Skorohod transformation, the Stroock-Taylor
formula and the integration by parts in Malliavin calculus. Then the expansion terms involving
iterated rough integrals are all transformed into polynomials of fractional Brownian motion which
can be easily simulated by Monte Carlo or quasi Monte Carlo methods. A numerical example for
the asymptotic expansion of a probability distribution function is shown to validate the method.
In particular, a comparison result with the normal approximation shows the effectiveness of our
expansion scheme.

The paper is organized as follows. Section 2 provides a new asymptotic expansion for general
Wiener functionals on an abstract Wiener space. Then, Section 3 shows a tractable expansion for
the expectation of an irregular functional of the solution to a multidimensional rough differential
equation driven by fractional Brownian motion of the Hurst index H < 1/2 with a numerical
example. Section 4 concludes.

2 Asymptotic expansion of expectation of Wiener function-
als

We prepare notation and definitions on Malliavin calculus on an abstract Wiener space. For
the details, see Ikeda and Watanabe (1989) [9], Malliavin (1997) [14] and Nualart (2006) [16].

Let (W,H, µ) be an abstract Wiener space, where W is a Banach space, H is a separable
Hilbert space which is continuously, densely embedded into W called the Cameron-Martin space.

For p ≥ 1 and a Hilbert space G equipped with a norm ‖ · ‖G, let Lp(W ;G) be a Banach space
of all µ-measurable functionals F : W → G such that ‖X‖Lp(W;G) = (

∫
W ‖X(ω)‖pGdµ(ω))1/p <∞

with the identification X = Y if and only if X(ω) = Y (ω) a.e. If G = R, we may use a notation
Lp(W) = Lp(W;G).

We denote by j : H → W the embedding map. Let W ′ and H′ be the topological dual spaces

of W and H, respectively. Then, W ′ j∗

↪→ H′ = H
j
↪→ W where j∗ is the dual map of j. The

Gaussian measure µ on (W,B(W)) satisfies∫
W
eiW′ ⟨l,ω⟩Wdµ(ω) = e−

1
2∥j

∗(l)∥2
H , for all l ∈ W ′. (2.1)

Hence {W′〈l, ·〉W ; l ∈ W ′} is a family of Gaussian random variables on (W,B(W), µ) with
mean 0 and covariance E[W′〈l, ω〉W W′〈l′, ω〉W ] = 〈j∗(l), j∗(l′)〉H, l, l′ ∈ W ′. Thus, the map
j∗(W ′) 3 j∗(l) 7→ W′〈l, ·〉W ∈ L2(W) is a linear isometry which can be extend to an isometry
I : H → L2(W) such that I(h) is a Gaussian random variable with mean 0 with the standard
deviation ‖I(h)‖L2(W) = ‖h‖H since j∗(W) ⊂ H is dense.

Let S (W) = {F : W → R; F = f(I(h1), . . . , I(hn)), n ∈ N, f ∈ C∞
b (Rn), h1, . . . , hn ∈ H}.

For F = f(I(h1), . . . , I(hn)) ∈ S (W), we define the Malliavin derivative DF ∈ H as

DF =

n∑
i=1

(∂if)(I(h1), . . . , I(hn))hi. (2.2)

The operator D is a closable operator, and for p > 1, we define D1,p = S (W)
∥·∥1,p

where the
norm ‖ · ‖1,p given by ‖F‖1,p = ‖F‖Lp(W) + ‖DF‖Lp(W;H). Similarly, the higher-order Malliavin

derivatives Dk and the corresponding Sobolev spaces Dk,p can be defined iteratively. We define
D∞ = ∩k∈N,p>1Dk,p.

For p ∈ N, let Domδp = {u ∈ L2(W;H); ∃C > 0 s.t. |E[〈DpF, u〉H⊗p ]| ≤ C‖F‖L2(W), ∀F ∈
Dp,2}. For u ∈ Domδp, there exists δp(u) ∈ L2(W) such that

E[〈DpF, u〉H] = E[Fδp(u)], (2.3)

which is called the duality formula. For F ∈ D∞,2, we have the Stroock-Taylor formula:

F = E[F ] +
∑
p≥1

1

p!
δp(E[DpF ]). (2.4)

2



For the Stroock-Taylor formula, see Theorem (6) of Stroock (1987) [18], Proposition 2 in Chapter
IV of Üstünel (1995) [24] and Theorem 4.1 in Section 4, Chapter VI.4 of Malliavin (1997) [14],
for instance.

For F = (F 1, . . . , F e) ∈ (D∞)e, we define the Malliavin covariance matrix σF = [σF
ij ]1≤i,j≤e:

σF
ij = 〈DF i, DF j〉H, 1 ≤ i, j ≤ e. (2.5)

We say F ∈ (D∞)e is nondegenerate if σF is invertible a.s. and

‖ det(σF )−1‖Lp(W) <∞, ∀p > 1. (2.6)

Let S(Re) be the Schwartz space or the space of R-valued rapidly decreasing functions on Re.
For a nondegenerate Wiener functional F ∈ (D∞)e, G ∈ D∞, f ∈ S(Re) and a multi-index
α ∈ {1, . . . , e}k, we have the integration by parts (IBP) formula:

E[∂αf(F )G] = E[f(F )Hα(F,G)], (2.7)

where Hα(F,G) is recursively defined by Hα(F,G) = H(αk)(F,H(α1,...,αk−1)(F,G)) with

H(i)(F,G) =

e∑
j=1

δ(γFijDF
jG), i = 1, . . . , e, (2.8)

with the inverse matrix γF of the Malliavin covariance of F , i.e. γF = (σF )−1.
Let S ′(Re) be the dual of S(Re), i.e. S ′(Re) is the space of Schwartz tempered distributions.

Let D−∞ be the dual space of D∞, i.e. the space of continuous linear forms on D∞. For T ∈ S ′(Re),
a multi-index α = (α1, . . . , αk), a nondegenerate F ∈ (D∞)e and G ∈ D∞, we have

D−∞〈∂αT (F ), G〉D∞ = D−∞〈T (F ),Hα(F,G)〉D∞ , (2.9)

where S′〈·, ·〉S is the bilinear form on S ′(Re) and S(Re), D−∞〈T (F ), G〉D∞(=: E[T (F )G]) is the
pairing or the generalized expectation of T (F ) ∈ D−∞ and G ∈ D∞, and ∂αT = ∂α1

· · · ∂αk
T is

understood as the distributional derivative sense.

