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1. Introduction.

A statistical procedure is asymptotically robust if its large-sample properties hold
under conditions more general than the conditions under which the procedure is derived.
The justification of such procedures is often based directly or indirectly on a central limit
theorem. In this paper Lindeberg-type conditions are utilized to establish asymptotic
normality of sample regression and autoregression coeflicients.

The classic central limit theorem for independent identically distributed scalar random

variables 1, zz,... states that \/n Z, £, N(0,0%) as n — oo if £x; = 0 and £z? = 0%
here , = 3 ..., %i/n is the mean of the first n observations. The requirement that the
variables be identically distributed can be dropped. For £z; = 0 and £z} = o?,
1 «— £
(1.1) :;»Za‘:i =5 N(0,1),
" =1
where
n
(1.2) TS = L U? 5
=1

if for any given € > 0

1 n
(1.3) s Z Ex I(2? > er?) — 0
Rog=1

as n — co. Here I() is the indicator function. If o /72 — 0 as n — oo, then (1.1) implies
(1.3); in this sense the Lindeberg (1922) condition (1.3) is minimal.

The condition of independence can be weakened to a condition of martingale differ-
ences. A very general theorem, which we shall use, has been given by Dvoretzky (1972).
For justification of later theorems we state this result in terms of a triangular array of ran-
dom variables (and include a normalization in the definition of the random variables).

Theorem (Dvoretzky). Let zai,...,%nn be & set of random variables and Fpo C

Fpy C oo C Fnn be aset of o-fields, n =1,2,..., such that z,; is Fnj-measurable,

(1.4) g(xnjlf'mj_l) =0 a.us.,

(1.5) E(l | Fn,im1) = ok; as.,
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1

(1.6) > ok 2t

=1

as n — 0, where o? is constant, and for any given € > 0

7

(1.7) S”e[akI(zk; > €)| Fa,j-1] = 0.
t=1
Then
(1.8) S 2nj =5 N(0,0%).
Jj=1

Dvoretzky actually showed that this resulf holds if F, ;-1 is replaced by By j-1, the
o-field generated by E:;} 2,,;. Generalizations have been given in Section 3.2 of Hall and
Heyde (1980) and Section 9.5 of Chow and Teicher (1988). Further references can be found
in these books.

In this paper we consider the estimation of the matrix of regression coefficients B in

the model
(19) ‘yt:‘-:BZt+’Ut, t‘—‘—‘l,z, s

where the unobservable vector disturbances v; are martingale differences; that is, the
conditional expected value of v, given earlier observed y;’s and z,’s is 0. The conditional
second-order moments of the v,’s are finite, but not necessarily the same for all {. However,
the v¢’s satisfy a kind of Lindeberg condition. The “independent” variables z; are assumed
to have a sample covariance matrix that converges to a limit in probability, and the 2z;’s
satisfy a kind of asymptotic negligibility condition. It is shown that the least squares
estimator of B has an asymptotic distribution that is the same as in the case that the
v,’s are independent and normal with mean 0 and constant covariance matrix. Thus the
disturbances do not need to be homoscedastic nor do they need to be independent. The
relaxed conditions are particularly important when the observed z¢’s and y;’s constitute a
time series.

In the autoregressive model, which is extensively used in time series analysis,

(1]0) Ly = Bﬂﬁt_l -+ Uy, t = ],,2, cee g
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the vector z; is replaced by @¢—;. The conditions on the v,’s imply the desired conditions
on the &¢_1’s.

In Section 4 the mixed model is considered; the right-hand side may contain both
lagged “dependent” variables and independent variables.

If the disturbances in the regression model are normal, independent, and homoscedas-
tic, and the independent variables are nonstochastic, the estimator of B has a normal
distribution with expected value B and covariances determined by the common covariance
matrix of the disturbances; it follows that the asymptotic distribution is normal. The re-
striction of homoscedasticity was relaxed by Anderson (1971) in Theorems 2.6.1 and 2.6.2
under a Lindeberg-type condition on the disturbances and the condition that the sample
covariance matrix of the independent variables have a nonsingular limit.

In the autoregression model the least squares estimator of B is nonlinear in the dis-
turbances. Mann and Wald (1943) showed that the asymptotic distribution of the estima-
tor of B is normal under the condition that the disturbances are independently identically
distributed and possess moments of all orders. Anderson (1959) showed that in this case
only the second-order moments need to be finite.

There are many recent results in this area. Lai and Robbins (1981) proved a theorem
for a scalar dependent variable with independent identically distributed disturbances. Lai
and Wei (1982) proved a similar theorem under the conditions that the moments of the
disturbances of some order greater than 2 are bounded and that the variances of the
disturbances converge to a constant a.s. Our approach follows these papers, but the
conditions have been relaxed. Chan and Wei (1987) have used a Lindeberg condition for

a special case of the autoregressive process; see also Lai and Siegmund (1983).

