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ABSTRACT
The concepts of path-conserving and path-unimprovable strategies are
proposed for a countable stage, countable state, dynamic programming problem
where the objective is the maximization of the expectation of an arbitrary
utility function defined on the sequence of states and actions. Conditions
are provided for a path-conserving or a path-unimprovable strategy to be
optimal. Relationship to the findings of Strauch, Blackwell and Kreps are

also considered.



1. Introduction.

Given a strategyl/of a dynamic programming problem one can ask if it
satisfies the following two similar, but different questions at each deci-
sion point. One is: Provided that he must use the optimal strategy from
tomorrow and thereafter, can he achieve the overall optimal payoff if he

follows the given strategy today? The other is: Provided that he must use

the given strategy from tomorrow and thereafter, is it best for him to

follow this strategy today? If the answer'to the first question is yes, the
strategy 1is said to be conserving. If the answer to the second question is

yes, the strategy is said to be unimprovable.

Clearly an optimal strategy is both conserving and unimprovable. The
interesting question is the converse.

It is known that if the problem is of a finite time-horizon any conser-
ving or any unimprovable strategy is optimal%/ However, these converse
statements do not always hold for infinite-horizon problems.

The following counterexample will help to understand the problem.
Consider a Markov decision problem with two states a and b. State b is
"absorbing"; that is, if the system once reaches state b it stays there
forever. Two actions m ("move") and s ("stay") are available when the system

is in state a. If action'm is taken the system moves to state b; if action s
is taken the system stays in state a until next stage. Reward of $1 accrues
from the former action and no reward accrues from the latter action. The
time horizon is infinite, and the decision maker is interested in maximizing
the no-discounted sum of rewards. Figure 1 below illustrates the structure

of the problem.g/

Fig. 1



Clearly the optimal strategy is to choose m in state a. If the initial
state is a, it yields total reward of $1. If the initial state is b, total
reward is $0 regardless of the strategy.

Let "s be a strategy that always chooses s in state a. This strategy is
conserving, because if the state is a today, by using L today and then
using the optimal strategy from tomorrow he expects the maximum total reward
of $1. However, if he uses strategy n§ throughout the time horizon his total
reward is $0. So "s is not an optimal strategy. Thus we have a case in which
a conserving strategy is not optimal.

A standard procedure of constructing an optimal strategy is to find at
each date and in each state an action which maximizes the total expected

payoff given that one will follow the optimal path from tomorrow. Bellman's

principle of optimality underlies ‘'such a procedure. However, the above

example shows that it does not necessarily generate an optimal strategy.

Strauch [1966] proved that any conserving strategy is optimal and hence
the standard procedure 1is legitimate in negative dynamic programming
problems. But the above example is a case of positive dynamic programming
and is not covered by his theorem.

Next, assume that action m incurs a cost of $1 instead of reward. This
time the decision maker is interested in minimizing the no-discounted sum of
costs. In this case the optimal strategy is to choose s in state a, and the
minimum total cost is $0 regardless of the initial state.

Let Hm be a strategy that chooses m in state a. This strategy is
unimprovable, because if the state is a today and if he must use e from

tomorrow, he has no incentive to deviate from ”m today. In other words, it

does not save any overall cost to choose s

in state a if he must use "m from

the next stage. However, if he uses strategy Hm throughout the time horizon



his total ~cost is S$l. So nm, which is unimprovable, is not an optimal
strategy.

Blackwell [1967] proved that any unimprovable strategy is optimal in
positive dynamic ?rogramming. But since the current problem is a case of
negative dynamic programming, it 1is not covered by his theorem. Later,

Strauch's and Blackwell's theorems were unified by Kreps [1977] with the

notion of upper- and lower-convergent dynamic programming.é/

In this paper we propose a somewhat different set of definitions for
conserving and unimprovable strategies. It is sometimes too much to require
these properties on a strategy at every decision point. Associafed with any
strategy 1is a set of paths which are realizable. And one may only be inter-
ested to see 1if the properties are fulfilled along these paths. We define

that a strategy 1is path-conserving if 1t is conserving at all decision

points that can be reached with positive probabilities. Similarly, we define

that a strategy is path-unimprovable if it is unimprovable at all decision

points that can be reached with positive probabilities.