We now discuss asymptotic expansion of Wiener functionals. For {Gε}ε∈(0,1] ⊂ D∞, we say
Gε = O(εr) in D∞ if ‖Gε‖k,p = O(εr) for all k ∈ N and p > 1. Watanabe (1987) [25] shows that
if a family of Wiener functionals {F ε}ε∈(0,1] ⊂ (D∞)e satisfies

(a)

F ε,i ∼ F 0,i + εF i
1 + ε2F i

2 + · · ·+ in D∞, i = 1, . . . , e, (2.10)

where F 0, F1, F2, . . . ∈ (D∞)e, in the sense that for any m ≥ 1,

F ε,i − (F 0,i + εF i
1 + ε2F i

2 + · · ·+ εmF i
m) = O(εm+1) in D∞, i = 1, . . . , e,

(b) (the uniformly nondegenerate condition)

lim sup
ε↓0

‖ det(σF ε

)−1‖Lp(W) <∞ for all p > 1, (2.11)

then, for all T ∈ S ′(Re), it holds that

E[T (F ε)] = a0 + εa1 + ε2a2 + · · · (2.12)

where

a0 = E[T (F 0)], a1 = E[
∑e

i=1∂iT (F
0)F i

1],

a2 =E[
∑e

i=1∂iT (F
0)F i

2] + E[ 12
∑e

i1,i2=1∂i1∂i2T (F
0)F i1

1 F
i2
1 ], . . . . (2.13)
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In this paper, we improve the conditions (2.10), (2.11) and the resulting expansion (2.12) with
the coefficients (2.13) in Watanabe’s expansion on the abstract Wiener space, which enables us
to apply our asymptotic expansion in more general mathematical settings including solutions of
rough differential equations and the functionals of fractional Brownian motions of irregular cases
(i.e., the Hurst index H < 1/2). We show a new fractional order expansion formula of E[f(F ε)]
for a family of Wiener functionals {F ε}ε∈(0,1] in the following sense:

1. F ε has a fractional order expansion in (D∞)e which is more general than (2.10).

2. It works under a weaker condition than the uniformly nondegenerate condition (2.11).

3. An asymptotic expansion is obtained as an extension of (2.12) with a new representation of
expansion coefficients through iterative annihilation (Malliavin derivative) and creation (Sko-
rohod integral) calculation with inner product of tensor products of the Hilbert (Cameron-
Martin) space. Namely, the representation (2.13) of the coefficients of Watanabe’s expansion
is generalized through a computation scheme with the Stroock-Taylor formula, the chain rule
of Malliavin derivative, the duality formula and the IBP formula, which can be applied to
various problems.

For the new expansion, we give the theoretical error including the uniform bound of f .

The first main result is as follows.

Theorem 1. Let {F ε}ε∈(0,1] ⊂ (D∞)e be a family of Wiener functionals such that F ε has an
asymptotic expansion in (D∞)e:

F ε,i ∼ F 0,i + εκ1F i
1 + εκ2F i

2 + · · · in D∞, i = 1, . . . , e, (2.14)

where F 0, F1, F2, . . . ∈ (D∞)e and {κi; i ∈ N} satisfies 0 < κ1 < κ2 < · · · , in the sense that for
any m ≥ 1,

F ε,i − (F 0,i + εκ1F i
1 + εκ2F i

2 + · · ·+ εκmF i
m) = O(εκm+1) in D∞, i = 1, . . . , e, (2.15)

and assume that the Malliavin covariance matrix σF 0

is invertible a.s. and

‖(detσF 0

)−1‖Lp(W) <∞, (2.16)

for all p > 1. Then, for m ≥ 1, there exists C > 0 such that∣∣∣E[f(F ε)]−
{
E[f(F 0)]

+

m∑
j=1

ενj

(j)∑
k,α,β,γ

E
[
f(F 0)Hα∗γ

(
F 0,

1

p!

〈
DF 0,γ1 ⊗ · · · ⊗DF 0,γp ,E[Dp

k∏
i=1

Fαi

βi
]
〉
H⊗p

)]}∣∣∣
≤ C‖f‖∞ενm+1 , (2.17)

for any bounded measurable function f : Re → R and ε ∈ (0, 1], where νℓ, ` ∈ N are all the
elements of {

∑m
i=1κβi

; β1, . . . , βm ∈ N,m ∈ N} in increasing order, and

(j)∑
k,α,β,γ

=
∑

β=(β1,...,βk)∈Nk,k∈N,∑k
ℓ=1 κβℓ

=νj

∑
α=(α1,...,αk)∈{1,...,e}k

1

k!

∑
γ∈{1,...,e}p,p≥0

. (2.18)

Here, α ∗ γ represents α ∗ γ = (α1, . . . , αk, γ1, . . . , γp) for α = (α1, . . . , αk) and γ = (γ1, . . . , γp),
and we used the convention: if p = 0, 1

p! 〈DF
0,γ1 ⊗ · · · ⊗DF 0,γp ,E[DpG]〉H⊗p = E[G].
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Proof of Theorem 1. We note that for all λ ∈ [0, 1],∣∣∣ detσF 0+λ(F ε−F 0) − detσF 0
∣∣∣ ≤ (C‖D(F ε − F 0)‖2H(‖DF 0‖2H + ‖DF ε‖2H)(2e−1)/2)1/2

for some C > 0, and

detσF 0+λ(F ε−F 0) ≥ detσF 0

− (C‖D(F ε − F 0)‖2H(‖DF 0‖2H + ‖DF ε‖2H)(2e−1)/2)1/2

by (2.110) of [2]. Let ψ ∈ C∞
b (R), 0 ≤ ψ ≤ 1 be given by

ψ(x) = 1|x|≤1/8 + exp
(
1− (1/8)2/((1/8)2 − (x− 1/8)2)

)
11/8<|x|<1/4, x ∈ R,

and for ε ∈ (0, 1], let

ηε =
C‖D(F ε − F 0)‖2H(‖DF 0‖2H + ‖DF ε‖2H)(2e−1)/2

(detσF 0)2

so that

ψ(ηε) 6= 0 implies det σF 0+λ(F ε−F 0) ≥ (1/2) detσF 0

for all λ ∈ [0, 1]. (2.19)

For k ∈ N, p > 1, the Wiener functional ηε is bounded by
∥∥ηε∥∥

k,p
≤ C1‖F ε − F 0‖2k+1,r ≤

C2ε
2κ1 , for some C1, C2, r > 0 depending on k, p, using the estimates: for ` ∈ N, q > 1, there

exist C3(q), C4(`, q) and C5(`, q) such that ‖(detσF 0

)−1‖Lq(W) ≤ C3(q), ‖F ε‖ℓ,q ≤ C4(`, q) and

‖F 0‖ℓ,q ≤ C5(`, q). Thus, we have that for all k ∈ N, p > 1, there is C > 0 such that ‖ψ(ηε)‖k,p ≤
C. By the properties of ψ, we can see that 1− ψ(ηε) 6= 0 implies ηε ≥ 1/8. Then we have

‖1− ψ(ηε)‖L1(W) ≤ µ(ηε ≥ 1/8) ≤ 23rE[|ηε|r] ≤ C(r)ε2κ1r.

for all r > 1.
Let f ∈ S(Re) be a bounded function. Consider the decomposition

E[f(F ε)] = E[f(F ε)(1− ψ(ηε))] + E[f(F ε)ψ(ηε)]. (2.20)