2. Robustness in Regression.
We consider the regression model in which the observed vector-valued dependent
variable y; is generated by
(2.1) ys = Bz +v, t=1,2,...,
where z; is an observed vector-valued independent variable and {v:} is a sequence of

(unobservable) martingale differences satisfying a Lindeberg-type condition.
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Theorem 1. Let {z¢,v:}, t =1,2,..., be a sequence of pairs of random vectors, and
let {F:} be an increasing sequence of o-fields such that z; is Fy_j—measurable and v, is

F;—measurable. Let the matrix Dy be Fo—measurable such that
n
(2.2) D' zzy(D,) ™ B G,
t=1
a constant matrix, as n — oo, and

2.3 max z/(D,D.) 'z, -2 0.
n t n

t=1,...,

Suppose further that £(v¢|Fi-1) =0 a.s., E(vvy|Fio1) = Xy as.,

n

(2.4) > [2:® Dt zezy(Dy) 7Y 5 2QC,
t=1

where ¥ is a constant positive semidefinite matrix, and

(2.5) sup &[vjvI(vjve > a)|Fi-1] 250
t=1,2,...

as a — o0o. Then

(2.6) vec (D;‘ > zw;) L, N0,z 0).

t=1

Proof. The conclusion holds if

(2.7) tr D;* Z 20, B = E v.BD; 2z,

t=1 t=1
£, N(0,tr ¥ BCB')

for every B. Let u,; = BD 'z, t=1,...,n. Then

(2.8) S wnl, - BCB' = D,
t=1
say. We want to show that

n
(2.9) ZU‘(ntvt £, N(0,tr D).
t=1



Condition (2.3) implies

(2.10) t;rllaxnu(ntum 250.
Let
(2.11) Wot = UneL(June]] <1), t=1,...,n, n=1,2,....

Then ||wp:]| <1 and
(2.12) Pr{wp =vn:, t=1,...,n}—1

as n — Co.

Now we shall verify that z,; = w!,,v; satisfy the conditions of Dvoretzky’s theorem.

‘We have

(2.13) E(w!ve|Fio1) = wi E(ve|Feo1) =0 aus.,
(2.14) > E[(whyve | Fim1] = Y wiy Diwne — tr ED
t=1 t=1

by (2.4). The third condition for {wn:} to satisfy is

n
(2.15) An(8) = E{(Why vt T[(w)yvne)* > 6]|Fir} 0 V6 > 0;

t=1

that is, given 6 > 0, ¢ > 0, and v > 0, there exists n(e,v) such that for n > n (e,7)
(2.16) Pr{A.(6) <e} >1—7.

We have

- w’ z w' 2 6
2.17) An(8) = w!  WnE (——ﬁi—_v> I ( nt 'vt) >
(21T) An(8) = ) wheton { Tl ) T | \Twndl™) 7~ Twmdl?
- é
< Zw;twmﬁ {vévtI [vé'vt > ——-——-———5} ft_l}.
t=1 |wnel|
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Given e* > 0 and 7* > 0 there exists n*(e*,7*) such that for n > n*(e*,7*)
(2.18) Pr{lwal® <e5t=1,...,n} >1-7"
Hence

(2.19) Pr {An(é) < Zw;twmé' [v;'vtI(v;vt > 26;) ‘ft._l] } > 1 —~*

t=1

Since

e )
(2.20) E Wi W€ {v;'vtI (v;vt > '8—;) ‘ftwl}
t=1
< En & @nisup £ vivI | viv >£~ Foa
> 2. nten . sVUs sVs o §—

(%)
g

say. That is,

, 5 )

(2.21) Pr {An(tS) < By (;—;)} >1—7

if n > n* (e*,7*). Let

(2.22) C(d)y= sup E[viv.I(viv, > d)|Fs-1].
8=1,2,...

Condition (2.5) is that given e > 0, 5 > 0 there exists a d(e, ¥) such that for d > d(e,¥)
(2.23) Pr{C(d)<e}>1-7%.
Condition (2.2) implies that given a > 0, 7 > 0 there exists 7(a, ¥) such that

(2.24) Pr{ al @ <trD+a}21-7.

t=1

Hence

(2.25) Pr {Bn (—;—i) < s} <1-5-%



if (tr D + a)e < ¢, §/e* > d(e,¥), and n > 7i(a,7). Then (2.16) holds if y* +5 +7 <,
(tr D + a)e < €, e* < §/d(e,7), and n > max [n*(e*,’y*),ﬁ(aﬁ)]. The theorem follows
from the theorem in the introduction [Dvoretzky (1972)]. [See, also, Corollary 3.1 of Hall
and Heyde (1980) or Theorem 2, Section 9.5, of Chow and Teicher (1988).] ]

Theorem 2. Let {v;} be a sequence of random vectors and let {F;} be an increasing
sequence of o—fields such that v; is Fi-measurable, £(v¢|Fi—1) = 0 as., E(vy vy Fi-1) = 2y

a.s.,
1 k13
(2.26) = Yoz 2z,
t=1

constant, and

n

1
(2.27) =3 E[luid(viwe > ne)| Fi] 0.
t==1
Then
(2.28) % > vy o X
t=1

Proof. If v; is scalar, the proof follows from Theorem 2.23 of Hall and Heyde (1980)
as indicated by Chan and Wei (1987). The theorem is then verified by taking arbitrary

linear combinations of v;. i

Theorem 3. For n observations on the model (2.1) define

-1
n k23
(2.29) B =Sy (2 ) ,
t=1 t=1

. 1 & A .
(230) En = ";; Z(yt - ant)(yt - ant),

=1

n 1 . n A
=23 v - ~(Bn—B))_ z(Bn - BY.
t=1 t=1

n
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If the conditions of Theorem 1 hold with C nonsingular, then
(2.31) vec [(B, — B)D.] -5 N(0,C7' @ ).
If, further, (2.26) holds, then

(2.32) I N >3

Proof. The proof of (2.31) is a straightforward application of Theorem 1. The second
term on the right-hand side of (2.30) is

(2.33) %(1“3,. _ B)D:'[D;? L 22(DLY ] (B — BYDSY] 250

by (2.2) and (2.31). |
The purpose of condition (2.3) is to assure asymptotic negligibility of zv;. What

alternative conditions imply (2.3)7?

