ON DISCRETE-TIME CONTROL PROCESSES UNDER UNCERTAINTY: A DECISION THEORETIC APPROACH by Yutaka Umezawa The University of Tokyo First Draft, April 1980 Revised, February 1989 Third Draft, April 1989 PREPARED UNDER THE PROJECT ON MANAGEMENT SCIENCE RESEARCH INSTITUTE FOR THE JAPANESE ECONOMY Discussion Papers are a series of manuscripts in their draft form. They are not intended for circulation or distribution except as indicated by the author. For that reason Discussion Papers may not be reproduced or distributed without the written consent of the author. # ON DISCRETE-TIME CONTROL PROCESSES UNDER UNCERTAINTY: A DECISION THEORETIC APPROACH* ## Yutaka Umezawa The University of Tokyo #### Introduction - 1. A Model of Discrete-time Managerial Control Processes under Uncertainty: Model I - 2. A Model of Multiperiod Decision Processes under Uncertainty: Model II - 3. Derivation of Optimal Strategies on Model II - 4. Relations between the two Models #### Introduction The purpose of this paper is to present a general model of discrete-time control processes under uncertainty, to identify, through a decision theoretic analysis of the model, elements of the processes and fundamental structures of the corresponding multi-stage decision problems, and to clarify the effect, in a multiperiod setting, of information collected and used to obtain the optimal control. Two models are presented with respect to multiperiod control processes under uncertainty. One is a rather specific model, Model I, of typical control processes (Section 1), and the other is a quite abstract one, Model II, of multi-stage decision processes (Section 2). Through the analysis of Model II, a fundamental structure of multiperiod control problems is made clear, and an algorithm for the derivation of optimal control strategies is presented (Section 3). Finally model I is shown to be reducible to Model II (Section 4). Various types of adaptive control process models, with procedures to derive optimal control strategies for the corresponding multi-stage decision problems, have been presented in many books and articles. Those of Bellman [1961, ch. 16], Fel'dbaum [1965, ch. 6], and Aoki [1967, ch. 4] are typical ones among them. In each of the three cases, the logic underlying the derivation of the optimal control strategies is only that of dynamic programming; *i.e.*, the principle of optimality: "An optimal strategy has the property that whatever the initial state and initial action are, the remaining actions must constitute an optimal strategy with regard to the state resulting from the first action." The control objective is to take a sequence of actions during the course of a process so as to maximize the expected value of a criterion function. In adaptive control situations, however, any ^{*} The models discussed in this paper are almost the same with those presented in Umezawa [1970] written in Japanese, except that in this paper we could remove the critical restriction that the action space at any time dose not depend on the previous actions. concepts related to expectation is not well-defined. With respect to which probability distribution should we take the expectation? The prior probability distribution or the posterior? The principle of optimality does not give any answer to this question at all. Bellman maintained that the dynamic programming recurrence equation technique can be used even in the adaptive case to establish the existence of optimal strategies and various structural characteristics of the solution. But he succeeded in neither of them. Fel'dbaum and Aoki respectively presented specific adaptive control models, the former being rather complex while the latter simple, and showed how the optimal control strategies are derived. The derivation methods they used are so primitive and complicated that the structural characteristics of the optimal control have not been made clear. In this paper we derive the algorithm to obtain the optimal strategy for