For the first term of the right-hand side of (2.20), we have

|E[f(F ε)(1− ψ(ηε))]| ≤ ‖f‖∞h(ε),

where h(ε) = O(εr) for any r > 0. We next expand the second term of of the right-hand side of
(2.20). For m ∈ N, let N = N(m) ∈ N such that κ1(N + 1) ≥ νm+1. We have

E[f(F ε)ψ(ηε)] = E[f(F 0)ψ(ηε)] +

N∑
i=1

∑
α∈{1,...,e}i

1

i!
E[∂αf(F 0)

i∏
ℓ=1

(F ε,αℓ − F 0,αℓ)ψ(ηε)] +Rε
1,f

= E[f(F 0)] +

m∑
j=1

ενj

(j)∑
k,α,β

E[∂αf(F 0)

k∏
i=1

Fαi

βi
] +Rε

1,f +Rε
2,f (2.21)

where
∑(j)

k,α,β =
∑

β=(β1,...,βk)∈N,k∈N,∑k
ℓ=1 κβℓ

=νj

∑
α=(α1,...,αk)∈{1,...,e}k

1
k! ,

Rε
1,f =

∫ 1

0

(1− λ)N

N !

∑
α∈{1,...,e}N+1

E[∂αf(F̃λ,ε)

N+1∏
ℓ=1

(F ε,αℓ − F 0,αℓ)ψ(ηε)]dλ,

with F̃λ,ε = F 0 + λ(F ε − F 0), λ ∈ [0, 1], ε ∈ (0, 1], and Rε
2,f has the form:

Rε
2,f =

∑
α∈{1,...,e}k,k≤NE[∂αf(F 0)Gε

α(1− ψ(ηε))]
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with {Gε
α}α∈{1,...,e}k,k≤N,ε∈(0,1] ⊂ D∞ such that for all k ≤ N and α ∈ {1, . . . , e}k, Gε

α, ε ∈ (0, 1]
satisfies ‖Gε

α‖ℓ,p = O(ενm+1) for all ` ∈ N and p > 1. By (2.19), we have

Rε
1,f =

∫ 1

0

(1− λ)N

N !

∑
α∈{1,...,e}N+1

E
[
f(F̃λ,ε)Hα

(
F̃λ,ε,

N+1∏
ℓ=1

(F ε,αℓ − F 0,αℓ)ψ(ηε)
)]
dλ

with the estimates: for p ≥ 1, there exist C > 0, p1, p2, q > 1 and k ∈ N such that

∥∥∥Hα(F̃λ,ε,

N+1∏
ℓ=1

(F ε,αℓ − F 0,αℓ)ψ(ηε))
∥∥∥
p
≤ C‖(detσF 0

)−1‖qp1
‖
N+1∏
ℓ=1

(F ε,αℓ − F 0,αℓ)ψ(ηε)‖k,p2

by p102 of [16], and for p ≥ 1 and k ∈ N, ‖
∏N+1

ℓ=1 (F ε,αℓ − F 0,αℓ)‖k,p = O(εκ1(N+1)) = O(ενm+1),
‖ψ(ηε)‖k,p = O(1). Then, there exists C > 0 such that

|Rε
1,f | ≤ C‖f‖∞ενm+1 ,

for all ε ∈ (0, 1]. Also, we have the similar estimate for Rε
2,f , i.e. there exists C > 0 such that

|Rε
2,f | = |

∑
α∈{1,...,e}k,k≤NE[f(F 0)Hα(F

0, Gε
α(1− ψ(ηε)))]| ≤ C‖f‖∞ενm+1 ,

for all ε ∈ (0, 1], since we have that for all ` ∈ N and p ≥ 1, ‖Gε
α‖ℓ,p = O(ενm+1), ‖1−ψ(ηε)‖ℓ,p =

O(1).
We give the representation of the expansion coefficients. While the similar computation in the

error analysis can be applied to the expansion coefficients, we provide more useful representation
for each coefficient for the practical computational purpose. Let G =

∏k
i=1F

αi

βi
. Then we have

E[∂αf(F 0)G]

=E[∂αf(F 0)]E[G] + E[∂αf(F 0)
∑
p≥1

1

p!
δp(E[DpG])] (2.22)

=E[∂αf(F 0)]E[G] +
∑
p≥1

1

p!
E[〈Dp∂αf(F 0),E[DpG]〉H⊗p ] (2.23)

=E[∂αf(F 0)]E[G] +
∑
p≥1

∑
γ

E[∂α∗γf(F 0)
1

p!
〈DF 0,γ1 ⊗ · · · ⊗DF 0,γp ,E[DpG]〉H⊗p ] (2.24)

=
∑
p≥0

∑
γ

E[f(F 0)Hα∗γ(F
0,

1

p!
〈DF 0,γ1 ⊗ · · · ⊗DF 0,γp ,E[DpG]〉H⊗p)], (2.25)

where we applied the Stroock-Taylor formula (2.4) in (2.22), the duality formula (2.3) in (2.23),
the chain rule of Malliavin derivative in (2.24) and the IBP formula (2.7) in (2.25). In the above,
we used the convention: if p = 0, 1

p! 〈DF
0,γ1 ⊗ · · · ⊗DF 0,γp ,E[DpG]〉H⊗p = E[G].

Therefore, for f ∈ S ′(Re), (2.20) and (2.21) hold, and in particular for bounded measurable
function f : Re → R, we have

E[f(F ε)] = E[f(F 0)]

+

m∑
j=1

ενj

(j)∑
k,α,β,γ

E
[
f(F 0)Hα∗γ

(
F 0,

1

p!

〈
DF 0,γ1 ⊗ · · · ⊗DF 0,γp ,E[Dp

k∏
i=1

Fαi

βi
]
〉
H⊗p

)]
+ R̃ε

f ,

with the estimate

|R̃ε
f | ≤ C‖f‖∞ενm+1 ,

for some C > 0 independent of f and ε. □
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Remark 1. The form of the factor 〈DF 0,γ1 ⊗ · · · ⊗DF 0,γp ,E[Dp∏k
i=1F

αi

βi
]〉H⊗p in the expansion

coefficients in (2.17) in Theorem 1 is crucial in applications as we only need the computation of
Malliavin derivatives with an inner product computation on H⊗p. In particular, it plays an impor-
tant role in the derivation of the asymptotic expansion of the expectations of irregular functionals
of solutions of rough differential equations in the next section.

Remark 2. Our condition (2.16) weaker than the uniformly nondegenerate condition (2.11) is
useful in various applications, since it can be easily checked without any complicated procedures or
mathematical proofs.

3 Asymptotic expansion formula of expectation of solution
of rough differential equation driven by fractional Brownian
motion with H < 1/2

In the section, we show asymptotic expansion formulas of expectations of a solution of a
multidimensional rough differential equation driven by d-dimensional fractional Brownian motion
with H ∈ (1/3, 1/2). Our setting mostly follows Cass and Lim (2019) [4], Decreusefond and
Üstünel (1999) [6], Alós et al. (2001) [1] and Nualart (2006) [16]. The framework we consider in
the section is a particular case of the Malliavin calculus developed in Section 2 on an abstract
Wiener space.