Lemma 1. Let {z;} be a sequence of random vectors, and let {F;} be an increasing
sequence of o-fields such that z; is F;—measurable. Let D, be Fo—measurable such that

D;'! - 0as., D,D,}, 25 I as., and

(2.34) D;'Y zzy(D,)" = C as.
Then
(2.35) ,max 2)(DpD!) 'z¢ - 0 as.

Proof. From (2.34) we have

n-4-1 1)
(2.36) D}, Y 22 (Dhyy) =D Yz DY
t=1 t=1
n+1
= D zn+1zn+1(D )_ + Dn+1 Z ztz;(DsIn-}"l)MI

n41
~ (D;'Dry1)Dyiy Z 22y (D) (D1 Do)
t=1
— 0 a.s.



That is, || D zn+1]|* — 0 a.s. This implies (2.35) by the proof of Lemma 2.6.1 in Anderson
(1971). i

A special case of {2;} is that of z; nonstochastic; then (2.34) (which is the same as (2.2)
when {z;} is nonstochastic) implies (2.35) with the limits nonstochastic. In particular,
if D, is diagonal and the j-th diagonal element of D, is the square root of the sum
of squares of the j—th elements of the z;’s, then D;*S 7 zz)(D;)™" is the correlation

matrix of 21,...,2,. The theorem in this case is a relaxation of Theorems 2.6.1 and 2.6.2

of Anderson (1971).

Theorem 4. Let {2z:} be a sequence of random vectors, and let {F;} be an increasing

sequence of o—fields such that z; is F;—measurable and
n
(2.37) S E{z(DaD})  xl [2y(DaDy) 2 > €] | Fioa ) -2, 0.
t=1

Then (2.3) holds.

Proof. We use Lemma 3.5 of Dvoretzky (1972): If {F;} is an increasing sequence of
o-fields and A; € F, then for every n > 0

(2.38) Pr{UAdfb} < n+Pr{ZP(Atif}__1) > 7}|fg}.
t=1 =1
For every ¢ > 0,7 > 0

(2.39) Pr { max (DD 2y > sl.?’o} = Pr {U [2{(DnD) 2 > (—:If"o]}

=1
<np+Pr { Z Pr(z{(D,D.) "z > €| Fea) > nlfo}
t=1

<n+Pr {;11- Zg[z;(DnI):l)“l ztI[z:,(DnD;)“lzt > slft_-l] > nlfo}
t==1

by a form of Tchebycheff’s inequality. By (2.37) the right-hand side of (2.39) converges to
0. Since n is arbitrary, (2.3) holds. ]



Corollary 1. Let {z¢,v:},t = 1,2,..., be a sequence of pairs of random vectors, and
let {F;} be an increasing sequence of o—fields such that z; is F;_;—measurable and v; is
Fi~measurable. Let D,, be Fy-measurable such that (2.2) and (2.37) hold. Suppose that
E(v¢|Fi-1) = 0 as., E(vvy|Fioy) = Ty as., and (2.4) and (2.5) hold. Then (2.6) holds.

The condition (2.4) determines the limiting covariance matrix of D'y ) | z4v;.

Lemma 2. Let {z¢,v:} be a sequence of random vectors, and let {F} be an increasing
sequence of o-fields such that 2z, is F;_;—measurable and v; is F;-measurable such that
E(vi|Fi-1) = 0 as., E(vvy|Feeq) = Ty as., and Xy — X as., where X' is a constant
matrix. Suppose D, is Fo—measurable such that (2.2) holds. Then (2.4) and (2.26) hold.
If, further, (2.3) and (2.5) hold, then (2.6) holds.

The homoscedastic case, &; = ¥, is included and also the case of X nonstochastic.

An important case of {z;} is that in which D, = v/n I; then D;lz:;lztz;(l):l)wl =
(1 /n)zr___lztz;; that is, this matrix is simply the sample covariance matrix for known

mean 0.

Corollary 2. Let {z;,v;} be a sequence of pairs of random vectors and let {F;} be an
increasing sequence of o—fields such that z, is F;_;—measurable and v; is Fi-measurable.

Suppose

.1 n
2.40 ~ 2 2 M,
(2.40) " ;zi t

a constant matrix,

1
(2.41) ~ Jmax 2z =2 0,

5('0,5‘.7:}_1) =0 A.8., g(wtwé]ftml) == Et a.8.,

1 o~
(242) :,'; ;‘;(Et ® ziz;) --R-i 3 ® M,
and (2.5) holds. Then

.1 n
(2.43) 7 vec (E zmé) £, N0, T @ M);

t=1
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if, further, M is nonsingular, then
(2.44) V7 vee( B, — B) -5 N(O,M™! @ X);
and if, further, (2.26) holds, then (2.32) holds.

Condition (2.40) is equivalently (1/n) Y i, vec 2z} 2+ vec M; (2.26) is equivalently
(1/n)vec Xy 2 vec X; and (2.42) is equivalently

/
1 1« 1o
(245) ;): ;VQC Et(vec thi)l - ; Z_;vec Et (;—l- Lvec ztzi> _.B_.) 0.

t=1
The condition (2.45) is that vec X; and vec z;z; are asymptotically uncorrelated over t.
Even if the 3;’s are nonstochastic and the z; are exogenous this condition is needed to

obtain X' ® M as the covariance matrix of (1/y/n)vec Y, 2:V;.

3. Robustness in Autoregression.

We now consider the autoregressive model.
(31) Ly = Bwt_l -+ V¢, t = 1,2,. e .