the corresponding multi-stage decision problems through a formal decision-theoretic analysis of Model II, which is a more general version of the excellent model of the control problem defined by Miyasawa [1970]. It is easily shown that Model I is a special case of Model II and models of Bellman, Fel'dbaum, and Aoki are also special cases of Model II. Accordingly any findings obtained through the analysis of Model II are applicable also to our Model I and to their models. And our main findings are (1) the essential elements of the adaptive control process are (a) uncertain factor which is out of the control (b) information concerning the uncertain factor (c) action to achieve the immediate goal as well as to learn about unknown aspects of the process, and (d) reward function which measures the degree of the goal achievement, (2) state of the system, the controlled object, is included in the uncertain factor, (3) the information consists of not only the whole series of the previous observations of the system but also the whole series of the previous actions, and (4) for the algorithm to derive the optimal control strategy to function, only two conditions are needed: (a) a conditional probability on the set of uncertain factors given any information is known for every period and (b) a conditional probability on the next-period-observation set, given any information and actiom, is known for every period. One might be able to say that our algorithm is exactly the adaptive-control version of the dynamic recurrence equation based upon the principle of optimality. However, without making formal analysis, no one can argue that this version is really relevant to the adaptive control case. ### 1. A Model of Discrete-time Managerial Control Processes under Uncertainty: Model I We consider discrete-time control processes under uncertainty. Suppose there is a system under the control of a controller as shown by the figure. Let x_i be the state of the system at time point $t, t=0,1,\cdots,n$. We also call the time interval from t=k to t=k+1 period k. A control action is taken at each period. Given the previous state x_{i-1} and an implemented action c_i , which is an element of the action space A_i , x_i is determined by $$x_{t} = F_{t}(x_{t-1}, c_{t}, \xi_{t}) \tag{1}$$ Fig. 1 Schematic Diagram of the Model I where ξ_t is a random disturbance which is out of the controller's control. To decide which action to choose the controller observes x_{t-1} at time t. The result of the observation is y_{t-1} , given by $$y_{t-1} = G_{t-1}(x_{t-1}, \zeta_{t-1})$$ (2) where ζ_{t-1} is a measurement error. The upper level controller gives the controller a goal x_t^* for the period t which is transformed into y_t^* when accepted by the controller; $$y_t^* = B_t(x_t^*, \beta_t) \tag{3}$$ where β_t is a disturbance through the communication channel between the two hierarchy levels. Obtaining the observation y_{t-1} and goal y_t^* , the controller chooses an action $a_t \in A_t$ to control the system, but because of the communication disturbance η_t , the actually implemented action c_t is determined by $$c_t = H_t(a_t, \eta_t) \tag{4}$$ The previous actions $\{a_1, a_2, \cdots, a_{t-1}\}$, which is designated by a^{t-1} , restrict the action space A_t at the period t. To make this explicit we denote the action space by $A_t(a^{t-1})$, It must hold that $c_t \in A_t(a^{t-1})$. For convenience of notation, as in the above, we introduce a simplification. Let f_t be any function or variable related to time t. By f^k we express the series $\{f_1, f_2, \cdots, f_k\}$ or $\{f_0, f_1, \cdots, f_k\}$. The controller can choose an action $a_t \in A_t(a^{t-1})$ on the basis of the whole series of previous goals, observations, and actions which we call information at t and denote by I_t ; i. e., $$I_{\bullet} = \{ y^{*t}, y^{t-1}, a^{t-1} \}$$ (5) A desision rule of the controller at t is a function d_t which, for each possible information I_t , specifies an