Let Wd = C0([0, T ];Rd) := {ω : [0, T ] → Rd; ω is continuous, ω(0) = 0} with the supremum
topology, and let B(Wd) be the Borel σ-field. Let P = µd be the unique probability measure on
(Wd,B(Wd)) such that the canonical process BH = (BH,1, . . . , BH,d) is a d-dimensional fractional

Brownian motion with the Hurst index H ∈ (1/3, 1/2), that is, E[BH,i
t BH,j

s ] = R(t, s)1i=j for
t, s ∈ [0, T ], i, j = 1, . . . , d where

R(t, s) =
1

2
{|s|2H + |t|2H − |t− s|2H}. (3.1)

We denote by {e1, . . . , ed} the canonical basis on Rd. Let Hd be the Cameron-Martin space, the
completion of the linear span of {R(t, ·)ej ; t ∈ [0, T ], j = 1, . . . , d} with respect to the norm
‖ · ‖Hd = 〈·, ·〉Hd where

〈R(t, ·)ei, R(s, ·)ej〉Hd = R(t, s)1i=j . (3.2)

Let KH be the kernel for the singular case given by

KH(t, s) =
( 2H

(1− 2H)β(1− 2H,H + 1/2)

)1/2[( t
s

)H−1/2

(t− s)H−1/2

− (H − 1/2)s1/2−H

∫ t

s

uH−3/2(u− s)H−1/2du
]

(3.3)

where β(·, ·) denotes the Beta function. The Cameron-Martin space Hd is given by

Hd = {f ∈ Wd; ∃f̃ ∈ L2([0, T ];Rd) s.t. f(t) =

∫ t

0

KH(t, s)f̃(s)ds, t ≥ 0} (3.4)

(see Theorem 3.3.1 of Decreusefond and Üstünel (1999) [6] and Theorem 2.1 of Decreusefond
(2001) [5]). Let H̄d be the completion of the linear span of {1[0,t](·)ej ; t ∈ [0, T ], j = 1, . . . , d}
with respect to the norm ‖ · ‖H̄d = 〈·, ·〉H̄d where

〈1[0,t](·)ei,1[0,s](·)ej〉H̄d = R(t, s)1i=j , (3.5)
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and then there exists an isomorphism Φ : H̄d → Hd obtained from extending the map 1[0,t](·)ej 7→
R(t, ·)ej , t ∈ [0, T ], j = 1, . . . , d (see Definition 2.15 of Cass and Lim (2019) [4]). Thus, we have
the following relationship:

⟨1[0,t]ei,1[0,s]ej⟩H̄d = R(t, s)1i=j = ⟨R(t, ·)ei, R(s, ·)ej⟩Hd = ⟨KH(t, ·)1[0,t],KH(s, ·)1[0,s]⟩L2([0,T ])1i=j .

(3.6)

On (Wd, H̄d, µd), we can apply Malliavin calculus for fractional Brownian motion case. Recall
that the map 1[0,t](·) 7→ BH

t extends to a unique linear isometry I from H̄d → L2(Wd) and I(h)

is a Gaussian random variable with mean 0 and variance ‖h‖2H̄d . Let SH(Wd) be the space of the

functionals given by SH(Wd) = {F : Wd → R ; F = f(I(h1), . . . , I(hn)), n ∈ N, f ∈ C∞
b (Rn),

h1, . . . , hn ∈ H̄d}. For F = f(I(h1), . . . , I(hn)) ∈ S (Wd), we define the Malliavin derivative
DF ∈ H̄d as

DF =

n∑
i=1

(∂if)(I(h1), . . . , I(hn))hi, (3.7)

or

Dℓ,tF =

n∑
i=1

(∂if)(I(h1), . . . , I(hn))h
ℓ
i(t), t ≥ 0, ` = 1, . . . , d. (3.8)

The operator D is a closable operator, and for p > 1, we define D1,p
H = SH(Wd)

∥·∥1,p

where the
norm ‖·‖1,p given by ‖F‖1,p = ‖F‖Lp(Wd)+‖DF‖Lp(Wd;H̄d). Similarly, the higher-order Malliavin

derivatives Dk and the corresponding Sobolev spaces Dk,p
H can be defined iteratively. We define

D∞
H = ∩k∈N,p>1Dk,p

H and let D−∞
H be the dual space of D∞

H .

Let DomδpH = {u ∈ L2(Wd; H̄d); ∃C > 0 s.t. |E[〈DpF, u〉H̄d ]| ≤ C‖F‖L2(Wd), ∀F ∈ Dp,2
H }.

For u = (u1, . . . , ud) ∈ DomδH(= Domδ1H), there exists δH(u) =
∑d

i=1δH,i(u
i) ∈ L2(Wd) such

that

E[〈DF, u〉H̄d ] = E[FδH(u)]. (3.9)

On the setting, we still use notation on integration by parts (2.7) and generalized expectation in
Section 2.

Let BH be the canonical geometric rough path lift and consider the following rough differential
equation:

dXx
t = V0(X

x
t )dt+ V (Xx

t ) ◦ dBH
t (3.10)

starting from Xx
0 = x ∈ Re, where V0 ∈ C∞

b (Re;Re) and V = (V1, . . . , Vd) ∈ C∞
b (Re;Re×d) (see

Friz and Victoir (2009) [8] or/and Friz and Hairer (2014) [7] for more details on rough differential
equations). We assume the following elliptic condition.

Assumption 1. V1(x), . . . , Vd(x) linearly span Re.

We introduce the scaling rough differential equation:

dXε,x
t = ε1/HV0(X

ε,x
t )dt+ εV (Xε,x

t ) ◦ dBH
t , Xε,x

0 = x. (3.11)

Note that XtH ,x
1 and Xx

t have the same probability law. We introduce ‖α‖ = #{i;αi 6= 0} +
#{i;αi = 0}/H for a multi-index α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k, and define

Viϕ(·) =
e∑

j=1

V j
i (·)

∂

∂xj
ϕ(·), i = 0, 1, . . . , d, (3.12)
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for a smooth function ϕ : Re → R.
Let κ1 < κ2 < · · · be all the elements of

A = {k + `× 1/H; k, ` ∈ N ∪ {0}, k + ` ≥ 1} (3.13)

in increasing order, that is, κ1 = 1, κ2 = 2, κ3 = 1/H, κ4 = 3, ... since 1/3 < H < 1/2. Here, the
sequence κ1 < κ2 < · · · in A is relevant to the following asymptotic expansion of Xε,x

t :

Xε,x
t = x+ ε

d∑
i=1

Vi(x)B
H,i
t +

m∑
k=2

εκk

∑
∥α∥=κk

Vα1 · · ·Vα|α|−1
Vα|α|(x)B

H
α (t) +Rε

m+1(t, x) (3.14)

whose expansion coefficients are obtained by (formal) Taylor expansion, which is justified as the
stochastic Taylor expansion of Lyons-Itô map (see Section 3.6 and Proposition 4.3 with (4.3) of
Inahama (2016) [10]), where BH

α is the iterated Stratonovich integral with respect to BH for a
multi-index α, i.e.

