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1. A Model of Discrete-time Managerial Control Processes under Uncertainty: Model I
A Model of Multiperiod Decision Processes under Uncertainty: Model 1T

Derivation of Optimal Strategies on Model II

= o BN

. Relations between the two Models

Introduction

The purpose of this paper is to present a general model of discrete-time control processes under
uncertainty, to identify, through a decision theoretic analysis of the model, elements of the processes
" and fundamental structures of the corresponding multi-stage decision problems, and to clarify the
effect, in a multiperiod setting, of information collected and used to obtain the optimal control.

Two models are presented with respect to multiperiod control processes under uncertainty. One
is a rather specific model, Model I, of typical control processes (Section 1), and the other is a quite
abstract one, Model II, of multi-stage decision processes (Section 92). Through the analysis of Model
II, a fundamental structure of multiperiod control problems is made clear, and an algorithm for
the derivation of optimal control strategies is presented (Section 3). Finally model I isshownto
be reducible to Model II (Section4).

Various types of adaptive control process models, with procedures to derive optimal control
strategies for the corresponding multi-stage decision problems, have been presented in many books
and articles. Those of Bellman [1961, ch. 16], Fel'dbaum [1965, ch. 6], and Aoki [1967, cﬁ. 4]
are typical ones among them. Ineach of the three cases, the logic underlying the derivation of the
optimal control strategies is only that of dynamic programming; i.e., the principle of optimality:
“An optimal stfategy has the property that whatever the initial state and initial action are, the
remaining éctions must constitute an optimal strategy with regard to the state resulting from the
first action.”

The control objective is to take a sequence of actions during the course of a process so as to

maximize the expected value of a criterion function. In adaptive control situations, however, any

* The models discussed in this paper are almost the same with those presented in Umezawa [1970] written in Japanese,
except that in this paper we could remove the critical restriction that the action space at any time dose not depend
on the previous actions.
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concepts related to expectation is not well-def ined. With respect to which probability distribution
should we take the expectation? The prior probability distribution or the posterior? The principle
of optimality does not give any answer to this question at all.

Bellman maintained that the dynamic programming recurrence equation technique can be used
even in the adaptive case to establish the existence of optimal strategies and various structural
characteristics of the solution. But he succeeded in neither of them. Fel’dbaum and Aoki respectively
presented specific adaptive control models, the former being rather complex while the latter simple,
and showed how the optimal control strategies are derived. The derivation methods they used are
50 primitive and complicated that the structural characteristics of the optimal control have not been
made clear.

In this paper we derive the algorithm to obtain the optimal strategy for the corresponding
multi-stage decision problems through a formal decision- theoretic analysis of Model II, which is
a more general version of the excellent model of the control problem defined by Miyasawa [1970].
It is easily shown that Model I is a special case of Model II and models of Bellman, Fel’dbaum,
and Aoki are also special cases of Model IT. Accordingly any findings obtained through the analysis
of Model II are applicable also to our Model 1 and to their models. And our main findings are (1)
the essential elements of the adaptive control process are (a) uncertain factor which 1s out of the
control (b) information concerning the uncertain factor (¢) action to achieve the immediate goal
as well as to learn about unknown aspects of the process, and (d) reward f unction which measures
the degree of the goal achievement, (2) state of the system, the controlled object, is included in the
uncertain factor, (3) the information consists of not only the whole series of the previous observations
of the system but also the whole series of the previous actions, and (4) for the algorithm to derive
the optimal control strategy to function, only two conditions are needed: (a) a conditional probability
on the set of uncertain factors given any information is known for every period and (b) a conditional
probability on the next-period-observation set, given any information and actiom, is known for
every period.

One might be able to say that our algorithm is exactly the adaptive-control version of the
dynamic recurrence equation based upon the principle of optimality. However, without making

formal analysis, no one can argue that this version is really relevant to the adaptive control case.

1. A Model of Discrete-time Managerial Control Processes under Uncertainty: Model I

We consider discrete-time control processes under uncertainty. Suppose there is a system under
the control of a controller as shown by the figure. Let x, be the state of the system at time point
¢, +=0,1,+-+,n. We also call the time interval from ¢=k to t=Fk+1period 2. A control actionis
taken at each period. Given the previous statex, ; and an implemented actionc, which is an element
of the action space 4,, ¥ 'is determined by