This paper establishes the following. For a path-conserving strategy
to be optimal one only needs Kreps' upper convergence of the utility
function. Thus any path-conserving strategy is optimal in negative dynamic
programming, or more in general, in upper-convergent dynamic programming. On
the other hand, a path-unimprovable strategy may not be optimal in positive,
or lower-convergent dynamic programming. It may not be optimal even in
finite-horizon problems. We will show that the additional conditions re-
quired are convexity and differentiability.

Section 2 gives the general formulation of the problem. Section 3

defines the notions of a path-conserving strategy and a path—unimprovable



strategy. :We also provide a simple finite-horizon problem in which a path-
unimprovable strategy is not optimal. Section 4 gives some preliminary
propositions which hold to the extent that the utility function is lower- or
upper-convergent. Section 5 provides the @ain proposition. Section 6
summarizes the results. It also includes a brief description of an applica-
tion of our theorem to a problem in intertemporal capital markets, where
Strauch-Blackwell-Kreps' wversion of conserving and unimprovable strategies

fails to apply.

2. Formulation of the Problem.
To secure a maximum generality of the problem we use Kreps' formulation

of a dynamic programming problem with a minor modification. It consists

ofi/:

(a) countable state spaces X, with generic x for t =1, 2,...;

-

t t’

(b) a countable initial history space Ho with generic ho;

(c) action spaces At(ht) with generic a for h, € H, and t = 0, 1, 2,

t t t

., in which

- X

(d) Ht , for t =1, 2,..., are partial history spaces with generic ht s
defined 1iteratively by ht:; (ht-l’ at—l’ Xt)’ or ht = (ho’ ao, Xl’ al, x2,
TEENEE xt);
(e) transition probabilities Pt(xt+1|at’ h,> for a, € A ¢hp), hy € H,
= >
o1 € Kpgpr t 0, 1, 2,..., such that Pt(xt+1|at, hy) 2 0 and
L P, (x, ,la,, h,) = 1; and
X441 t 7+l t

(f) an extended real valued utility function U defined on the space of

N

complete histories H with generic h = (ho, a, Xl’ a;, X

0 2’



A strategy is a complete description of choices of actions at all

partial histories. Thus the strategy space is defined by T := X:zo

Xh At(ht)’ with generic . We write n(ht) as the projection of m onto
t

At(ht). For each n and ht , conditional probabilities Pn(~|ht) and condi-

tional expectations EH[-lht] using m given h, are constructed on H from the

t

transition probabilities in the usual fashion. Unconditional probabilities

P"(') using nm are constructed in the same spirit.

For each t and h, , the expected utility using n given h, is defined

t t
byg/

.o n
v, (m, ht) := E [U(h)lht],

and the gptimal expected utility given h, is defined by

t

f,(h,) := sup v, (m, h,).
tt woe T t t

Note that vt(u,ht) is the entire expected utility. It is not the expected

additional utility accruing after time t, which is more conventional in the

dynamic programming literature but only makes sense when U is time-additive.

3. Path-Optimal, Path-Conserving, and Path-Unimprovable Strategies.
Given a strategy m let R(n) denote the set of all m-reacheable partial

histories, which is defined by

[+ ]
R := U {htIP"(ht) > 0}.
t=0

We say that strategy n is optimal at ht if
Vt("’ ht) = ft(ht)’ (3.1)
Eq.(3.1) implies that wusing m at time t and thereafter yields the optimal

expected utility given ht‘ We also say that strategy m is path-optimal if

it is optimal at every ht € R(m).