The form of (3.1) is (2.1) with 2; replaced by @;..;. We shall show that the least squares
estimator of B based on @g,...,&, has the asymptotic normal distribution of the least
squares estimator in the regression case. In order to show the analogies to (2.2) and (2.3)

we prove the following lemmas.

Lemma 3. If the characteristic roots of B are less than 1 in absolute value and if

MaXi=1, . n 00 /7 — 0, then for @,@2,... generated by (3.1)
1 i p
(3.2) ~ 0ax &y @1 — 0.

Proof. Since zhzo/n — 0 and the roots of B are less than 1 in absolute value,

@) (B')" 1B 2 /n -5 0 and we need only consider

2
(33) Ti_y = Z B’vi_y_,.

1
8=0

11



Then

t—2
(3.4) eyl &y = Z Vyp1(B') B Vi1

7r,8==0

t—2

Z |"’t-r~1(B')rBa”t--s-ll

7,8=0

t—2 »

g Z A,’N*.sqrpwlSPWI(“'vt-—r—--l”2 + ”vt—s——1”2)a

7, 8:=0

where A is the largest absolute value of the characteristic roots of B and ¢ is a suitable

constant. (See Lemma 7 in the appendix.) Then

2
1 2 2 s _p-—1
(35) - max [l |F < t_max [[vel (}_(,) A’s :
Since the sum in (3.5) is bounded as n — oo, (3.2) follows. E

Lemma 4. Let &1, @3, ... be generated by (3.1) with and Ezozy = Xy. Let {F;} bean
increasing sequence of o—fields such that #; and v, are F;—measurable. Suppose the charac-
teristic roots of B are less than 1 in absolute value, £(v;|Fi—1) = 0 a.s., E(vivy| Fi-1) = Xy
a.s., (2.26) holds with X' constant, and (2.27) holds. Define

(3.6) r= i B*3(B')’.

3=0

Then (2.28) holds,

1 n
(3.7) =N vl -0,
n t==1
1 ﬁ“‘ / P a
(38) ;; L Lt—1®yy —F I.
t=1

Proof. From (3.1) we have

(3.,9) WLp.q = Bs’vt_q_.s + Btmlwo



For some 6 > 0 define @, = xo,

t
(3.10) Ve =ved [tr> X, <n(l+0)tr I,/
g==1

t~2
(3.11) Ty = B®vy i—s + B ey

8==0
Then
(3.12) Pr{vn =v,t=1,...,n} s 1,
(3.13) Pr{ni-1 =21t =1,...,n} =1,
(3.14) Pr{vm®), ,_y =vxi_;,t=1,...,n} = 1.

By construction &||v,]|? < n(1+8)tr X and &||@n,¢—1]|*> < 0o. Then

1 E” 1 Z"
t=1 g=1

n

— ' '
= E'tr E Vnt&y 4 1Tn,5—-1Vns

n2
8,1=1
n
= —1—-1: & / !
T 02 r Tht—1%n,s—1Vy sUnt
s,t=1

1 n
= ;—2-8 Z :c'n’t_lmn,s_.lf (v;w'vnt|fmax(s’t)_1)

8,t=:1
1 n
— 7 ]
= ngg E :wn,t-—l"’n,t“lg("’nt"’nt|ft—-1)~
t=1

Since max¢=1,... n Hvt“z/n 250 by Theorem 4, we have max;=1,... » 8(]|'vnt|l2|ft_.1)/n 2,

0 by (3.6). Now consider for 2 <t <n-—1

1 ”
=1

n t--2 t—2 ]
= ‘“5{9"()&30 + E (}: B"vp -1 + B! ) (Z B®vg, 451 + Bt_lﬂ?o) ]

=2 r==0 8=0
13
:;ELB“’&;M com1V oy (B + = LB‘ 1 3(B')!
t=2 s=0

n—

:}_‘;38 5 Eonicrithesa (B + ZBf ' Zo(B)T

8=0 t=g-}-2 t—l

13



The trace of the first term on the right-hand side of (3.6) is not greater than (1 + 6)tr I".
Hence, (3.5) — 0, and (3.7) is proved.
From (2.28) and (3.1) we have

1o 1
(3.17) - E'vt'v; =- Z (@2} — @,2,_, B' — Bxyz,_, + Bz, 12, ,B)
t=1

=1
2

From (3.7) and (3.1) we have

1 1 &
(3.18) - Z vz, = ~ Z(mtw;__l — Bz yz,_,)
t=1 t=1

250.

If we add to (3.17) the result of multiplying (3.18) on the right by B’ and the transpose

of that product, we obtain

1 n 1 n 1 n
(3.19) - Z vivy + ~ E v, B + ;B Z 10,
n t=1 t=1 t=1
1 . ' 1 ! !
t=1 t=1
2, 3.

Furthermore, Lemma 3 implies
1< 1o 1 1
3.20 hat i 1T = —Bp@l — Z@oxh -2 0
(3.20) - ;mtmt - Z}mt 1T = Ty — ~LoLy ——
Then (3.19) is equivalent to
1« 1<
(3.21) = 2 zx), — B— Z ex!B 2 3,
n t=1 n t=1
which implies
1« 1<
(322) = pllmn_@oo;; E (Btél!; = pllmn,_,oo; Z EBt__IZB;_l.
t=1

t=1

14



See Problem 27 of Chapter 5 of Anderson (1971). |

Theorem 5. Let &;,2,,... be generated by (3.1), where vy, v2,... is a sequence of
random vectors and Exgxy = L. Let {F;} be an increasing sequence of o-fields such that
x; and v; are F;—measurable. Suppose that the characteristic roots of B are less than 1 in
absolute value, £(v¢|Fi—1) = 0 a.s. E(vivy|Fi-1) — X a.s., (2.26) holds with X constant,
and (2.5) holds. Furthermore, suppose

n

. |
(3.23) - > (B®vi1-rvi ) 2 6 (E 0 X),

t=max(r,8)+2

where 6,53 = 1 and 6,, = 0 for r ¢ s. Then

(3.24) % vec (E Ty v;) £, NO,X ®T).

t=1

Proof. In Corollary 2 we take 2; = @;—1. We want to verify (2.40), (2.41), and (2.42);
(2.5) is assumed. Since (2.5) implies (2.27), Lemma 4 implies (2.40), which is equivalent
to (3.8).