%, =F,(x, 4, ¢, 6) (1)
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Fig.1 Schematic Diagram of the Model I

where £, is a random disturbance which is out of the controller’s control. To decide which action
to choose the controller observes x,_, at timeZ. The result of the obserbvationis y,_,, given by
Y1 =G &y &) (2)
where{,_, is a measurement error. The upper level controller gives the controller a goal x,* for the
period ¢ which is transformed into y’: when accepted by the controller;
y:‘=Bt(x:',,5,) (3)
where §, is a disturbance through the communication channel between the two hierarchy levels.
Obtaining the observation y, , and goal y’: , the controller chooses an actiona, €A, to control the
system, but because of the communication disturbance »,, the actually implemented actionc, is
determined by ‘
¢,=H,(a,, 7,) (4)
The previous actions {a , a,,***, a,_, }, which is designated by a'™!, restrict the action space
A, at the period {. To make this explicit we denote the action space by A, (@), It must hold
thatctEAt(at_l). '
For convenience of notation, as in the above, we introduce a simplification. Let f , beany function
or variable related to time¢. By fk we express the series {f1 v fgreecs fk} or {fo, fir°*» fk}.
The controller can choose an actiona, €A, (a'_l) on the basis of the whole series of previous
goals, observations, and actions which we call information at # and denote by 7,5 i. e.,
L=,y a4 (5)
A desision rule of the controller at ¢ is a functiond, which, for each possible information / ¢ specifies
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an actionatEA,(a'_l); i.e.,
a,=d,,) : (6)
a strategy d is a totality of the decision rules for each period ¢, t=1,2,°°*,n; i. €.,
d={d1»d29"',d,,}={d"} (7)

We denote by D the set of all possible strategies d. Sometimes # is referred to as the time
horizon.

As a function of the goal x’: » the state of the system x,, and the implemented actionc,, a reward
v, of period ¢ is given by

vt=u,(x:',x,,c‘) (8)
The controller wants to maximize the expected value of the sum of the rewards through the time
horizon computed with respect to a set of given prior distributions. Reward functionu, is a bounded
numerical function for all{, 1=1,2,°°°, n.

Given a set X and a probability distribution on X, we denote either probability of x (discrete
case) or density of x (continuous case) by p (x) for any x&X, and refer to p as probability distribution
in both cases (Henceforth, instead of probability distribution we simply write p.d.). Alsowe
denote any conditional probability distribution (abbreviated c.p.d.) givenx, by p (x|x,).

With respect to the goal given by the upper controller x:' , we assume thatc.p.d.’s
p(x’: |2%1), $=2,8,+++,n, and a prior p.d. p (x:) are known.

These constitute the description of Model I . Now we can complete the model formulation

as follows:
Model I

Goal xr

State of the System %,

Observation 0,= {y:‘ VY4 (9)

Control Action a,EA, @™

Implemented Action ¢,=H,(a,,7)€A,@") (4)

Uncertain Factors z2,={&, 2,18} ‘ (10)

Information I= B,y d T =10, a1 (5)

System Equation x,=F(x,_;,¢,» €,) (1)

Observation Equation ¥,=G,(,, ) (2)
yy=B,(x}, 8,) (3)

Reward Function v,=u,(x} %, ¢,) (8)

Time Horizon n

Decision Rule d, 1,—A, @™ (6)

Strategy d={d"}eD (7)

Criterion Function E[t__i_lut (x; 5 %,,¢,)]

Concerning probability properties of uncertain factors, Model 1 is classified into two versions.
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Model I—1. Stochastic Control Model

A. Uncertain factors§,, 7,, {, , and 8, are mutually independently distributed and p.d.’s of each
one of them are known for {=1,2,°+-, n.

B. é,,7,,8,, and g, are also serially independently distributed.

C. Apriorp.d. p(x,) is known.

Model I—2. Adaptive Control Model

A. Forallt, £, hasa knowne.p.d. p (¢, et f,) given ¢ and an unknown parameter
6’5 685 . Apriorp.d. p (6’5) over @e 1s known.

B. Giveny' ', "2, ! and unknown parameters 6,€6,,6,€8,,0,€ 6, uncertain factors
#,» {,_, and 8, are mutually independent and have knownc.p. d.’sp (9, 1", 6’,}) )
p,, 1 =2 9 ) P 8, VA 4) respectively. Under the same condition they are also independent
of the factor £, given¢, ; and ¢ ¢ €6 c These hold for all¢, #=1,2, «<+, n. For unknown parameters
ﬂy, g, and by prior p.d.’s p(ﬂ”) , p(ﬂc) , and p(ﬂﬁ) are known respectively.

C. Theinitial state variable x| has a known prior p.d. p, (xo |8 x) givend €6, . Also a prior p.d.

p(@,) over & is known.

2. A Model of Multiperiod Decision Processes under Uncertainty: Model IT

We will define another abstract model which has only essential elements, from the view point
of multistage decision theory, of the discrete-time control processes under uncertainty. The
correspondence between Model I and Model II will be discussed later.