For m to be an optimal strategy for the entire problem with initial
history ho’ it must Dbe that vo(n, ho) = fo(ho). [t is easy to show that
this requires that m be optimal at every n-reacheable partial history, i.e.,
m  be path-optimalz/ To show this equivalence (and for later purposes) the

following lemma is useful.

LEMMA 1. For all t and t’, with t” > t, and all n e T, h, € H,

_oh
vt(n, ht) = E [Vtv(ﬁ, ht.)lht].

PROOF. From the definition of vt(n, ht) and the law of conditional

expectation it follows that

_ M
v,(m, h) = E [U(h)lht]
= E"tE“[U(h)Iht.llht]
-
= E"[v(nm, ht.)lht},
since ht' "contains" ht' ]

PROPOSITION 1. For any h0 € Ho’ a strategy n satisfies

vo(n, ho) = fo(ho)

if and only if m is path-optimal.

PROOF. The "if'" part directly follows from the definition of path-
optimality. To show the "only if" part, assume the contrary. Then there

exist t and h ¢ R(m) for which
Vt("’ ht) < ft(ht) = s;g vt(n , h

oy

So we can find m € T such that

A A

Vt("’ ht) < vt(n, ht)'
Let 75’ be a strategy which uses m until time t, and follows n afterwards if

A

ht is reached at time t, and otherwise follows n. Using lemma 1 we get



4 - n” ’
vy b)) = EN Iv.(n”, hdlnd

]

n ’
E'lv, (', ht)lhol.

t(H , ht) = Vt(n, ht) > vt(n, ht) if ht = h

) otherwise and that Pn(ht) > 0, we obtain

Noting that w and vt(n', h) =

t t

v,{(n, h

t t

’ )i
vo(n s ho) > E [vt(n, ht)lhol
= vo(n, ho).

This contradicts the assumption that vo(n, ho) = fo(ho). |

Now we give definitions of a path-conserving and a path-unimprovable

strategy.

DEFINITION 1. For any t and ht € Ht’ a strategy n is said to be con-

serving at ht if it satisfies
.
f,(h) = E [ft+l(ht+1)|ht1. (3.2)

A strategy nm is said to be path-conserving if it is conserving at every ht €

Remy.

The right-hand-side of (3.2) 1is the conditional expectation of the
optimal expected utility ft+1(ht+1) given that the partial history until
time t is ht and that an action is taken at t according to strategy nm. This
equals the expected utility given ht of using m at t and following the

optimal path afterwards. A strategy is conserving at ht if this expected

utility equals the optimal expected utility given ht’

DEFINITION 2. For any t and ht € Ht’ a strategy nm is said to be

unimprovable at ht if it satisfies




- n’
v, (m, ht) = sﬁg E [vt+1(n, ht+l)lht]. (3.3)

A strategy nm is said to be path-unimprovable if it is unimprovable at every

hy € Rem .

The right-hand-side of (3.3) is the supremum of the expected utilities
given that the partial history until time t is ht and that strategy n is
used at and after time t+1, where supremum is taken with respect to the
action at t. Thus a strategy is unimprovable at ht if it cannot be improved
upon by deviating from the strategy only at time t. |

It is straightforward to establish that any path-optimal strategy is

both path-conserving and path-unimprovable.

PROPOSITION 2. If a strategy n is path-optimal, then (a)it is path-

conserving, and (b)it is path-unimprovable.
PROOF. (a) If 5 is path-optimal, for any t and ht € R(n) we have
ft(ht) = vt(n, ht)‘

From this and lemma 1 we obtain

n
f,(hp) = Elv,  (r, hy R,

t+l
E'tf, (h, lh,1
TS PSERLIEE

(n, h ) =

where the second equality follows from the condition that v t41

t+1
fi41Chy, ) for all by, € ROD.