action $a_i \in A_i(a^{i-1})$; i. e., $$a_t = d_t(I_t) \tag{6}$$ a strategy d is a totality of the decision rules for each period t, $t=1,2,\cdots,n$; i. e., $$d = \{d_1, d_2, \dots, d_n\} = \{d^n\}$$ (7) We denote by D the set of all possible strategies d. Sometimes n is referred to as the time horizon. As a function of the goal x_t^* , the state of the system x_t , and the implemented action c_t , a reward v_t of period t is given by $$v_{t} = u_{t}(x_{t}^{*}, x_{t}, c_{t}) \tag{8}$$ The controller wants to maximize the expected value of the sum of the rewards through the time horizon computed with respect to a set of given prior distributions. Reward function u_t is a bounded numerical function for all t, $t=1,2,\dots,n$. Given a set X and a probability distribution on X, we denote either probability of x (discrete case) or density of x (continuous case) by p(x) for any $x \in X$, and refer to p as probability distribution in both cases (Henceforth, instead of probability distribution we simply write p.d.). Also we denote any conditional probability distribution (abbreviated c.p.d.) given x_1 by $p(x|x_1)$. With respect to the goal given by the upper controller x_t^* , we assume that c.p.d.'s $p(x_t^*|x^{*t-1})$, $t=2,3,\cdots,n$, and a prior p.d. $p(x_1^*)$ are known. These constitute the description of Model I. Now we can complete the model formulation as follows: #### Model I | Goal | x_i^* | | |----------------------|----------------------------------------------------------------------------------------------------------------------------|------| | State of the System | x_t | | | Observation | $o_t = \{y_t^*, y_{t-1}\}$ | (9) | | Control Action | $a_t \in A_t(a^{t-1})$ | | | Implemented Action | $c_t = H_t(a_t, \eta_t) \in A_t(a^{t-1})$ | (4) | | Uncertain Factors | $\boldsymbol{z}_{t} = \{\boldsymbol{\xi}_{t}, \boldsymbol{\eta}_{t}, \boldsymbol{\zeta}_{t-1}, \boldsymbol{\beta}_{t}\}$ | (10) | | Information | $I_t = \{y^{*t}, y^{t-1}, a^{t-1}\} = \{o^t, a^{t-1}\}$ | (5) | | System Equation | $x_t = F_t(x_{t-1}, c_t, \xi_t)$ | (1) | | Observation Equation | $y_t = G_t(x_t, \zeta_t)$ | (2) | | | $y_t^* = B_t(x_t^*, \beta_t)$ | (3) | | Reward Function | $v_t = u_t(x_t^*, x_t, c_t)$ | (8) | | Time Horizon | n | | | Decision Rule | $d_t: I_t \to A_t(a^{t-1})$ | (6) | | Strategy | $d = \{d^n\} \in D$ | (7) | | Criterion Function | $E\left[\sum_{t=1}^{n} u_{t}(x_{t}^{*}, x_{t}, c_{t})\right]$ | | Concerning probability properties of uncertain factors, Model I is classified into two versions. #### Model I-1. Stochastic Control Model - A. Uncertain factors ξ_t , η_t , ζ_{t-1} and β_t are mutually independently distributed and p.d.'s of each one of them are known for $t=1,2,\cdots,n$. - B. ξ_t , η_t , ζ_{t-1} and β_t are also serially independently distributed. - C. A prior p.d. $p(x_0)$ is known. #### Model I-2. Adaptive Control Model - A. For all t, ξ_t has a known c.p.d. $p(\xi_t | \xi^{t-1}, \theta_{\xi})$ given ξ^{t-1} and an unknown parameter $\theta_{\xi} \in \Theta_{\xi}$. A prior p.d. $p(\theta_{\xi})$ over Θ_{ξ} is known. - B. Given η^{t-1} , ζ^{t-2} , β^{t-1} and unknown parameters $\theta_{\eta} \in \Theta_{\eta}$, $\theta_{\zeta} \in \Theta_{\zeta}$, $\theta_{\beta} \in \Theta_{\beta}$, uncertain factors η_{t} , ζ_{t-1} and β_{t} are mutually independent and have known c.p.d.'s $p(\eta_{t}|\eta^{t-1},\theta_{\eta})$, $p(\zeta_{t-1}|\zeta^{t-2},\theta_{\zeta})$, $p(\beta_{t}|\beta^{t-1},\theta_{\beta})$ respectively. Under the same condition they are also independent of the factor ξ_{t} given ξ_{t-1} and $\theta_{\xi} \in \Theta_{\xi}$. These hold for all t, $t=1,2,\cdots,n$. For unknown parameters θ_{η} , θ_{ζ} and θ_{β} , prior p.d.'s $p(\theta_{\eta})$, $p(\theta_{\zeta})$, and $p(\theta_{\beta})$ are known respectively. - C. The initial state variable x_0 has a known prior p.d. $p_0(x_0|\theta_x)$ given $\theta_x \in \theta_x$. Also a prior p.d. $p(\theta_x)$ over θ_x is known. #### 2. A Model of Multiperiod