Model II is defined as follows. The elements whose totality constitutes the control processes
with a time horizon n are an uncertain factor #, €6, , an observationo, €0,, an actionag,€A,, and
a bounded numerical reward function, defined on &, X% A,, for all¢, 1=1,2,+-+, n. The series of
actions taken up to the previous period a' ! restricts the space A , of possible actions at time?. We
denote this by A, (a’_l) , which is assumed to be a bounded closed set. The choice of an actiona,
is based on an information /, defined by

1,=40",a"™"} 11)
A decision ruled, of period ¢ specifies an actiong, €A, (@) for every possible I ;- Theset of possible
‘information 7, at time ¢ depends on previous decision rulesd’™'. We denote this information set
by I, (d™). Accordingly the decision rule d , is a function such that d,(I,) €4, (@™) for all
LEl, (d'ﬂl) . We call a set of decision rules d, for each period ¢, t=1,2,°°+, n, a strategy and denote
ithydii.e., |
d={d ,d,,*=+,d, }={d"} (12)
Also we denote by D the set of all strategies. A strategy d* is optimal if it maximizes within D the

expected value of the reward sum élr, with respect to given probability distributions of the uncertain
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factord,. Apriorp.d. p (#,) on8, is known and a set of specifications of probability distributions
are given with respect to the other uncertain factors#,, =2,3,-+*, n. Further, under the condition
that ' ! are already given, &, is absolutely independent of the actiona,, t=1,2,+-*, ¢.

Now we can summarize the model as follows:

Model I
Obervation 0,€0,
Action a, €A, (@'
Uncertain Factor §,€6,
Information Itﬁ{og, ag_l}EIt(dt_l) (11
Reward Function v,=r,0,, a,) (13)
Time Horizon n
Decision Rule d: 1, (dt—l)—*At @™ (14)
Strategy d={d"} (12)
Criterion Function E [é:lr‘ @, a)]

In the next section we will investigate the procedures to derive optimal strategies f or the

control processes.

3. Derivation of Optimal Strategies on Model II

First we will introduce some simplified ways of expressing the expected value of a function.

Let Z, and Z, be sets of real numbers. Let M(Z \XZ ,) beaset of functions defined on the product
space Z, X Z,, M(Z ) and M(Z,) be sets of functions defined on Z, and Z, respectively, P(Z,)
and P(Z 2) be sets of p.d. functions defined on 2, and Z, respectively. Letp, beaf unction in
M(Z X Z,) and also in P(Z,) foranyz,€Z2,, p, be a function in M(Z, X Z,) and also in P(Z,)
foranyz, €Z,. ForanyueM (Z,xZ,), we define pluEM(Z ) and péuEM (Z,) by

p,ulz,) fz uz,, z,) p, (2, 2,) dz, (15)

pyulz,) jz u(zy > 2,) by (2, 2,) dz, (16)
Further, let p, and p, bein P(Z) and in P(Z,) respectively. We define p,ueM(Z,) and
Pme‘M(Z ) by

pyu(zy)=[, uz, . 2,) by (2,) dz, an

pulz)) fz u(z,, z,) p,(z,) dz, (18)
Similary, for any veM(Zl) we define a value p,v by

p3v=lev(zl) p,(z,) dz, (19)

We assume the following two conditions.



Fundamental Conditions for Deriving Optimal Strategies

Condition C,; . For every possible information /,, a conditional probability distribution , on the
set of uncertain factors &, , given/,,
x,8,11), 0,€6,,t=1,2,++,n,

is known.

Condition C,. Forevery possible combination of information 7, and action a,, a conditional
probability distribution w,, on the observationset O, ,, givenl, anda,,
@1 0,110y, 85 0, €04y, 1=0,1,00 0 1,

is known.

Next we state an algorithm for deriving optimal strategies for the control process with a time

horizon #.

Algorithm

Step 1 For every information [ iy o define g by
Pt Ly ) =0 (20)

Step2. Let{equaln.

Step 3. For every possible pair of information /, and actiona,, obtain ¢, by
(A1) ¢, a)=zr, U, a) Ve, 8,,U,, a),

then forevery 7, define g, , af, and d:‘ by
(A2) ¢,U)=_max, ¢,U, a)=¢,,, a)

=1
a,€A,(a

(A3) d'U)=d!

Step 4. Let¢equalf—1. If # equals 1, then go to Step 5. Otherwise go back to Step 3.

Step 5. Define an optimal strategy d * by . :
d*={d},dy, -+, d}} (21)

then stop.