>

(b) Suppose that m is not path-unimprovable. Then there exist t, h, €

t
R(m), and m such that
) " A
vi(m, h) <E v, O ht+1)lht]'
The right-hand-side is the expected utility given ht of a strategy n’ which
chooses an action at time t according to nm if the partial history is ht and



A

uses strategy n otherwise. Therefore, we obtain vt(n, ht) < vt(n', ht)' This

contradicts the assumption that n is path-optimal. =

The purpose of the rest of this paper is to investigate the conditions
under which the converse statements are true. As shown in the following
example a path-unimprovable strategy may not be path-optimal even in finite-

horizon problems.

EXAMPLE. Fig. 2 below describes the problem in the form of a

Fig. 2
decision tree. One starts at the initial '"node" hO’ where he chooses be-
tween two actions —— to take the upper branch or to take the lower branch

(thus, the transition probabilities are degenerate). At each node, hi or

h;, he again chooses between two branches. Thus there are four alternative
paths. The numbers in the right-end are the utilities associated with these
paths. Let 5 denote the strategy indicated by the arrows. Obviously this

strategy 1is not path-optimal, since fo(ho) = 5. However, it is unimprovable

at hi. More importantly, it is unimprovable at hO, since if he must take the

’

lower branch at h; his best choice at h0 is to go to hl‘ Therefore the

strategy n is path-unimprovable.



4, Sequentially Path-Conserving and Sequentially Path-Unimprovable
Strategies.
We now introduce another set of notions, sequentially path-conserving

strategies and sequentially path-unimprovable strategies. These notions are
1

stronger than their counterparts of the previous section.

DEFINITION 3. For any t and ht € Ht’ a strategy n is said to be ge-

quentially conserving at ht if it satisfies

_wl
RIEE A € SURC T

for any positive integer k. A strategy n is said to be gequentially path-

f,(h )Iht] (4.1)

conserving if it is sequentially conserving at every ht € R(m.

A path-conserving strategy satisfies (4.1) for k = 1. Thus the notion
of sequentially path-conserving stirategies extends the idea of (one-step)
path-conserving strategies to an arbitrary number of steps. Similar con-

struction is made for the notion of path-unimprovable strategies.

DEFINITION 4. For any t and ht € Ht’ a strategy n is said to be se-

guentially unimprovable at ht if it satisfies

4

- n
v (m hp) = Sﬁ? E [v,, On by 0 0hy ] (4.2)

for any positive integer k. A strategy m is said to be sequentially path-

unimprovable if it is sequentially unimprovable at every ht e Rom.

Let us investigate the relationship between path-optimal strategies and
sequentially path-conserving (sequentially path-unimprovable) strategies.

First, it is straightforward to see that any path-optimal strategy is both

10



sequentially path-conserving and sequentially path—unimprovable.g/ Further,
in finite-horizon problems any sequentially path-conserving (sequentially
path-unimprovable) strategy is path-optimal, which one can easily verify by
taking k larger than the time-horizon. In the following we show that
Strauch-Kreps' condition (Blackwell-Kreps' condition) 1is exactly what is
needed for a sequentially path-conserving (sequentially path-unimprovable)

strategy to be path-optimal.

UPPER- AND LOWER CONVERGENT UTILITY FUNCTIONS.

For T =0, 1, 2, ... define U' and U on H_ by

=T _ -
U thp) = sup{U(h) |h € H, hp(h) = ho),
and
QT(hT) = inf{UCh)|h € H, hT(h) = hT),
where hT(h) denotes the projection of h from H to HT‘ Given a partial

history up to time T, hT, ﬁT(hT) measures the overall utility with the most
"optimistic" estimate of the subsequent path post time T. QT(hT) cor-

responds to the most '"pessimistic" estimate. Obviously, for all h € H,

Pm ozt 2 - -2 um, (4.3)
and

0 1

Vo sta s - - - s um, (4.4)
where U'(h) and U'(h) stand for U7 (h (h)) and UT(h (h)), respectively.