Decision Processes under Uncertainty: Model II We will define another abstract model which has only essential elements, from the view point of multistage decision theory, of the discrete-time control processes under uncertainty. The correspondence between Model I and Model II will be discussed later. Model II is defined as follows. The elements whose totality constitutes the control processes with a time horizon n are an uncertain factor $\theta_t \in \Theta_t$, an observation $o_t \in O_t$, an action $a_t \in A_t$, and a bounded numerical reward function r_t defined on $\theta_t \times A_t$, for all $t, t = 1, 2, \cdots, n$. The series of actions taken up to the previous period a^{t-1} restricts the space A_t of possible actions at time t. We denote this by $A_t(a^{t-1})$, which is assumed to be a bounded closed set. The choice of an action a_t is based on an information I_t defined by $$I_{t} = \{ o^{t}, a^{t-1} \} \tag{11}$$ A decision rule d_t of period t specifies an action $a_t \in A_t(a^{t-1})$ for every possible I_t . The set of possible information I_t at time t depends on previous decision rules d^{t-1} . We denote this information set by $I_t(d^{t-1})$. Accordingly the decision rule d_t is a function such that $d_t(I_t) \in A_t(a^{t-1})$ for all $I_t \in I_t(d^{t-1})$. We call a set of decision rules d_t for each period t, $t=1,2,\cdots,n$, a strategy and denote it by d; i.e., $$d = \{d_1, d_2, \dots, d_n\} = \{d^n\}$$ (12) Also we denote by D the set of all strategies. A strategy d^* is optimal if it maximizes within D the expected value of the reward sum $\sum_{t=1}^{n} r_t$ with respect to given probability distributions of the uncertain factor θ_t . A prior p.d. $p(\theta_1)$ on θ_1 is known and a set of specifications of probability distributions are given with respect to the other uncertain factors θ_t , $t=2,3,\cdots,n$. Further, under the condition that θ^{t-1} are already given, θ_t is absolutely independent of the action a_t , $t=1,2,\cdots,t$. Now we can summarize the model as follows: #### Model II In the next section we will investigate the procedures to derive optimal strategies for the control processes. #### 3. Derivation of Optimal Strategies on Model II First we will introduce some simplified ways of expressing the expected value of a function. Let Z_1 and Z_2 be sets of real numbers. Let $M(Z_1 \times Z_2)$ be a set of functions defined on the product space $Z_1 \times Z_2$, $M(Z_1)$ and $M(Z_2)$ be sets of functions defined on Z_1 and Z_2 respectively, $P(Z_1)$ and $P(Z_2)$ be sets of p.d. functions defined on Z_1 and Z_2 respectively. Let p_1 be a function in $M(Z_1 \times Z_2)$ and also in $P(Z_1)$ for any $z_2 \in Z_2$, p_2 be a function in $M(Z_1 \times Z_2)$ and also in $P(Z_2)$ for any $z_1 \in Z_1$. For any $z_1 \in M(Z_1 \times Z_2)$, we define $z_1 \in M(Z_2)$ and $z_2 \in M(Z_1)$ by $$p_1 u(z_2) = \int_{Z_1} u(z_1, z_2) p_1(z_1, z_2) dz_1$$ (15) $$p_2 u(z_1) = \int_{Z_2} u(z_1, z_2) p_2(z_1, z_2) dz_2$$ (16) Further, let p_3 and p_4 be in $P(Z_1)$ and in $P(Z_2)$ respectively. We define $p_3u{\in}M(Z_2)$ and $p_4u{\in}M(Z_1)$ by $$p_3 u(z_2) = \int_{Z_1} u(z_1, z_2) p_3(z_1) dz_1$$ (17) $$p_4 u(z_1) = \int_{Z_2} u(z_1, z_2) p_4(z_2) dz_2$$ (18) Similary, for any $v \in M(Z_1)$, we define a value $p_3 v$ by $$p_3 v = \int_{Z_1} v(z_1) \ p_3(z_1) \ dz_1 \tag{19}$$ We assume the following two conditions. Fundamental Conditions for Deriving Optimal Strategies Condition C_1 . For every possible information I_t , a conditional probability distribution π_t on the set of uncertain factors Θ_t , given I_t , $$\pi_t(\theta_t|I_t), \ \theta_t \in \Theta_t, t=1,2,\cdots,n,$$ is known. Condition C_2 . For every possible combination of information I_t and action a_t , a conditional probability distribution ω_{t+1} on the observation set O_{t+1} , given I_t and a_t , $$\omega_{t+1}(o_{t+1}|I_t, a_t), o_{t+1} \in O_{t+1}, t=0,1,\dots, n-1,$$ is known. Next we state an algorithm for deriving