We have

1 n
(3.25) -~ E (Z: @ xiazy )
i=1

n t—2 t—2 !
1 _ s _
=5 tgl 2 ® (E B"vi_,_y + B 1030) (E B*v,_,_, + B 1930)

=0 =0
If we define vg = v—; = --- = 0, we can write
t—2 o0
(326) Z B”'vt._s_l + Bt_l Lo = Z B’vt..,,._l -+ Bt_lm'o
8=0 ) 8=0
k o)
= Z B’vi_g1 + 2 B°vy sy + B .
9=0 s=k+1
Fort>p+1
(3.27) | Bz < 2026 (¢ — 17 o .

15



Hence

1 - -
(3.28) = ; (X ® B zozy(B') ] 25 0.
- (See Lemma 8 in the Appendix.)

Consider the positive semidefinite matrix

(3.29) —Z 2 ® Z B v, yv,_, (B'")*

r,8=k+1

We shall show that with arbitrarily high probability the trace of (3.28) is arbitrarily small
if k is large enough. That will follow by showing the same property of

1o =
(3.30) =D | Bw® Y Blongcav, (B,
t=1

r,e=k+1
where X, = E(vpev),|Fi—1). The expected value of the trace of the second matrix in
(3.30) is

oo

(3.31) £ Z tr Brvn,t~r_1v;,tms-1(3)s
r,s=k-1

=€ ) Vi o1(B) B v

s=k+1
oo
§ : 28 % 2 /
S A 8q S pg'vn,t“a—lvn,t"s‘l
s—-k+l
28 2
=q" E A%%s pf{ Yy tms—1Vn,t—0-1L(Vy 1o 1Un 191 < @) Fegs]
s=k+1 .

+ 5['v:r.,,t,_s..lvn,t«—s—lI(v:@,t_s_lvn,t-—s—l > a)lft—-s——Z] }

<q* Z A2 g2P {a-{-ﬁ't slup E v VI (0], 00 >a)|ft“1]}'
s=ht1 =1,2,.

Since Y oo, 41 A2232P converges, the second part of the right-hand side of (3.31) can be
made arbitrarily small by taking a large enough; the first term can be made arbitrarily
small by making & sufficiently large. Thus (3.31) is arbitrarily small, and by Tchebycheff’s
inequality the second matrix in (3.30) is arbitrarily small with arbitrarily high probability.
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Now
n

k k
1 r 8 3
(3.32) - ;_ 2 ® § B™v,yv,_, (B')Y| -5 2@ E B*X(B')°.

1 7,8==0 8=0

If the right-hand side of (3.26) is written as a; + b; + ¢¢, we have shown above that

1 7
(3.33) = ; 3, @b, 250
and that
1 n
(334) tr ;z- Z (St &® CtC;)

t=1

can be made to converge in probability as n — oo to an arbitrarily small‘quantity. It

follows from the Cauchy-Schwarz inequality that

(3.35) ;1; t}; (2 ® asc}) 20,
1
(3.36) = D> (Zi®bict) 250,
=1
and that
(3.37) % f: (& ® a;:b})
=1

can be made to converge in probability to an arbitrarily small quantity. Hence,

1 n
(338) ; z [St ® wt_la:;_l] ..,..‘.)._.) X ® I.
t=1
Hence, by Corollary 2 (3.24) follows. ‘ |

The least squares estimator of B is

n n -1
(3.39) B.=) ww,, (Z wt-wi—l) :
t=1

=1
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and the estimator of X is

. 1 . .
(3.40) .En = ;; ;(wt — Bna:t_l)(a:t — ant..l)l

y R 1 ¢ R
= - E vt'v; - (Bn - B);I,. E azt_la:'t,_l(Bn — B)’
t=1

n
t=1

Corollary 3. Suppose the conditions of Theorem 5 hold and I' is nonsingular. Then
(3.41) Vnve«( B, — B) £, NO,I'® X)),
and (2.32) holds.

The conditions (3.23) in autoregression replace condition (2.4) in regression; they
imply (8.38) which is the analog of (2.4). The limit (3.38) is that vec X; and vec ®;_12&;_;
are asymptotically uncorrelated. The condition holds identically in B; the conditions

(8.23) are independent of B.

Corollary 4. Under the conditions of Theorem 5 with (2.26) and (3.23) replaced by
X — X a.s., (3.24) holds. If I' is nonsingular, (3.41) and (2.32) hold.

Proof. The condition ¥; — X a.s., where X' is constant, implies (2.26) and (3.23).