DEFINITION 5. A utility function U is upper convergent if ﬁo(h) { +

RS R
and limy, 0" (h) = U(h) for all h € H.

DEFINITION 6. A utility function U is lower convergent if Qo(h) > ~»

. T -
and llmTer (h) = U(h) for all h € H.

11



DEFINITION 7. A utility function U is convergent if it is both upper-

and lower convergent.

The utility function of a finite-horizon problem is trivially

s}

convergent, Also, if the utility function is given by UCh) = zt:Ort(Xt’ at

with rt(xt, at) S 0 (the classic case of negative dynamic programming), it

)

is upper convergent. If U(h) is of the same form with rt (xt, at) 2 0 (the

. . . . Ly 9/
classic case of positive dynamic programming) it is lower convergent.

Given a utility function ﬂT defined on H, one can construct a T-horizon

T

dynamic programming subproblem; namely, the problem of selecting actions

contingent on histories at times t =0, 1, .., T-1, so as to maximize the

expectation of ﬁT. Any strategy n € 1 for the overall problem can be

restricted to X{:é (Xh At(ht)) to serve as a strategy for the T-horizon
- t

subproblem. Let Gz(n, ht) denote the expected utility using n given ht of

such a subproblem, and let ?{(ht) denote the optimal expected utility given
ht'
A similar construction is possible for the utility function QT. Define
the expected utility y{(n, ht) and the optimal expected utility j{(ht),
correspondingly.
Kreps [1877]1 proved the following.
(a) If the utility function U is upper convergent, then
. =T - . =T _
llmTeth(“’ ht) = vt(n, ht) and llmTewft(ht) = ft(ht)
for all n, t and ht;
(b) If the utility function U is lower convergent, then
. T _ . T -
llmTaw gt(n, ht) = vt(n, ht) and llmTém gt(ht) = ft(ht)

for all n, t and ht'

12



These results endorse the computational procedure known as value

iteration. We wutilize these 1limit theorems to obtéin the following two

propositions.

PROPOSITION 3. If the utility function is upper convergent, any sequen-
tially path-conserving strategy is path-optimal.

PROOF. For any me€ N, t 20, T > t and ht € H , we have

T

b
'

-T
vi G, hy) (hT)lht]

[1%

n
E [fT(hT)!ht],

T

since U'(h.) 2 fT(hT) by (4.3). If nm is sequentially path-conserving, for

T
all h, e Rom)

- i
f,(hy) = E [fT(hT)lht].
Thus we obtain
-T
vt(n, ht) e ft(ht).

Letting T @ «» and using (a) above yields
>
vt(n, ht) 2 ft(ht)
for all ht € R(m). This implies that m is path-optimal. =

PROPOSITION 4. If the utility function U is lower convergent, any

sequentially path-unimprovable strategy is path-optimal.

PROOF. If nmn 1is sequentially path-unimprovable, for any t 2 0, k 2 1

and h € R(n) we have

vi(m, hy) o= Sﬁg B IV, (T, ht+k)|ht]
2 sup E" (U
"_'

t+k(h

o) 1 15

where the inequality follows from (4.4). For the (t+k)-horizon subproblem

with the utility function gt+k, the k-step optimality equation

13



t+k - no etk
fy 7thyy = Sﬁg E [§t+k(ht+k)|ht]
10/ . t+k _ itk P -
holds.” Since £t+k(ht+k) = U (ht+k) by definition, combining these two

relations yields

t+k
vt(n, ht) 2 it’ (ht).
If we let kK » @ and use (b) above, we obtain
>
vt(n, ht) 2 ft(ht)

for all h ¢ R(n). Hence nm is path-optimal. =

5. Optimality of Path-Conserving and Path-Unimprovable Strategies.

Thus far we have shown that upper (lower) convergence of the utility
function is sufficient to guarantee that any sequentially path-conserving
(sequentially path-unimprovable) strategy is path-optimal. The work left is
to investigate an appropriate condition under which any path-conserving
(path-unimprovable) strategy 1is sequentially path-conserving (sequentially
path-unimprovable).