BH
α (t) =

∫
0<t1<···<tk<t

◦dBH,α1

t1 ◦ · · · ◦ dBH,αk
tk

, α = (α1, . . . , αk) ∈ {0, 1, . . . , d}k (3.15)

and Rε,j
m+1(t, x) = (Rε,j

m+1(t, x), . . . , R
ε,e
m+1(t, x)) is the residual satisfying Rε,j

m+1(t, x) = O(εm+1)
in D∞

H for j = 1, . . . , e. By the equation (7) (or Theorem 6.1 and Theorem 6.3) of Cass and
Lim (2019) [4] and the equation (4) in Song and Tindel (2021) [17], we are able to transform
Stratonovich integrals (in rough path sense) into Skorohod integrals in our setting, and thus the
all expansion terms are Malliavin differentiable at all orders.

Let

F ε
t :=(Xε,x

t − x)/ε (3.16)

=

d∑
i=1

Vi(x)B
H,i
t +

m∑
k=2

εκk−1
∑

∥α∥=κk

Vα1
· · ·Vα|α|−1

Vα|α|(x)B
H
α (t) +Rε

m+1(t, x). (3.17)

Define F 0
t :=

d∑
i=1

Vi(x)B
H,i
t and

F ℓ
t,k :=

∑
∥α∥=κk

Vα1
· · ·Vα|α|−1

V ℓ
α|α|

(x)BH
α (t), t ≥ 0, ` = 1, . . . , e, k ∈ N. (3.18)

Under Assumption 1, we easily check that for all p ≥ 1, there exists C > 0 such that

‖(detσF 0
t )−1‖Lp(Wd) ≤

C

t2He
. (3.19)

Let

X̄x,ε
t := x+ εF 0

t = x+ ε

d∑
i=1

Vi(x)B
H,i
t , t > 0, ε ∈ (0, 1]. (3.20)

We have the following new expansion as an application of Theorem 1 by taking X̄x,ε
t |t=1,ε=tH ,

whose expansion coefficients are more simplified (see Remark 4 below) than those in Theorem 1
under the setting.

Theorem 2. For m ≥ 1, there exists C > 0 such that∣∣∣E[f(Xx
t )]−

{
E[f(X̄x,tH

1 )] +

m∑
j=1

tHνj

(j)′∑
k,α,β,γ

E
[
f(X̄x,tH

1 )Hα

(
F 0
1 ,Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[Dp
k∏

i=1

Fαi

1,βi
]
〉
(H̄d)⊗p

))]}∣∣∣
≤ C‖f‖∞tHνm+1 , (3.21)
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for any bounded measurable function f : Re → R and t ∈ (0, 1], where νℓ, ` ∈ N are all the
elements of Ā = {

∑m
ℓ=1(κβℓ

− 1); β1, . . . , βm ≥ 2, m ∈ N} in increasing order, and

(j)′∑
k,α,β,γ

=
∑

β=(β1,...,βk)∈(N\{1})k,k∈N,∑k
ℓ=1(κβℓ

−1)=νj

∑
α=(α1,...,αk)∈{1,...,e}k

1

k!

∑
γ∈{1,...,d}p,p≥0

. (3.22)

Remark 3. Note that the index set Ā in Theorem 2 is relevant to the asymptotic expansion of
E[δy(F ε

t )] = E[δy((Xε,x
t − x)/ε)].

Proof of Theorem 2. Let f ∈ S(Re) be a bounded function. Note that we have

E[f(Xx
t )] =

∫
Re

f(x+ εy)D−∞
H

〈δy(F ε
1 ), 1〉D∞

H
dy

∣∣∣
ε=tH

. (3.23)

By applying the proof of Theorem 1, it holds that

D−∞
H

〈δy(F ε
1 ), 1〉D∞

H
= D−∞

H
〈δy(F ε

1 ), ψ(η
ε)〉D∞

H
+ D−∞

H
〈δy(F ε

1 ), (1− ψ(ηε))〉D∞
H

=D−∞
H

〈δy(F 0
1 ), 1〉D∞

H
+

m∑
j=1

ενj

(j)∑
k,α,β

D−∞
H

〈
∂αδy(F

0
1 ),

k∏
i=1

Fαi

1,βi

〉
D∞

H

+R0,δy (ε) +R1,δy (ε) +R2,δy (ε),

(3.24)

where
∑(j)

k,α,β =
∑

β=(β1,...,βk)∈(N\{1})k,k∈N,∑k
ℓ=1(κβℓ

−1)=νj

∑
α=(α1,...,αk)∈{1,...,e}k

1
k! ,

ψ(x) =1|x|≤1/8 + exp(1− (1/8)2/((1/8)2 − (x− 1/8)2))11/8<|x|<1/4, x ∈ R,

ηε =
C‖D(F ε

1 − F 0
1 )‖2H̄d(‖DF 0

1 ‖2H̄d + ‖DF ε
1 ‖2H̄d)

(2e−1)/2

(detσF 0
1 )2

, ε ∈ (0, 1],

R0,δy (ε) = D−∞
H

〈δy(F ε
1 ), (1− ψ(ηε))〉D∞

H
,

R1,δy (ε) =

∫ 1

0

(1− λ)N

N !

∑
α∈{1,...,e}N+1

D−∞
H

〈
δy(F̃

λ,ε
1 ),Hα

(
F̃λ,ε
1 ,

N+1∏
ℓ=1

(F ε,αℓ

1 − F 0,αℓ

1 )ψ(ηε)
)〉

D∞
H

dλ

with a natural number N such that κ1(N + 1) ≥ νm+1 and F̃λ,ε
1 = F 0

1 + λ(F ε
1 − F 0

1 ), λ ∈ [0, 1],
ε ∈ (0, 1], and

R2,δy (ε) =
∑

α∈{1,...,e}k,k≤N

D−∞
H

〈δy(F 0
1 ),Hα(F

0
1 , G

ε
α(1− ψ(ηε)))〉D∞

H

with {Gε
α}α∈{1,...,e}k,k≤N,ε∈(0,1] ⊂ D∞

H such that for any k ≤ N and multi-index α ∈ {1, . . . , e}k,
Gε

α, ε ∈ (0, 1] satisfies ‖Gε
α‖ℓ,p = O(ενm+1) for all ` ∈ N and p > 1. Note that we have

‖1− ψ(ηε)‖L1(W) = O(εr),

for all r > 1, and for all k ∈ N, p > 1, ‖ψ(ηε)‖k,p = O(1). By (3.23) and (3.24), it holds that

E[f(Xx
t )] =E[f(X̄x,tH

1 )] +

m∑
j=1

tHνj

(j)∑
k,α,β

E
[
f(X̄x,tH

1 )Hα

(
F 0
1 ,

k∏
i=1

Fαi

1,βi

)]
+ R̃0,f (t

H) + R̃1,f (t
H) + R̃2,f (t

H), (3.25)
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where R̃0,f (ε) = E[f(x+ εF ε
1 )(1− ψ(ηε))],

R̃1,f (ε) =

∫ 1

0

(1− λ)N

N !