A higher order autoregressive process can be reduced to the first-order process. Sup-

pose X, Xa,... satisfy

(3,42) X:i =B X +"'+BpXt_p+‘/t,t-‘= 1,2,... .
Define
Xy Vi
X1 0
(3.43) x, = ) V= ,
Xi—pt1 0



B, B; B; B, 22 00 0

I o6 ©6 --- 0 0 0O 0
(3.44) B=|0 I 0o - 0] 5= 00 - 0|

0 0 0 --- 0 0 00 .- 0

where E(Vy|Fi-1) = 0 a.s., (Vs V{|Fi—1) = §2; a.s., and {F;} is an increasing o—field such
that X; and V; are F;—measurable. Then {@.} satisfies (3.1).

Theorem 6. Let

Xo
X"l ! ! ’
(3.45) el T | X XLy, X 0] =2,

and let X, X5,... be generated by (3.42). Let {F;} be an increasing sequence of o—fields
such that X; and V; are F;—measurable. Suppose the roots of

(3.46) NI —X"1B) —...~B,|=0
are less than 1 in absolute value, £(V;|F—1) = 0 a.s., E(V;V/|Fi-1) = 12; ass.,

1 n
(3.47) = Y, -5,

=1

which is nonsingular and constant, and (2.5) holds with v, replaced by V;. Define

(348)  (Bin,Ban,..., Bpa) = > Xu(X{ 1, X{ 5,...,X;_,)
t=1

Yo Xe1 Xy Yo XX, 0 Yo Xia X, , -1
» Z:;l th—2X;—1 E?:l Xt—2X;-2 e Z?:l Xt—zxt'_p
Z?=1 X;-PXt'-—l E?:l X.tmp ;—2 T E?:l ‘X;‘_PX;——p
(3.49) 2, = % ti;(xt ~ B Xy - = Byn X ) (Xt — B1a X1 — - — BpnXi_,).
Then
(3.50) fzi,, 2,0,



1 n Xt-—2 oo

(3.51) = t}; : [Xi 1, Xig o, Xp_p] ;Baz(y)s =T,
Xip
say, where
70 0
(3.52) ¥ = ? ? ? ,
0 0 - 0
and
(3.53) vnve(By, — By,...,B,, — B,) -5 N(O,I'' @ £2).

Lemma 5. If §2 is nonsingular, I is nonsingular.

Proof. The proof is a vector generalization of the proof of Lemma 5.5.5 of Anderson

(1971). |

4. Robustness in Mixed Regression and Autoregression

Now we consider the model
(4.1) ;=B 1+ Az +v, t=1,2,....

This model is analogous to the regression model (2.1) with z; replaced by (x}_, z;)'. The

least squares estimator of (B, 4) is

-1

S - n n n— Ty w,___ n~ . z,
(4.2) (Bn,Ay) = (E‘”t“’,t—la Z%Z;) [Zt—l 1T D gy Te-1Z ’
t=1 t=1

E?‘:l ztm,t—l Z?:] z-tZ;

and the estimator of 3 is

. 1 & . . . .
(4.3) Y,.= - ; (:ct — Bpxiq — Anzt)(a:t — Bpxyy — Anzt)'.
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Theorem 7. Let Exozy = Xo; let 1,2, ... be generated by (4.1), and let 2y, 22, ...
be a sequence of random variables (possibly degenerate). Let {F;} be a sequence of increas-
ing o—fields such that v, is Fi—measurable and 2z, is F;_;—measurable. Suppose the charac-
teristic roots of B are less than 1 in absolute value, £(v¢|Fi—1) = 0 a.s., E(v1v}|Fi-1) = Xy

a.s., and (2.5), (2.26), and (2.41) hold. Suppose .

1 n—h
(4.4) ;Zzt+hzi—g—+Mh=M'_h, h=0,1,2,...,
t=1
1 n—h :
(4.5) -ﬁZthv; -9—»0, h= 1,2,.,.
t=1
Define
(o o]
(4.6) L=) B°’AM_(,).
‘ 3=0
Then
1 n
(4.7) ~ Zwt_lzi 2,1,
n t=1
1 n
(4.8) =) w0 Q,
t=1
where @ is the unique solution to
(4.9) Q- BQB =3+ BLA'+ AL'B' + AM,A'.

Furthermore, if (2.42) and (3.23) hold and

(4.10) %Z (B @ vio1-s2;) 220, s=1,2,...,
t=1
then
- ; ¢ 0 /@ L\
(4.11) \/ﬁvec(Bn—B,An—A)—#—-»N[(o), (L' M0> ¥,
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and (2.32) holds under the further assumption that the inverse matrix in (4.11) exists.

Proof. Because the roots of B are less than 1 in absolute value, the sum in (4.6)
converges (by use of the Cauchy-Schwarz inequality). From (4.1) we obtain

12 t-2

(4.12) 2i1=) B'viy,+B'x+) B'Az. i,

8=0 8=0

k oo
= Z B'v; 1o+ Z B'vy_y_s+ B la,
8=0 s=k+1

k o
+ Z BsAzt—-l—ws + Z BsAzt-—l——s,
=0 s=k+1

where vg =v_y =---=0and 2 =2y =+-- =0. Then

t=1 s=0

1 n 1 n k
(413) ;; ; mt_lz; = —T; 2 Z Ba(vt—-l—s + Azt—l——s)z;

1 n o o]
+ - > [Bt"la:ozi + Y B'(vio1-s + Azioi,)z
t=1

s=k+1
We calculate by use of Lemma 7
1 n (e o} 1 n oo
(4.14) |~ > ) B'uig-,z| < - 3D X e (vema-sl® + N1ze)1%)
t=1 s=k+1 t=1 s=k+1
[ o] 1 n
<g¢™ ) )\331’—1; > (lwd® + lzel?).
s=k-+1 t=1

Since Y o0, A*sP™! converges and 37, ||z:l|? /n -2, tr My, we can choose k sufficiently
large to make the right-hand side of (4.14) arbitrarily small with arbitrarily high proba-

bility. Similarly the other two terms in the second sum in (4.13) can be made small. Then

k k
1 1 s
(4.15) ~ > B (vi_1-s + Azioys)z) o = Y B°AM_;.