We first show that a path-conserving strategy is always sequentially

path-conserving.

PROPOSITION 5. Any path-conserving strategy 1is sequentially path-
conserving.
PROOF, If nm is path-conserving, for any t 2 0 and ht € R(n) we have
S
£,(h) = ETCE, (hy ) ]h, T

Similarly, for any h o1 € R(n) we have

t

-
froyMiyp) = E'LE ,(hy o lhy 0]

t+1 7 t+1 t+2 t+17°

Since the -expected value in the right-hand-side of the first equation does

y for h, £ R(m), we can substitute the second

(ht+1 t+1

not depend on ft+1

14



equation into the right-hand-side of the first equation. Using lemma 1 we

obtain

.0
f£,(hy) = ETLETUE, ,(hy )by

n
)|ht].

]lht]

= E [ft+2(ht+2

By repeating the above procedure (or, by induction), we ge}
I
ft(ht) = E"[{

pex Ny 1y

for t 20, ht € R(m), and any positive integer k. Hence, n is sequentially

path-conserving. ]

COROLLARY. If the wutility function 1is upper convergent, any path-

conserving strategy is path-optimal.

We now ask whether any path-unimprovable strategy is sequentially path-
unimprovable. It turns out that., convexity and differentiability of the
problem 1is essential for this statement to be true. The following lemma

plays a key role to establish our result.

LEMMA 2. Let Y be a locally convex, linear topological space and A a

convex set in Y. Let F: A 2> R and G: A » R be concave functions such'that
11/

G(a) 2 F(a) for all a € A with equality holding at a = a° € icr(A).

Further we assume that the gradientlg/VF(a°) exists. Then, if F attains its

13/

maximum at a°, G also attains its maximum at a°.

PROOF. Since F is concave on A and continuous at a°, a theorem due to

Pshenichniiléétails that there exists a sunergradientlé/ of F at a°, denoted

by ¢, such that ¢(a°) = max{®(a)la € A}. If F is dominated by G with F(a®)

= G(a®), the set of supergradients of F at a°, which is usually called the

15



superdifferential of F at a° and denoted by JF(a®), contains the superdif-
ferential éG(a°) of G at a®, since ¥(a - a°) 2 G(a) - G(a°) implies Y(a -
a®) 2 F(a) - F(a®) for an arbitrary ¥. On the other hand, if the gradient
JF(a®) exists in the dual space of Y the superdifferential JF(a®) must
consist of a single element, namely VF(a®), and if a* € icr(A) the superdif-
ferential dG(a®) must be nonempty.lg/ Therefore ¢ must also be a

supergradient of G at a°, namely, ¢ € 9G(a’). Applying Pshenichnii's

theorem again it follows that G(a®) = max {G(a)la € A}. n

We impose the following assumption to apply lemma 2 to our problem.

ASSUMPTION X. For each t 2 0 and ht € Ht let the action space At(ht)

be a convex set in a locally convex, linear topological space. Further,

assume that for any nm € T +the function which maps each a
a
E 'f

; € At(ht) to

vt+1(n, ht+1)lht] is a- concave function on At(ht) and its gradient

exists at any point in icr(At(ht)).

PROPOSITION 6. Under assumption X, any path-unimprovable strategy m €

T is sequentially path-unimprovable if ”(ht) € icr(At(ht)) for each t 2 0

and h, € Remy.