∑
α∈{1,...,e}N+1

E
[
f(x+ εF̃λ,ε

1 )Hα

(
F̃λ,ε
1 ,

N+1∏
ℓ=1

(F ε,αℓ

1 − F 0,αℓ

1 )ψ(ηε)
)]
dλ

and

R̃2,f (ε) =
∑

α∈{1,...,e}k,k≤N

E[f(x+ εF 0
1 )Hα(F

0
1 , G

ε
α(1− ψ(ηε)))]

satisfy that there exists C > 0 independent of f such that

∣∣∣ 2∑
k=0

R̃k,f (ε)
∣∣∣ ≤ C‖f‖∞ενm+1 , (3.26)

for all ε ∈ (0, 1]. Note that one has

E[f(X̄x,ε
1 )Hα(F

0
1 , G)] =E[f(X̄x,ε

1 )ε|α|Hα(X̄
x,ε
1 , G)] = ε|α|E[∂αf(X̄x,ε

1 )G]

=ε|α|
∫
Re

∂αf(x+ εV (x)y) D−∞
H

〈δy(BH
1 ), G〉D∞

H
dy, (3.27)

for any f ∈ S(Re), ε ∈ (0, 1], G ∈ D∞
H and multi-index α. Since we have

D−∞
H

〈δy(BH
1 ), G〉D∞

H

=
∑

γ∈{1,...,d}p,p≥0

D−∞
H

〈
δy(B

H
1 ),Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[DpG]
〉
(H̄d)⊗p

)〉
D∞

H

(3.28)

by the similar argument in (2.22)–(2.25), it holds that

E[f(X̄x,ε
1 )Hα(F

0
1 , G)]

=ε|α|
∑

γ∈{1,...,d}p,p≥0

E
[
∂αf(X̄x,ε

1 )Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[DpG]
〉
(H̄d)⊗p

)]
=

∑
γ∈{1,...,d}p,p≥0

E
[
f(X̄x,ε

1 )Hα

(
F 0
1 ,Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[DpG]
〉
(H̄d)⊗p

))]
.

(3.29)

Then, by (3.25), (3.29) and the error estimate (3.26), we have

∣∣∣E[f(Xx
t )]−

{
E[f(X̄x,tH

1 )] +

m∑
j=1

tHνj

(j)′∑
k,α,β,γ

E
[
f(X̄x,tH

1 )Hα

(
F 0
1 ,Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[Dp
k∏

i=1

Fαi

1,βi
]
〉
(H̄d)⊗p

))]}∣∣∣
≤ C‖f‖∞tHνm+1 , (3.30)

for any bounded measurable function f : Re → R and t ∈ (0, 1]. □

Remark 4. The weight

Hα

(
F 0
1 ,Hγ

(
BH

1 ,
1

p!

〈
DBH,γ1

1 ⊗ · · · ⊗DB
H,γp

1 ,E[Dp
k∏

i=1

Fαi

1,βi
]
〉
(H̄d)⊗p

))
(3.31)
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in (3.21) in Theorem 2 is simpler than the weight:

Hα∗γ

(
F 0
1 ,

1

p!

〈
DF 0,γ1

1 ⊗ · · · ⊗DF
0,γp

1 ,E[Dp
k∏

i=1

Fαi

1,βi
]
〉
(H̄d)⊗p

)
.

This is due to the difference between the forms of Malliavin derivatives and the Malliavin covari-
ance matrices of F 0

1 and BH
1 , respectively, i.e.

σF 0
1 = [

∑d
k=1V

i
k (x)V

j
k (x)]1≤i,j≤e and σBH

1 = [δi,j ]1≤i,j≤d.

Through the asymptotic expansion formulas given in Theorem 2, we can reduce the |γ|-times
inverse Malliavin covariance matrix computation of F 0

1 in

Hα∗γ

(
F 0
1 , G

)
= H((α∗γ)k)

(
F 0
1 ,H((α∗γ)1,...,(α∗γ)k−1)

(
F 0
1 , G

))
with

H(i)

(
F 0
1 , G

)
=

e∑
j=1

δH

(
(σF 0

1 )−1
ij DF

0
1G

)
, i = 1, . . . , e.

We will see the effect in Theorem 3 below.

Theorem 2 enables us to give more explicit form of the expansion in each specific order of
approximation without using complicated fractional calculus, which cannot be obtained by the
previous approaches in the literature. We only need an inner product computation on (H̄d)⊗p

with IBP formula after we compute the Malliavin derivatives of
∏k

i=1F
αi

1,βi
in the derivation of

the asymptotic expansion in Theorem 2. As a consequence, all expansion terms are obtained
as polynomials of fractional Brownian motion for multidimensional system of rough differential
equations.

We have the following concrete asymptotic expansions as a main result of the paper.

Theorem 3. We have

P(Xx
t ≤ y) = P(X̄x,tH

1 ≤ y)

+tHE
[
1{

X̄x,tH

1 ≤y
} e∑

j1,j2=1

d∑
i1,i2,i3=1

Vi1V
j1
i2
(x)V j2

i3
(x)A−1

j1,j2
(x)

1

2
{BH,i1

1 BH,i2
1 BH,i3

1 −BH,i1
1 1i1=i3 ̸=0 −BH,i2

1 1i2=i3 ̸=0}
]
+O(t1−H) (3.32)

where A(x) =

d∑
i=1

Vi(x)⊗ Vi(x). Moreover, we have

P(Xx
t ≤ y) = P(X̄x,tH

1 ≤ y)

+tHE
[
1{

X̄x,tH

1 ≤y
} e∑

j1,j2=1

d∑
i1,i2,i3=1

Vi1V
j1
i2
(x)V j2

i3
(x)A−1

j1,j2
(x)

1

2
{BH,i1

1 BH,i2
1 BH,i3

1 −BH,i1
1 1i1=i3 ̸=0 −BH,i2

1 1i2=i3 ̸=0}
]

+t1−HE
[
1{

X̄x,tH

1 ≤y
} e∑

j1,j2=1

d∑
i1=1

V j1
0 (x)V j2

i1
(x)A−1

j1,j2
(x)BH,i1

1

]
+O(t2H). (3.33)
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Remark 5. The weight in Theorem 3 is given by the polynomial of Brownian motions but do not
have Hermite polynomial structure due to the property of the geometric rough path integral.

Remark 6. The expansion in Theorem 3 is implemented by a simple numerical scheme. We will
see it in the end of this section.