3=0 8=0
That leads to (4.7).

From (4.1) we have
I, = 15 [ / ,
(416) -T_I,- th'vt = ‘7'; Z [mt:ct — th_.lmt - Azta:t
t=1 t==1
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—ayxy_B'+ By 1z, B' + Az, | B’
—x2;A' + Bz 1z, A" + Aztz;A']

RN >
n T
(4.17) 15 0! mlz wyxy_, — Bxy gz, | — Az
: n -1 Lhad B 1 t-1%¢—3 o1
t=1 t=1
1 1
(4.18) -~ VeZy = ;Z [aztzt Bax,_jz; — Aztzt] 250.

If (4.17) -2 0, then from (4.16), (4.17), and (4.18) we obtain
1 n
(419) '7—7“ ; (:ct:c; - Bwt_lm't_lB'>
= %[Z(mtw; — BzyzyB') + Bz z, B' — Bmow{)B’]
t=1

2, ¥ +BLA' + AL'B' + AM,A’.

If (1/n)xh &, = 0, then (4.8) follows from (4.19). Thus
1 - L1 ] ' P Q L
(4.20) = ; ( . )(mt_l,zt) =0 )
Now we consider

1 n
(421) ;; Z (Et ® :ct_lw;_l)
t=1

:_Z 2. Z B'(A, I)(: Le)( 2ty g Vyq_ s)( )(B')s}.

t==1 r,8=0

If the sums in (4.21) on r,s run from k + 1 to oo, the trace converges to an arbitrarily

small quantity by taking k sufficiently large. Then

az) 13 |me > man () (z;..l_s,v:q.us)(‘}’)(B'r}

r,8=0

k
2 ¥Q® » B [AM,_.A'+5§,,3](B').

r,9=0
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Thus

1 n
(4.23) = d(Zi@maz ;) PR
t=1

> BAM, ,A'(B')' + B’E(B')”]
r,8=0 8=0

=¥®Q.

By similar means we can complete the proof of
1 - L1 ' P Q L
(424) 'T—l ; I:Et ® ( 2 )(:ct__l, Zt) e Ll MO .

Theorem 1 can then be applied with 2z; in Theorem 1 replaced by (x}_,,z;)’ to obtain
(4.11), and (2.33) follows.
To apply Theorem 1 we also need

1 p
(4.25) | o Jaax |z, = 0.

To prove this we need only consider

t—2
(4.26) iy =Y B(vic1-s + Azi1y).
8=0
Then
' t—2 2
(4.27) x| = Z B*(vi—1-5 + Az4—1_s
8=0

t—2 2

2
<2 +92 Z B°Az,_,_,
8=0 '

t—-2
§ : 3

B Ut—1-s
=2

By (3.4) the first term on the right-hand side of (4.27) is less than or equal to

t—2 -2

(4.28) 43 NPT P oy [P <4 Y AP s max [l
r,8=0 r,8=0 T
Since [|Azt_1_3”2 < const ||zt_1_3||2, we obtain
t—2
(4.29) [ xey |I2 <4 Artepp=igp=t (q max loell® + ¢+ max IIztllz) :
r,8=0
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which implies (4.25) and ||z.]?>/n 2> 0.

Now we want to show that
1 n
(4.30) = Z; 210, 25 0.
=

From (4.12) we have

n -2
(4.31) — Zwt 10y = — ZZB’W s—17}
t—-l 8=0
1 n 1 n t—2
tr Y B e+ 1YY B Az
=1 t=1 s=0

It was shown in Section 3 that the first two terms on the right-hand side of (4.31) converge
to 0 in probability as n — oo.

Define v,; by (3.10) and 2z, by

(4.32) znt = 24I(]|2¢]]? < n).
Then
1 n t—2 1 n -2
(4.33) Pr { - Z Z B°Azi_s_ v, = - Z Z B’Azn,t—s—1vnt} — 1.
t=1 3=0 t=1 =0
Consider
1 n t—2 1 n t—s
(4.34) Etr (n B’Azn,t_s._lv,’,t> (n > > BrAz, t_r_lvnt)
t=1 5=0 t=1 s=0
n I r4—2
= 5 (ZB Azn—se 1) (Z B'Azn,t_,«_l) £ (vnVnt| Fi-1)
t=1 \s=0 r=0 '
1 n t—2
= €Y I B Azn ey IPE (vl Fic)
t=1 s=0
n—1
< _g mmax 12nsl* D tr A'(B')* B* AE (v} 00| Fer)
=0
— 0

because ”z,w“z/n L, 0 and ||zm||2 is bounded and ¥; -2+ ¥ and ||'vm|[2 is bounded.

This proves (4.20) and the theorem. ]
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Lemma 6. If assumptions of Theorem 7 hold and if X' and M, are positive definite,

then (4.24) is positive definite.