PROOF. For each t 20 and h, € R(m), define functions F, and G, on
A Chy) by
2t
Fi(a) = E “Lvy,,(r, hy 1h]
and
at H'
G,(a,) = E cS;g E" [v, . hy o0 lh  Tlh T

Since n is path-unimprovable we have

16



Fy(nthy)) = max (F (apyla, € A ¢hy)y,
and also ‘
nchy) o
G, (nthy)) = E ts;g E' vy ,,0r hy 00k 11k ]
n¢h,)  wehy o)
_ t t+l
= E (E Vi, O by o) Thy  T1h D
_ ol
= E'lv,,,(n, hy )lh]

Ft(n(ht)).
Further, we clearly have

P
Gt(at) = Ft(at) for atl a, € At(ht)’

Hence we can apply lemma 2 to obtain

G, (nch)) = max{Gt(at)!at €AY

Since Gt(n(ht)) = Ft("(ht)) = vt(n, ht)’ this implies
>
vt(n, ht) 2 Gt(at) for all at € At(ht)’

or equivalently,
- n’
v, (r, hy) = s§? E [vt+2(n, ht+2)|ht].

By repeating the above procedure (or, by induction), we obtain for all t b4

0, h, € R(m) and k 2 1,

- n’
v (r, hp) = Sﬁg E" Vi (m hy 0 1h T,

Hence n is sequentially path-unimprovable. ]

COROLLARY. If the utility function U 1is lower convergent and

assumption X is satisfied, any path-unimprovable strategy n with “(ht) €

icr(At(ht)) for any t 2 0 and h, € R(n) is path-optimal.

It is important to note that this proposition requires that the

strategy n must at each moment choose an action which is in the "interior"

17



of the action space. If we go back to the example of section 3, any "pure"
strategy, including the one we focused on, chose actions on the boundary of
the action space, because. to "convexify" the problem the action space at
each node must be defined as the one-dimensional simplex {(al, az)lal to =
1, @ 2 0, o, = 0}, where & and % are the probabilities of a mixed

strategy.

6. Summary.
What we obtained in this paper are summarized in Fig. 3 below. Arrows

with solid lines indicate that no assumption is needed to move in the

Fig. 3

pointed direction. Directions which necessitates some assumptions are
indicated by arrows with dotted lines. The symbol "u.c.” ("l.c.") stands
for upper (lower) convergence of the utility function.

If we omit the term "path-" and add "at every partial history" in each
box, we revert to the problem dealt by Kreps. 1In that case the broken arrow
with "Assumption X & interior strategy"”" becomes a solid arrow, and no other
part of the diagram changes. Thus the last point is really the difference
between our construction and Strauch-Blackwell-Kreps'. Our notions of se-
quentially conserving and sequentially unimprovable strategies helped to
clarify this difference,

The results of this paper have an interesting economic application.
Here we briefly outline the problem. Consider two separate exchange
economies, economy 1 and economy 2, each consisting of a single

"representative" consumer/investor. Each economy has markets which provide
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opportunities to reallocate the individual's commodity endowments. Financial
assets are also available for reallocating "purchasing power" over time.
These two economies are identical in the individual's endowments,
preferences, the ecgnomies' productions and the available markets. They are
different only on one aspect. Namely, the individual of economy 1 is very
naive; when he constructs a portf0116 of the financial assets he never
considers possibilities of reselling in the future. In other words, he is a
pure "investor", who purchases financial assets merely to "eat up" dividends
and interests.lz/ In contrast, the individual of economy 2 is more sophis-
ticated and may act as a "speculator" who buys and sells financiaf assets to
realize capital gains or 1o avoid capital losses. ¥hat we are concerned
with is tﬁe equilibrium prices of the financial assets in these two
economies and their mutual relationship.