Remark 7. When e = d, the formula is obtained in a simple way using the inverse matrix of
V (·).

Proof of Theorem 3. Hereafter, we use a notation

∫ t

0

uisδB
H,i
s := δH,i(u

i1[0,t](·)), i = 1, . . . , d for

u = (u1, . . . , ud) ∈ DomδH . In order to obtain more explicit form of the O(t1−H)-expansion, we
trace the derivation in Theorem 2 and compute the following term:

tHE[f(X̄x,tH

1 )H(j)(F
0
1 , Vi1V

j
i2
(x)BH

(i1,i2)
(1))]

= tHE[f(X̄x,tH

1 )tHH(j)(X̄
x,tH

1 , Vi1V
j
i2
(x)BH

(i1,i2)
(1))]

= t2HE[∂jf(X̄x,tH

1 )Vi1V
j
i2
(x)BH

(i1,i2)
(1)]

= t2H
∫
Rd

∂jf(x+ tHV (x)y)Vi1V
j
i2
(x)E[δy(BH

1 )BH
(i1,i2)

(1)]dy,

for j = 1, . . . , e and i1, i2 = 1, . . . , d. We analyze E[δy(BH
t )BH

(i1,i2)
(t)] for t > 0. By the equation

(7) (or Theorem 6.1 and Theorem 6.3) of Cass and Lim (2019) [4] and the equation (4) in Song
and Tindel (2021) [17], it holds that

BH
(i1,i2)

(t) =

∫ t

0

∫ t2

0

◦dBH,i1
t1 ◦ dBH,i2

t2 =

∫ t

0

BH,i1
s δBH,i2

s +H

∫ t

0

s2H−1ds1i1=i2

=

∫ t

0

BH,i1
s δBH,i2

s +
1

2
t2H1i1=i2 . (3.34)

Then we have

E[δy(BH
t )BH

(i1,i2)
(t)] = E[δy(BH

t )

∫ t

0

BH,i1
s δBH,i2

s ] + E[δy(BH
t )]

1

2
t2H1i1=i2 . (3.35)

We compute the Malliavin derivatives of

∫ t

0

BH,i1
s δBH,i2

s to obtain each term constituting the

Stroock-Taylor formula. We note that

E[D0

∫ t

0

BH,i1
s δBH,i2

s ] = E[
∫ t

0

BH,i1
s δBH,i2

s ] = 0. (3.36)

First we compute E[D
∫ t

0

BH,i1
s δBH,i2

s ] = (E[D1,·

∫ t

0

BH,i1
s δBH,i2

s ], . . . ,E[Dd,·

∫ t

0

BH,i1
s δBH,i2

s ]).

For ` = 1, . . . , d, we have

Dℓ,r

∫ t

0

BH,i1
s δBH,i2

s = BH,i1
r 1ℓ=i2 +

∫ t

r

Dℓ,rB
H,i1
s δBH,i2

s

= BH,i1
r 1ℓ=i2 + (BH,i2

t −BH,i2
r )1ℓ=i1 for r ≤ t (3.37)

and then

E[Dℓ,r

∫ t

0

BH,i1
s δBH,i2

s ] = 0 for r > t, (3.38)
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i.e. E[D1

∫ t

0

BH,i1
s δBH,i2

s ] = E[D
∫ t

0

BH,i1
s δBH,i2

s ] = 0. Next, we compute
1

2
E[D2

∫ t

0

BH,i1
s δBH,i2

s ].

The second Malliavin derivative D2

∫ t

0

BH,i1
s δBH,i2

s is given as follows: for t1, t2 ≤ t,

Dℓ1,t1Dℓ2,t2

∫ t

0

BH,i1
s δBH,i2

s

= Dℓ1,t1(B
H,i1
t2 1ℓ2=i2 + (BH,i2

t −BH,i2
t2 )1ℓ2=i1)

= 10≤t1≤t2≤t1ℓ1=i11ℓ2=i2 + 10≤t1,t2≤t1ℓ1=i21ℓ2=i1 − 10≤t1≤t2≤t1ℓ1=i21ℓ2=i1 , `1, `2 = 1, . . . , d,

(3.39)

from (3.37). Then, for `1, `2 = 1, . . . , d, the map (t1, t2) 7→ E[Dℓ1,t1Dℓ2,t2

∫ t

0

BH,i1
s δBH,i2

s ] has the

representation:

(t1, t2) 7→ E[Dℓ1,t1Dℓ2,t2

∫ t

0

BH,i1
s δBH,i2

s ]

= 1[0,t2](t1)1[0,t](t2)1ℓ1=i11ℓ2=i2 + (1[0,t](t1)− 1[0,t2](t1))1[0,t](t2)1ℓ1=i21ℓ2=i1 , (3.40)

and for 1[0,t]eℓ1 ,1[0,t]eℓ2 ∈ H̄d, we have〈
1[0,t]eℓ1 ⊗ 1[0,t]eℓ2 ,E[D2

∫ t

0

BH,i1
s δBH,i2

s ]
〉
(H̄d)⊗2

=

∫ t

0

∫ t

0

KH(t, t1)1[0,t](t1)KH(t, t2)1[0,t](t2)
{
KH(t2, t1)1[0,t2](t1)KH(t, t2)1[0,t](t2)1ℓ1=i11ℓ2=i2

+ {KH(t, t1)1[0,t](t1)−KH(t2, t1)1[0,t2](t1)}KH(t, t2)1[0,t](t2)1ℓ1=i21ℓ2=i1

}
dt1dt2.

(3.41)

We note

1

p!
E[Dp

∫ t

0

BH,i1
s δBH,i2

s ] = 0, p ≥ 3. (3.42)

Thus, we only need to compute the following term:

d∑
γ1,γ2=1

E[∂γ1
∂γ2

δy(B
H
t )〈DBH,γ1

t ⊗DBH,γ2

t ,
1

2!
E[D2

∫ t

0

BH,i1
s δBH,i2

s ]〉(H̄d)⊗2 ]. (3.43)

Since Dℓ,·B
H,i
t = 1[0,t](·)1ℓ=i for i, ` = 1, . . . , d, we have

d∑
γ1,γ2=1

E[∂γ1
∂γ2

δy(B
H
t )〈DBH,γ1

t ⊗DBH,γ2

t ,
1

2!
E[D2

∫ t

0

BH,i1
s δBH,i2

s ]〉(H̄d)⊗2 ]

=

d∑
γ1,γ2=1

E[∂γ1
∂γ2

δy(B
H
t )

1

2!

d∑
ℓ1,ℓ2=1

∫ t

0

∫ t

0

KH(t, t1)1[0,t](t1)1ℓ1=γ1
KH(t, t2)1[0,t](t2)1ℓ2=γ2

KH(t, t2)1[0,t](t2){KH(t2, t1)1[0,t2](t1)1ℓ1=i11ℓ2=i2

+ {KH(t, t1)1[0,t](t1)−KH(t2, t1)1[0,t2](t1)}1ℓ1=i21ℓ2=i1}dt1dt2]

=E[∂i1∂i2δy(BH
t )]

1

2

∫ t

0

∫ t

0

KH(t, t1)KH(t, t2)
2KH(t2, t1)1[0,t2](t1)dt1dt2

+ E[∂i2∂i1δy(BH
t )]

1

2

∫ t

0

∫ t

0

KH(t, t1)KH(t, t2)
2{KH(t, t1)−KH(t2, t1)1[0,t2](t1)}dt1dt2.