optimal strategies for the control process with a time horizon n. #### Algorithm Step 1. For every information I_{n+1} , define ϕ_{n+1} by $\phi_{n+1}(I_{n+1}) = 0$ (20) Step 2. Let t equal n. Step 3. For every possible pair of information I_t and action a_t , obtain ϕ_t by (A1) $$\phi_t(I_t, a_t) = \pi_t r_t(I_t, a_t) + \omega_{t+1} \phi_{t+1}(I_t, a_t),$$ then for every I_t , define $\boldsymbol{\phi}_t$, \boldsymbol{a}_t^* , and \boldsymbol{d}_t^* by (A2) $$\phi_t(I_t) = \max_{a_t \in A_t(a^{t-1})} \phi_t(I_t, a_t) = \phi_t(I_t, a_t^*)$$ (A3) $$d_t^*(I_t) = a_t^*$$ Step 4. Let t equal t-1. If t equals 1, then go to Step 5. Otherwise go back to Step 3. Step 5. Define an optimal strategy d^* by $$d^* = \{d_1^*, d_2^*, \cdots, d_n^*\}$$ (21) then stop. Since $I_{t+1} = \{o^{t+1}, a^t\} = \{I_t, a_t, o_{t+1}\}, \phi_{t+1}(I_{t+1})$ can be regarded as a function of I_t , a_t , and o_{t+1} . Hence we can express $\phi_t(I_t, a_t)$ obtained by Equation (A1) as follows: $$\begin{split} \phi_{t}(I_{t}, a_{t}) = & \int_{\theta_{t}} \mathbf{r}_{t}(\theta_{t}, a_{t}) \pi_{t}(\theta_{t} | I_{t}) \, d\theta_{t} \\ & + \int_{O_{t+1}} \phi_{t+1}(I_{t}, a_{t}, o_{t+1}) \, \omega_{t+1}(o_{t+1} | I_{t}, a_{t}) do_{t+1} \end{split} \tag{22}$$ The first term of the right hand side of this equation is the expected value of the reward of period t, given I_t . The second term is, roughly speaking, the expected value of the sum of the rewards of all the later periods resulting from optimal decision rules for these periods, with the expectation being at the stage when information I_i is gained. We should note that, for the value $\phi_t(I_t, a_t)$ to be obtained for a pair of I_t and a_t , both of the two conditions C_1 and C_2 must be satisfied. Now we will show that a strategy d^* obtained through the algorithm is optimal. For that, we need the next two lemmas. Lemma 1 Let $d^t = \{d_1, d_2, \cdots, d_t\}$ be a series of decision rules for period 1 through $t, t \leq n$, $I(d^{t-1})$ be the set of all information I_t corresponding to the first t-1 decision rules d^{t-1} included in d^t . Let $q_{t,d^{t-1}}$ denote a probability distribution on $I_t(d^{t-1})$. Then, for all $t, t=1,2,\cdots,n$ $$q_{t,d^{t-1}}(I^t) = \prod_{k=0}^{t-1} \omega_{k+1}(o_{k+1} | I_k, d_k(I_k))$$ (23) where $$q_{1,d^0}(I_1) = \omega_1(o_1) \tag{24}$$ *Proof* By the definition of I, and the multiplication law of the probability $$\begin{aligned} q_{t,d^{t-1}}(I_t) &= q_{t,d^{t-1}}(I_{t-1}, a_{t-1}, o_t) \\ &= q_{t,d^{t-1}}(I_{t-1}, d_{t-1}(I_{t-1}), o_t) \\ &= q_{t-1,d^{t-2}}(I_{t-1}) \omega_t(o_t | I_{t-1}, d_{t-1}(I_{t-1})) \end{aligned} \tag{25}$$ since the conditional probability, given I_{t-1} , that the action $a_{t-1} = d_{t-1}(I_{t-1})$ is taken is unity. This recursive formula yields (23). Q.E.D. Examining the right hand sides of (25), we recognize that for each decision rule d_t for period t the function ω_{t+1} gives the probability of o_{t+1} , given every information $I_t \in I(d^{t-1})$. Therefore we will denote the function by ω_{t+1,d_t} , when it is necessary to express explicitly the function's dependancy on the specific decision rule d_t . By this lemma, especially by a direct use of (25), We can derive a corollary. Corollary Let u_t be any bounded numerical function of information I_t . Then $$q_{t,d^{t-1}}u_t = q_{t-1,d^{t-2}}\omega_{t,d_{t-1}}u_t$$ (26) Lemma 2 Let $R_t(d^t)$ be the expected value of the reward r_t of period t which corresponds to a series of decision rules d^t , with the expectation being taken at the beginning of the initial period. Then, for $t=1,2,\cdots$, n $$R_{t}(d^{t}) = q_{t,d^{t-1}} \pi_{t} r_{t}(d_{t})$$ *Proof* Let $p_{d^{t-1}}$ be the joint p.d. of θ_t and I_t for d^{t-1} . Then $$R_t(d^t) = \int r_t(\theta_t, d_t(I_t)) p_{d^{t-1}}(\theta_t, I_t) d\theta_t dI_t$$ Since $$\begin{split} \boldsymbol{p}_{d^{t-1}}(\boldsymbol{\theta}_{t}, \boldsymbol{I}_{t}) \! = \! \boldsymbol{p}(\boldsymbol{\theta}_{t} | \boldsymbol{I}_{t}) \boldsymbol{p}(\boldsymbol{I}_{t}) \\ = \! \boldsymbol{\pi}_{t}(\boldsymbol{\theta}_{t} | \boldsymbol{I}_{t}) \boldsymbol{q}_{t, d^{t-1}}(\boldsymbol{I}_{t}) \,, \end{split}$$ using the simplified notation for integration we may write $$\begin{split} R_t(d^t) = & \int_{I_t(d^{t-1})} \{ \int_{\theta_t} r_t(\theta_t, \, d_t(I_t)) \pi_t(\theta_t | I_t) d\theta_t \} q_{t,d^{t-1}}(I_t) dI_t \\ = & \int_{I_t(d^{t-1})} \pi_t r_t(I_t, \, d_t) q_{t,d^{t-1}}(I_t) dI_t \\ = & q_{t,d^{t-1}} \pi_t r_t(d_t) \end{split}$$ Q. E.D. Let R(d) be the expected value of the total reward for a strategy $d \in D$, with the expectation being taken at the beginning of period 1. It is clear that R(d) is equal to the sum of $R_t(d^t)$ throughout the whole processes; i.e., $$R(d) = E\left[\sum_{t=1}^{n} r_{t}(\theta_{t}, d_{t}(I_{t}))\right]$$ $$= \sum_{t=1}^{n} E\left[r_{t}(\theta_{t}, d_{t}(I_{t}))\right]$$ $$= \sum_{t=1}^{n} R_{t}(d^{t})$$ (27) For $k=1,2,\cdots,t$, let $S_k(d)$ be the sum of the expected values of the rewarde of period k through period n corresponding a strategy $d \in D$; i.e., $$S_k(d) = \sum_{t=k}^{n} R_t(d^t)$$ (28) where d^t is the series of the first t decision rules of the strategy d. Then by (27) $$S_1(d) = \sum_{t=1}^{n} R_t(d^t) = R(d)$$ (29) Therefore $S_1(d)$ is also a criterion function for the optimal strategy. **Theorem** Any strategy d^* obtained through the algorithm is optimal; i.e., for all strategy $d \in D$ $$R(d^*) = S_1(d^*) \ge R(d) = S_1(d)$$ (30) *Proof* Let d_t^* be a function determined by Equation (A3) at step 3. We prove the theorem by showing that the next two equations hold for any strategy $d \in D$ and for all t, $t=1,2,\cdots,n$; $$S_t(d^{t-1}, d_t^*, d_{t+1}^*, \cdots, d_n^*) = q_{t,d^{t-1}} \phi_t$$ (31) $$S_{t}(d^{t-1}, d_{t}^{*}, d_{t+1}^{*}, \cdots, d_{n}^{*}) \ge S_{t}(d)$$ (32) We show these by an inductive way of proving. By (20) and Equation (A1) $$\phi_n(I_n, d_n(I_n)) = \pi_n r_n(I_n, d_n(I_n))$$ Multiplying both sides of this equation by $q_{n,d^{n-1}}(I_n)$, and integrating each with respect to I_n , we get $$q_{n,d^{n-1}}\psi_n(d_n) = q_{n,d^{n-1}}\pi_n r_n(d_n)$$ so that, by Lemma 2 $$S_{n}(d) = R_{n}(d) = q_{n,d^{n-1}} \pi_{n} r_{n}(d_{n})$$ $$= q_{n,d^{n-1}} \phi_{n}(d_{n})$$ (33) On the other hand, from Equation (A2), we get for all $a_n \in A_n(a^{n-1})$ and $I_n \in I_n(d^{n-1})$ $$\phi_n(I_n) = \phi_n(I_n, a_n^*) \ge \phi_n(I_n, a_n)$$ which, by Equation (A3), is equivalent to $$\phi_n(I_n) = \phi_n(I_n, d_n^*(I_n)) \ge \phi_n(I_n, d_n(I_n)).$$ Again, multiplying by $q_{n,d^{n-1}}(I_n)$ and integrating with respet to I_n yield $$q_{n,d^{n-1}}\phi_n = q_{n,d^{n-1}}\psi_n(d_n^*) \ge q_{n,d^{n-1}}\psi_n(d_n)$$ (34) Therefore by (33) and (34) $$S_n(d^{n-1}, d_n^*) = q_{n,d^{n-1}} \phi_n(d_n^*) = q_{n,d^{n-1}} \phi_n$$ and $$S_n(d^{n-1}, d_n^*) = q_{n,d^{n-1}} \phi_n(d_n^*) \ge q_{n,d^{n-1}} \phi_n(d_n) = S_n(d)$$ These prove that (31) and (32) hold for t=n. Next we shall assume that (31) and (32) hold for t=k. By (28), for all $d\in D$ $$S_{k-1}(d) = R_{k-1}(d^{k-1}) + S_k(d)$$ so that $$\begin{split} S_{k-1}\left(\boldsymbol{d}^{k-1},\,\boldsymbol{d}_{k}^{*},\,\boldsymbol{d}_{k+1}^{*},\cdot\cdot\cdot,\,\boldsymbol{d}_{n}^{*}\right) &= R_{k-1}\left(\boldsymbol{d}^{k-1}\right) + S_{k}\left(\boldsymbol{d}^{k-1},\,\boldsymbol{d}_{k}^{*},\,\boldsymbol{d}_{k+1}^{*},\cdot\cdot\cdot,\,\boldsymbol{d}_{n}^{*}\right) \\ &= q_{k-1,d^{k-2}}\pi_{k-1}r_{k-1}\left(\boldsymbol{d}_{k-1}\right) + q_{k,d^{k-1}}\phi_{k} \\ &= q_{k-1,d^{k-2}}\pi_{k-1}r_{k-1}\left(\boldsymbol{d}_{k-1}\right) + q_{k-1,d^{k-2}}\omega_{k,d_{k-1}}\phi_{k} \\ &= q_{k-1,d^{k-2}}(\pi_{k-1}r_{k-1}\left(\boldsymbol{d}_{k-1}\right) + \omega_{k,d_{k-1}}\phi_{k}) \end{split}$$ by Lemma 2, the induction hypothesis (31) with t=k, and (26). Since Equation (A1) can also be written as $$\phi_{t}(I_{t}, d_{t}(I_{t})) = \pi_{t} r_{t}(I_{t}, d_{t}(I_{t})) + \omega_{t+1} \phi_{t+1}(I_{t}, d_{t}, (I_{t})),$$ we obatain $$S_{k-1}(d^{k-1}, d_k^*, \cdots, d_n^*) = q_{k-1, d^{k-2}} \phi_{k-1}(d_{k-1})$$ (35) On the other hand, from Equation (A2), we get for all $a_{k-1} \in A_{k-1}$ (a^{k-2}) and $I_{k-1} \in I_{k-1}$ (d^{k-2}) $$\phi_{k-1}(I_{k-1}) = \phi_{k-1}(I_{k-1}, a_{k-1}^*) \ge \phi_{k-1}(I_{k-1}, a_{k-1})$$ which, by Equation (A3), is equivalent to $$\phi_{k-1}(I_{k-1}) \!