Since 1'x+1 ={""", d'}= U,,a,0..} 94 (I,,,) canbe regarded as a function of /,, a,, and
0 Hence we can express ¢, (1,, a,) obtained by Equation (A1) as follows:
¢,y at)=f9trt(ﬂt, a)x,(8,11,)db,
+fb,ﬂ¢z+1 Uy, 8y, 0,41) @4y 04y 1, a)d0y, (22)
The first term of the right hand side of this equation is the expected value of the reward of period

t+1°

t, givenl,. The second term is, roughly speaking, the expected value of the sum of the rewards of

-



all the later periods resulting from optimal decision rules for these periods, with the expectation
being at the stage when information J, is gained.

We should note that, for the value ¢, (J,, a,) to be obtained for a pair of /, and a,, both of the
two conditions C, and C, must be satisfied.

Now we will show that a strategy d* obtained through the algorithm is optimal. For that, we

need the next two lemmas.

Lemmal Letd' ={d . d,,-+.d,} bea series of decisionrules for period 1 throught, t<n, I(d'")
be the set of all information I, corresponding to the first t—1 decisionvulesd'™" included ind' . Let
4, 41 denote a probability distribution on X ,(d" ). Then, forallt, t=1,2,++, n
G U =10, 0,00 1, d,T)) (23)
where
@)= 0) (24)

Proof By the definition of 7, and the multiplication law of the probability
qy g1 J) =4, g (d,_y,8,,,0)
=q Uy, 8 U 1) 0)
=q,_ g2, Do, ,d,_U,_)) (25)

since the conditional probability, given / that the actiona d,_, u 1) 1s taken is unity.

=17 -1
This recursive formula yields (23). Q.E.D.

Examining the right hand sides of (25), we recognize that for each decision ruled, for period

¢ the function w,, , gives the probability of ¢ given every information/, €1 (d™). Therefore

t+1 1
we will denote the function by w, 4 when it is necessary to express explicitly the function’s dependancy
on the specific decision ruled, .

By this lemma, especially by a direct use of (25), We can derive a corollary.

Corollary Letu, be any bounded rumerical function of informationI,. Then

qt’d:-x u, =qt—-1,d'“2 w,‘d‘_lu, (26)

Lemma2 LefR, (d") be the expected value of the reward r, of period t which corresponds to a series of
decision rules d' , with the expectation being taken at the begivming of the initial period. Then, for t=1,2,¢-,
) .

R,d)=q, p17,r,(d,)
Proof Let p s-1be the joint p.d. of ¢, and 7, ford’*. Then
R,d)=[r,(0, d,INpu(6,,1)d8,dl,
Since
P10, 1)=p0,|1)p),)
=x,(0,11)q, 4-1I,),
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using the simplified notation for integration we may write
R =[; iy 710, 4,07, 0,11,)d8 Y, g T,

ﬁf,’(dm)zz',r, U, , a’,)q,'d:_x (I,)dft
qu’dl-l z:,rg(d,) Q.E.D.
Let R(d) be the expected value of the total reward for a strategy de D, with the expectation
being taken at the beginning of period 1. It is clear that R(d) is equal to the sum of R, (d") throughout

the whole processes; i.¢.,

R@=ELZ7,6,,d,U))]
=% Elr, @, d,I))]

=5k, @) (2D
Fork=1,2,°++,¢, 1et S, (d) be the sum of the expected values of the rewarde of period k through

period » corresponding a strategy deD; i.e.,

S, d)= Z R; d") (28)
where d is the series of the first ¢ decision rules of the strategy d. Then by (27)
S, @@= z R,(d")=R) (29)

Therefore S, (d) is also a criterion function f or the optimal strategy.