Proof.
L c 1 —

4.35 ¢, d (Q ) ( ) = plim ~ ey +dz)?
( ) ( ’ ) L' M, d Eﬁmn;( t—1 t)

= plim ;1; Z [(c,'vt-l)z + (¢'Bey—1 + ' Az + d'zt)2

n—co t=1
+2c'viq(xi_yB'c+ z;_1 A e + z;d)]
= C’ZC + phm l Z(C,Bwt_l + c'Azt_l + d,Zi)z
n—oo 1 =1
>c'Ye

by (4.3) and (4.30). If the left-hand side of (4.35) is 0, then ¢ = 0 because X' is positive
definite. In that case the left-hand side of (4.35) is d'Mod = 0; since M) is positive
definite, d = 0. ]

A special case of the mixed model is z; = 1. Then (4.1) is
(4.36) ¢ = Bxi1 + v+ vy,
where v = A or
(4.37) ey — p= Bz — p) + vy,

where v = (I — B)p. In this case (2.41), (4.4) and (4.5) are automatically satisfied, and

condition (4.10) reduces to

1 n
(4.38) —ﬁ}:(Et@vt-l_s) 2,0, s=0,1,... .
t=1

The matrix L is

(4.39) L=) B’y=(I-B)~,



and the matrix Q is
(4.40) - Q=I+(I-B)y'yy'(I-B")™.

In this case

(4.41)

n n n n n n —-1
B - [ 1 / 7 1 !
n = Li®e1— ~ 2Tt ) Tt L1-1%yq — = L1 Ty
t=1 t=1 t=1 t=1 t=1

t=1

and fi, = (I — B,)¥,, which is approximately (1/n) Y -, ®:. The limiting covariance
matrix of \n[(1/n)Y 1, @ — p] is

(4.42) I-B)'r+rI-pB)'-r.

The condition (4.5) suggests a kind of lack of correlation between z¢,, and v; which

is plausible if {2;} and {v;} are independent; that is, if the z;’s are exogenous.
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Appendix

Lemma 7. Let the largest absolute value of the characteristic roots of B of order p

be A < 1. Then for any vectors % and v
(A.1) [u'(B')" B*v| < A™*qrP~ P ([|uf|? + [jv]|*)
for a suitable constant q.

Proof. There exists a matrix P such that B = P~1HP, where

H, 0 --- 0

0 H2 e (1]
(A.2) H= . . . 9

0 0 . -HK

the pr X pr matrix Hy = AxI + Lg, A is a characteristic root of B, and

0O 0 0 ... 00
1 0 0 ... 0 O
(A.3) L,=]10 10 0 0
0 0 O 1 0
Then
(A.4) u'(B')'B’v = u'P'(H') (PP')'H*Puv.
Let
G G2 -+ Gig
G G e Gak
(A.5) PpYyr=Gg=| o 7 ;
Gik1 Gk -+ Gkk
For s > pr — 1 we have
(A.6) Hy = MNI+ M (i)Lk Fo gAY Lo

=} [I+)\;‘(i)Lk+- + AP ”(Pk )Lgk*l],
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(A.7) (Hk)ereHZ = Ar)\[ [Gk€ + )\.-1 ( )L' le -+ Ae (i) Gk[Le + .-

r
+ AT ( )( )L’ Pl L”‘“l]
kﬂPk-—l Pel() ke
= AL ApQre(r, s).

Let Pu =, Pv = y and

Qu(ﬂ 3) le(?"a 3) ce QlK(T, 3)
(AS) Q('r, 3) - QZl(ra 3) Q22(7"~3) e Q2K:(r7 3)
Qr1 (7‘, s) QKz(?‘, s) - Qrxk(r,s)

= (gij(r, 5))-

The element ¢;;(r, 8) is a polynomial in r and s of degree at most p—1 with fixed coefficients.

Then

. P
(A.9) |2 A0 Q(r, )yl < AT Y ais(r, 8)llailly; |

-,,-_

/\r+s Z |q”(7' 3)‘( +yz2)

1,5=1
< r4s |q,](7' S)I 2
pA e SISl 4+ y)?).
Let
p—1
(A.10) gij(r,s) = L qf}‘rgsh
g,h=0
Then
p—1
(A1) Cmax ai(ry o) < max S Jaff s
b= : 9,h=0

and ||z||®> < ||u||® times the maximum characteristic root of PP’ and similarly for llyll?.

The lemma, follows. ]

29



Lemma 8. (3.28).

Proof. The left-hand side of (3.28) is positive semidefinite. Its trace is

(A.12) = Ztr Xitr ap(B') 1B ey < - Ztr T NE22P72 0% |2

We can take ¢ la;;; enough so that for ¢ > o and a;l;-iltfary €>0,6>0

(A.13) Pr{\? 2272 g% |l@o||® < €} > 1 —6.

Then the right—hand side of (A.12) is with probability greater than 1 — § not greater than

(A.14) — Ztr I 22t 2q"‘||ar} ||2 + s-— Z tr ¥, e tr X
t"'l t—no
as n — co. |

Comments on Condition (2.5)

A key assumption is

(A.15) _Sup EvyveI(vive > a)|Fia] -0

as a — o0; that is, given ¢ ; }):6 > 0 there exists ag such that for a > ag
(A.16) Pr {t slug) E[vivI(vive > a)|Feoq] < s} >1-—6.
Let Wi(a) = 8['vtvtI('vt'vt > a)|Fi-1]. The above event for fixed a is

(A.17) ﬂ{wt(a) < e},
which is measurable. The random varlable
(A.18) Xn(a) = SR Wi(a)
has the property
(A.19) Xnt1(a) = max [Xa(a), Wnyi(a)].
Note that for given a X, (a) is nondecreasing in n. The event (A.17) is
(A.20) { lim Xa(a) < e} = ﬁ {Xn(a) <)
n=1

Note that since X,(a) can be defined by (A.19), it is a one—-dimensional variable; that is,

the condition is a weak condition, not a strong condition. It is a condition on the cdf’s of
Xn(a).
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