=\! \phi_{k-1}(I_{k-1}, d_{k-1}^*(I_{k-1})) \! \ge \! \phi_{k-1}(I_{k-1}, d_{k-1}(I_{k-1}))$$ Multiplied by $q_{k-1,d^{k-2}}(\boldsymbol{I}_{k-1})$ and integrated with respect to \boldsymbol{I}_{k-1} , this yields $$q_{k-1,d^{k-2}}\phi_{k-1} = q_{k-1,d^{k-2}}\psi_{k-1}(d_{k-1}^*) \ge q_{k-1,d^{k-2}}\psi_{k-1}(d_{k-1})$$ (36) Thus we have, by (35), (36), and the induction hypothesis (32) with t=k. $$S_{k-1}(d^{k-2}, d^*_{k-1}, \cdots, d^*_n) = q_{k-1, d^{k-2}} \phi_{k-1}(d^*_{k-1}) = q_{k-1, d^{k-2}} \phi_{k-1}$$ and $$\begin{split} S_{k-1}(\boldsymbol{d}^{k-2}, \boldsymbol{d}_{k-1}^*, \cdots, \boldsymbol{d}_n^*) & \geq q_{k-1, \boldsymbol{d}^{k-2}} \psi_{k-1}(\boldsymbol{d}_{k-1}) \\ & = S_{k-1}(\boldsymbol{d}^{k-1}, \boldsymbol{d}_k^*, \cdots, \boldsymbol{d}_n^*) \\ & = R_{k-1}(\boldsymbol{d}^{k-1}) + S_k(\boldsymbol{d}^{k-1}, \boldsymbol{d}_k^*, \cdots, \boldsymbol{d}_n^*) \\ & \geq R_{k-1}(\boldsymbol{d}^{k-1}) + S_k(\boldsymbol{d}) \\ & = S_{k-1}(\boldsymbol{d}) \end{split}$$ These prove that (31) and (32) hold for t=k-1. Consequently, (32) with t=1 shows that for any $d \in D$ $$S_1(d^*) \geq S_1(d)$$ and, by (31) with t=1 and (24) $$R(d^*) = \max_{d \in D} S_1(d) = q_{1,d^0} \phi_1 = \omega_1 \phi_1$$ (37) Q.E.D. The analysis of the case where the action space at time t, A_t , does not depend on the previous action a^{t-1} was made by Miyasawa [1970] and Umezawa [1970]. #### 4. Relations between the Two Models By defining each of elements of Model II in terms of those of Model I, we can relate Model I to Model II as follows: #### Model II Model I $$a_{\star} = a_{\star} \tag{38}$$ $$\theta_{t} = \{x_{t}^{*}, \beta_{t}, x_{t-1}, \zeta_{t-1}, \eta_{t}, \xi_{t}\}$$ (39) $$o_{t} = \{y_{t}^{*}, y_{t-1}\} \tag{40}$$ $$r_{\star}(\theta_{\star}, a_{\star}) = u_{\star}(x_{\star}^{*}, F_{\star}(x_{\star-1}, H_{\star}(a_{\star}, \eta_{\star}), \xi_{\star}), H_{\star}(a_{\star}, \eta_{\star}))$$ $$(41)$$ The uncertain elements which appear in the right-hand side of (41) are x_t^* , x_{t-1} , η_t , and ξ_t . These elements are all included in the set θ_t . Accordingly we can obtain the expected value of the reward u_t , given I_t , if the p.d. $p(\theta_t|I_t)$ is known, as condition C_1 requires. Since conditions C_1 and C_2 are necessary for the algorithm to function (see step 3), we now examine whether they are satisfied in Model I, using relations (38) through (40). Since by (40) $$I_{t} = \{o^{t}, a^{t-1}\} = \{y^{*t}, y^{t-1}, a^{t-1}\}$$ (42) we have $$\begin{split} \pi_{t}(\theta_{t}|I_{t}) &= p(x_{t}^{*}, \, \beta_{t}, \, x_{t-1}, \, \zeta_{t-1}, \, \eta_{t}, \, \xi_{t} \, | \, y^{*t}, \, y^{t-1}, \, a^{t-1}) \\ &= \int \cdots \int p(x^{*t}, \, \beta^{t}, \, x^{t-1}, \, \zeta^{t-1}, \, \eta^{t}, \, \xi^{t}, \, \theta_{\beta}, \, \theta_{\zeta}, \, \theta_{\eta}, \, \theta_{\xi} \, | \, y^{*t}, \, y^{t-1}, \, a^{t-1}) \\ &\times d(x^{*t-1}, \, \beta^{t-1}, \, x^{t-2}, \, \zeta^{t-2}, \, \eta^{t-1}, \, \xi^{t-1}, \, \theta_{\beta}, \, \theta_{\zeta}, \, \theta_{\eta}, \, \theta_{\xi}) \\ &= \int \cdots \int p(\Omega(t) \, | \, y^{*t}, \, y^{t-1}, \, a^{t-1}) d\Omega(t-1) \end{split} \tag{43}$$ where $$\Omega(t) = \{x^{*t}, \beta^{t}, x^{t-1}, \zeta^{t-1}, \eta^{t}, \xi^{t}, \theta_{\beta}, \theta_{\zeta}, \theta_{\eta}, \theta_{\xi}\}$$ (44) Therefore we can obtain $\pi_t(\theta_t|I_t)$ if $p(\Omega(t)|y^{*t}, y^{t-1}, a^{t-1})$ is known. We will show inductively that this c.p.d. of $\Omega(t)$, given $\{y^{*t}, y^{t-1}, a^{t-1}\}$ is known for all $t, t=1, 2, \dots, n$. Using the multiplication law of the probability repetitively, we have $$\begin{split} &p(\Omega(t+1)\,,\,y_{t+1}^*\,,\,y_t\,|\,y^{*t}\,,\,y^{t-1}\,,\,a^t) \\ &= &p(\Omega(t)\,,\,x_{t+1}^*\,,\,\beta_{t+1}\,,\,x_t\,,\,\zeta_{\,t}\,,\,\eta_{\,t+1}\,,\,\xi_{\,t+1}\,,\,y_{\,t+1}^*\,,\,y_t\,|\,m_{\,t+1}) \\ &= &p(\Omega(t)\,|\,m_{\,t+1})\,p(x_{\,t+1}^*\,|\,m_{\,t+1}\,,\,\Omega(t))\,p(\beta_{\,t+1}\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,) \\ &\times &p(x_t\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,,\,\beta_{\,t+1})\,p(\zeta_{\,t}\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,,\,\beta_{\,t+1}\,,\,x_t) \\ &\times &p(\eta_{\,t+1}\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,,\,\beta_{\,t+1}\,,\,x_t\,,\,\zeta_{\,t}) \\ &\times &p(\xi_{\,t+1}\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,,\,\beta_{\,t+1}\,,\,x_t\,,\,\zeta_{\,t}\,,\,\eta_{\,t+1}) \\ &\times &p(y_{\,t+1}^*\,|\,m_{\,t+1}\,,\,\Omega(t)\,,\,x_{\,t+1}^*\,,\,\beta_{\,t+1}\,,\,x_t\,,\,\zeta_{\,t}\,,\,\eta_{\,t+1}\,,\,\xi_{\,t+1}) \end{split}$$ $$\times p(y_{t}|m_{t+1}, \Omega(t), x_{t+1}^{*}, \beta_{t+1}, x_{t}, \zeta_{t}, \eta_{t+1}, \xi_{t+1}, y_{t+1}^{*})$$ $$\tag{45}$$ where $$m_{t+1} = \{y^{*t}, y^{t-1}, a^t\}$$ (46) According to the specifications of Model I, (45) can be written simply $$\begin{split} p(\Omega(t+1), \, y_{t+1}^*, \, y_t | y^{*t}, \, y^{t-1}, \, a^t) \\ &= p(\Omega(t) | y^{*t}, \, y^{t-1}, \, a^{t-1}) p(x_{t+1}^* | x^{*t}) p(\beta_{t+1} | \beta^t, \, \theta_{\beta}) \\ &\times \delta(x_t - F_t(x_{t-1}, \, H_t(a_t, \, \eta_t), \, \xi_t)) p(\zeta_t | \zeta^{t-1}, \, \theta_{\zeta}) \\ &\times p(\eta_{t+1} | \eta^t, \, \theta_{\eta}) p(\xi_{t+1} | \xi^t, \, \theta_{\xi}) \delta(y_{t+1}^* - B_{t+1}(x_{t+1}^*, \, \beta_{t+1})) \\ &\times \delta(y_t - G_t(x_t, \, \zeta_t)) \end{split}$$ $$(47)$$ Now we assume the p.d. $p(\Omega(t)|y^{*t}, y^{t-1}, a^{t-1})$ be known. Then, since the other factors in the right-hand side of (47) are all known, the left-hand side becomes known. By integrating this with respect to $\Omega(t+1)$ we have $$p(y_{t+1}^{*}, y_{t}|y^{*t}, y^{t-1}, a^{t}) = \int \cdots \int p(\Omega(t+1), y_{t+1}^{*}, y_{t}|y^{*t}, y^{t-1}, a^{t}) d\Omega(t+1)$$ (48) Also by the multiplication law, we have $$p(\Omega(t+1)|y^{*t+1}, y^{t}, a^{t}) = p(\Omega(t+1), y_{t+1}^{*}, y_{t}|y^{*t}, y^{t-1}, a^{t}) / \{p(y_{t+1}^{*}, y_{t}|y^{*t}, y^{t-1}, a^{t})\}$$ (49) The numerator and the denominator in the right-hand side of this equation are given by (47) and (48) respectively, so that $p(\Omega(t+1)|y^{*t+1}, y^t, a^t)$ is also known. The only thing left is to show that $p(\Omega(t)|y^{*t}, y^{t-1}, a^{t-1})$ is known for t=1; i.e., $p(\Omega(1)|y_1^*, y_0)$ is known. Similarly with (49) $$p(\Omega(1) | y_1^*, y_0) = \{ p(\Omega(1), y_1^*, y_0) \} / \{ \int \cdots \int p(\Omega(1), y_1^*, y_0) d\Omega(1) \}$$ (50) By the specifications of the model, we have and $$p(x_0) = \int p_0(x_0 | \theta_x) p(\theta_x) d\theta_x$$ (52) Since the factors in the right-hand side of (51) are all known, $p(\Omega(1)|y_1^*, y_0)$ is also known. Thus, by (50), $p(\Omega(t)|y^{*t}, y^{t-1}, a^{t-1})$ with t=1 is also known. On the other hand. We have by (40) $$\omega_{t+1}(o_{t+1} | I_t, a_t) = p(y_{t+1}^*, y_t | y^{*t}, y^{t-1}, a^t)$$ Since this is given by (48), Condition \boldsymbol{C}_2 is also satisfied in Model I. Thus, it has become clear that both of conditions C_1 and C_2 are satisfied in Model I, so that an optimal strategy can be derived through the algorithm. #### References - Aoki, M., Optimization of Stochastic Systems, Academic Press, 1967. - Bellman, R., Adaptive Control Processes: A Guided Tour, Princeton Univ. Press, 1961. - Fel'dbaum, A.A., Optimal Control Systems, Translated by A. Kraiman, Academic Press, 1965. - Miyasawa, K., "A General Theory of Control Problems," (in Japanese), Keizaigaku-Ronshu (Univ. of Tokyo), Vol.36, No.1 (1970), pp.2-16. - Umezawa, Y., "Planning and Control Processes under Uncertainty," (in Japanese), Keizaigaku-Ronshu (Univ. of Tokyo), Vol.36, No.2 (1970), pp.12-44.