The equilibrium price systems of these economies can be analyzed using
the notions of a path-conserving and a path-unimprovable strategy. Let nh
denote the "buy-and-hold" strategy, which at each time and on every contin-
gency instructs the individual not to retrade any financial asset. It is not
hard to understand the statement: (a) A price system is an equilibrium of
economy 1 if and only if nh is a path-unimprovable strategy provided that
this price system prevails over time; (b) A price system is an (rational-
expectations) equilibrium of economy 2 if and only if nh is a path-
conserving strategy provided that this price system prevails over time. One
can use the propositions of this paper to relate these two equilibrium price
systems. For a formal treatment of the subject the readers are led to a

companion paper, Kobayashi [1986]. It also explains why the notions of

Strauch-Blackwell-Kreps are inappropriate to analyze this problem.
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FOOTNOTES

* This paper originates from a theorem proved in Kobayashi [1983]. 1In a
private conversation David Kreps taught me a possib}e link between the
theorem and his theorem on conserving and unimprovable strategies in dynamic
programming. The author wishes to gratefully acknowledge his suggestion,
without which he would never have thought of the present, extensively
generalized version of the theorem. The preparation of this paper was

partially supported by a research grant from the Kikawada Foundation.

1/ A strategy specifies an action at every decision point.

2/ This result will become evident in the sequel.

3/ This example is due to Ross [1974].

4/ The notions of negative, positive, upper-convergent, and lower-convergent

dynamic programming will be defined in section 4.

5/ The nonessential difference between this and Kreps' formulation is that

the latter defines partial histories as ht i= (ho, Xl”"’ Xt)’ allowing the

state variable Xy to include a4 when history records previous actions. We

choose to record past actions explicitly in h because we want countable

t’

state spaces and convex (uncountable) action spaces to coexist.
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6/ A suitable assumption must be made toc ensure the existence of the

integrals. Kreps assumes that for each h0 € Ho’ UCh) is bounded either

above or below uniformly in h for which the initial history is ho.

7/ Strauch-Blackwell-Kreps' definition of an optimal strategy requires that
the strategy be optimal at every ht € Ht‘ But, whether a strategy n is
optimal at nw-unreacheable partial histories ht (i.e., Pn(ht) = 0) is ir-

relevant to the overall optimality of m given an initial history.

8/ The proof is essentially the same as that of proposition 2.

9/ Kreps lists additional examples, e.g., Uth) := inf{rl(xl), rz(xz), oo}
is upper convergent, and UCh) := sup{rl(xl), rz(xz), ...} 1is lower

convergent.

10/ For a proof of the one-step version, see Kreps. The k-step version is a

trivial extension of the one-step version.

11/ The symbol "icr(A)" is the intrinsic core of the convex set A, which is

defined by icr(A) := {a € A [for each x € A/{a} there exists y € A such that
a € (x, VY)}, where (X, y) denotes the open line segment’joining X and vy.
Namely, if a € icr(A) it is possible to move linearly from any point in A
past a and remain in A. It coincides with the topological interior of A if

Y is a finite dimensional Euclidean space and A C Y is conveX.
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F(a’+ta)
t 10 t

. o - F(a®)
12/ 1f 11mt¢0 = lim for all a € Y, the

F(a®+ta) - F(a°)
. t
linear functional ¢ which maps any a € Y to this two-sided limit is called

the gradient of F at a°, and denoted by VF(a’®).

13/ A proof of this lemma in finite-dimensional Euclidean spaces was given
in Kobayashi [19831. The current version using Pshenichnii's theorem was

suggested by Darrell Duffie.

14/ Pshenichnii's theorem asserts the following: If Y is a locally convex,
linear topological space, AC Y is a convex set, f is a concave function on
A, and f is continuous at a point a® € A, then f(a°) = max{f(a) la € A} if
and only if there exists a sﬁpergradient ¢ of £ at a° such that ¢(a°) =

max{®(a)ja € A}. For the proof see Holmes [1975] pp. 87-88.

15/ A linear functional ¢ on Y is called a supergradient of F at a® € A if

®(a - a°) Z F(a) - F(a®) holds for all a € A.

16/ For the former assertion see Holmes, p. 29 and for the latter see ibid.,

p. 23.

17/ The market does not prohibit resales of the financial assets. The impor-
tant assumption here is that he never considers these possibilities when he
makes portfolio decisions. Hence the assumption does not mean the nonexist-

ence of a "secondary market" for each asset.
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