(3.44)
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Here, we note that

E[∂i1∂i2δy(BH
t )] = E[∂i2∂i1δy(BH

t )]

=E[δy(BH
t )H(i1,i2)(B

H
t , 1)] (= E[δy(BH

t )H(i2,i1)(B
H
t , 1)])

=E[δy(BH
t )

1

t4H
{BH,i1

t BH,i2
t − t2H1i1=i2}]. (3.45)

Therefore, we obtain

d∑
γ1,γ2=1

E[∂γ1∂γ2δy(B
H
t )〈DBH,γ1

t ⊗DBH,γ2

t ,
1

2!
E[D2

∫ t

0

BH,i1
s δBH,i2

s ]〉(H̄d)⊗2 ]

=E[∂i1∂i2δy(BH
t )]

1

2

∫ t

0

∫ t

0

KH(t, t1)KH(t, t2)
2KH(t, t1)dt1dt2

=E[δy(BH
t )

1

t4H
{BH,i1

t BH,i2
t − t2H1i1=i2}]

1

2

∫ t

0

KH(t, t1)
2dt1

∫ t

0

KH(t, t2)
2dt2

=E[δy(BH
t )

1

2
{BH,i1

t BH,i2
t − t2H1i1=i2}], (3.46)

since RH(t, t) =

∫ t

0

KH(t, s)2ds = t2H . Then (3.35) becomes

E[δy(BH
t )

∫ t

0

∫ t2

0

◦dBH,i1
t1 ◦ dBH,i2

t2 ]

= E[δy(BH
t )

1

2
{BH,i1

t BH,i2
t − t2H1i1=i2}] + E[δy(BH

t )]
1

2
t2H1i1=i2

= E[δy(BH
t )

1

2
BH,i1

t BH,i2
t ], (3.47)

and for f ∈ S ′(Re), we have

t2HE[∂jf(X̄x,tH

1 )Vi1V
j
i2
(x)BH

(i1,i2)
(1)]

= t2HE[∂jf(X̄x,tH

1 )
1

2
Vi1V

j
i2
(x)BH,i1

1 BH,i2
1 ] for j = 1, . . . , e. (3.48)

Finally, we have the following by the integration by parts:

t2HE[∂α1f(X̄
x,tH

1 )
1

2
Vi1V

α1
i2

(x)BH,i1
1 BH,i2

1 ] = t2HE[f(X̄x,tH

1 )H(α1)(X̄
x,tH

1 ,
1

2
Vi1V

α1
i2

(x)BH,i1
1 BH,i2

1 )]

=t2HE[f(X̄x,tH

1 )

e∑
α2=1

d∑
i3=1

Vi1V
α1
i2

(x)

tHV α2
i3

(x)A−1
α1,α2

(x)
1

2t2H
{BH,i1

1 BH,i2
1 BH,i3

1 −BH,i1
1 1i2=i3 ̸=0 −BH,i2

1 1i1=i3 ̸=0}]

=tHE[f(X̄x,tH

1 )

e∑
α2=1

d∑
i3=1

Vi1V
α1
i2

(x)

V α2
i3

(x)A−1
α1,α2

(x)
1

2
{BH,i1

1 BH,i2
1 BH,i3

1 −BH,i1
1 1i2=i3 ̸=0 −BH,i2

1 1i1=i3 ̸=0}]. (3.49)

Since the formula holds for all f ∈ S ′(Re), we have the expansion of the probability distribution
function with the error order O(t1−H). Moreover, since we have the following integration by parts:
for f ∈ S(Re) and α1 = 1, . . . , e,

tE[∂α1f(X̄
x,tH

1 )V α1
0 (x)] =tE[f(X̄x,tH

1 )

e∑
α2=1

d∑
i1=1

V α1
0 (x)tHV α2

i1
(x)A−1

α1,α2
(x)

1

t2H
BH,i1

1 ]

=t1−HE[f(X̄x,tH

1 )

e∑
α2=1

d∑
i1=1

V α1
0 (x)V α2

i1
(x)A−1

α1,α2
(x)BH,i1

1 ], (3.50)
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the desired O(t2H)-expansion is obtained. □

We finally show a numerical example for the expansion of Theorem 3 in order to validate the
result. Consider the following rough differential equation driven by fractional Brownian motion:

dXx
t = V (Xx

t ) ◦ dBH
t , Xx

0 = x ∈ R, (3.51)

where V : x 7→ V (x) = σx with σ > 0. We compute the probability distribution function
z 7→ P(Xx

t ≤ z) using the O(t2H)-asymptotic expansion of Theorem 3. We set the parameters
as H = 0.4, t = 0.25, σ = 0.3, x = 10, z ∈ [5, 15]. We compare the asymptotic expansion with

the normal approximation P(Xx
t ≤ z) ≈ P(X̄x,tH

1 ≤ z), and the exact solution. The asymptotic
expansion and the normal approximation are implemented by quasi-Monte Carlo method with
106-paths.

The following figure shows the effectiveness of our asymptotic expansion as its accuracy over-
comes that of normal approximation.

!"#"$

"#""

"#"$

"#%"

"#%$

"#&"

"#&$

"#'"

"#'$

"#("

"#($

"#$"

"#$$

"#)"

"#)$

"#*"

"#*$

"#+"

"#+$

"#,"

"#,$

%#""

%#"$

-./01 2345/6789943.:5/1:3; 8<=59131 :07-.9/;<:3;

Figure 1: Accuracy of asymptotic expansion for probability distribution function of solution to rough differ-
ential equation driven by fractional differential equation with Hurst index H = 0.4

4 Concluding remarks

In the paper, we have provided a new asymptotic expansion formula of expectation of general
multidimensional Wiener functionals. The uniform estimate of the asymptotic expansion has
been obtained under a weaker condition on the Malliavin covariance matrix of the target Wiener
functional. Then we have shown a tractable expansion for the expectation of an irregular functional
of the solution to a multidimensional RDE driven by fractional Brownian motion with Hurst index
H < 1/2. The result has been justified by a numerical example for the asymptotic expansion of
a probability distribution function through a comparison with the normal approximation.
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It is interesting to see whether the proposed asymptotic expansion approach can be applied
to numerical methods such as Monte-Carlo methods or discretization methods for RDEs as in
Takahashi and Yoshida (2005) [23], Takahashi and Yamada (2016) [22] and Yamada (2019) [26]
for standard SDEs, which will be studied as future works.
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