Theorem Awny sirategy d* obtained through the algorithm is optimal; i .e., for all strategy deD
R(@")=S,d")zR@)=S, () ' (30)
Proof Let d‘: be a function determined by Equation (A3) at step 3. We prove the theorem by showing
that the next two equations hold for any strategy d€D and for allt, t=1,2,¢°+, n;
S, @, d dt+1 200 d:) =4, 419, (31)
S, dy, dyyy e, d)2S, @) (32)
We show these by an inductive way of proving.
By (20) and Equation (A1)
¢, ., d,dN=xr U, d,U))
Multiplying both sides.of this equation by g, dn—l(] ), and integrating each w1th respect to 1, we
get
qn,d”‘l‘gbn @,)=q, p17,7,(d,)
so that, by Lemma 2
| S (@)=R,(d)=q, pi7,r,d,)
9, 1Py d,) (33)
On the other hand, from Equation (A2), we get foralla, €A, (@™ ) and/, €I, G h
6, I)=9,U,, a)z¢,d,, a,)
which, by Equation (A3), is equivalent to
¢ U)=9,U,, ddINz¢,U,,d 1))
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Again, multiplying by g, 1 (I,) and integrating with respet to / yield
G, 18,=0, 10, (d}) 20, p 9, d,) (34)
Therefore by (33) and (34)
S, @, d)=q, p1¢,d)=q, 19,
and
S,d, &) =q, w9, )24, p1¢,d,)=5,d
These prove that (31) and (32) hold for {=n.
Next we shall assume that (31) and (32) hold for¢=k. By (28), foralldED
S, @=R,_, @ H+5,@
so that
Sp-1 @, d: ’ d:+1 2700 d:) =R, (a’k_l)”*'sk @, d:’ d:—H 200 d:)
=0y, 1 7y Ty Gy TG 19,
=y, 2711 Gt T Uy 2@, Py
=y, a2ty ) Fo, 20)
by Lemma 2, the induction hypothesis (31) with ¢=k, and (26). Since Equation (A1) can also be
written as
¢y, d, ) =ar, 1y, d, ) Ve, 8, d, U)D)
we obatain '
Sp1 @, dy,oee, dy) =y 1,21 Pp (@yy) (35)
On the other hand, from Equation (A2), weget foralla, €A, ; (@*%) and [ w1 €1y @2
Sp1 L) =0, 1 L)y, a:——l Y2y Uy s 8y )
which, by Equation (A3), is equivalent to :
b Uy )= Uy d:—-l U2t Uy e T y))
Multiplied by q k=1, dk—z(] 4—1) and integrated with respect to 7, _,, this yields
Y A A T 1) 24y 4291 (dyy) (36)
Thus we have, by (35), (36), and the induction hypothesis(32) with t=k,
Sp-1 @, d:—-l 270 d:) =qp1,82 P (d:—1 )=y 1Py
and
Spo1 @, dyy,oonody) 244,429 @)
=S, , @, d:, .o, d:)
=R, @ )+, @, dy, e, d))
2R, @ H+S,@
=S,_, @)
These prové that (31) and (32) hold fort=k—1.
Consequently, (32) with =1 shows that for anyd€D
\ S,d*"zS, @)
and, by (31) with#=1 and (24)
R )=max S (d)=q, p8, = ¢, 37
Q.E.D.



The analysis of the case where the action space at timet, A,, does not depend on the previous

action @’} was made by Miyasawa [1970] and Umezawa [1970].

4. Relations between the Two Models

By defining each of elements of Model II in terms of those of Model I, we can relate Model
I to Model II as follows:

Model II Model I

a, =a, (38)
4, ={x7'ﬂux:-1:5:~1:’7~5:} (39)
o, ={3;,9,,} “o
r,4,,a,) =u,(x:, Fx,_,, H(a,, ), £, H(a,, 7,)) (41)

The uncertain elements which appear in the right-hand side of (41) are x:' s X g Dy and ¢, .
These elements are all included in the set #,. Accordingly we can obtain the expected value of the
reward u't, given/,, if thep.d. b8, |7 ;) 1s known, as condition C, requires.

Since conditions C, and C, are necessary for the algorithm to function (see step 3) , we now examine
whether they are satisfied in Model I, using relations (38) through (40) .

Since by (40)

1t={0:’ =", ¥, 6 (42)
we have

z,(ﬂ,ll,)=p(x:, %10 a2 € EAF T

=f”‘fﬁ(x*¢, N 0,,0.,0,0, 1y, 5 et
wd(™ 7, gL, B, e gt 0,,0.,0,0,)
=[-+[p@® 15", 5", " HdR-1) (43)
where »
QO =", 8,2, 07 0 60, 0,,0,,0,,6,) (44)
Therefore we can obtain z, (8, 11,) if p(£(£) 1y*, y a1 is known. We will show inductively
that thisc.p.d. of Q(), given {y“ , y'—1 , a1} is known for all ¢, #=1,2,+, n.
Using the multiplication law of the probability repetitively, we have
PG+, ¥y, 2,197, 7 dD) |
=pQW®)» %y Brprr %0 Coo T Enprs Yt » Ielmp)
=p(QW) Im,, )by 1My, QOB m,, QD) 2),)
Xp(x,lmyy,, 2@, Zirr B b lmyyy, 20, Tra1» B %)
X7y lmyyy, A, Zrr o Brrar B0 €))
X P pyy Imyyy, R, vy o Branr %00 $p M)

*® *
XDy 1My QO 2y s Bryys %00 Cpo Tyys €14



X p(y,Im,, ., B0, Zopy s Brers %0 Cor Do € Yrer) (45)
where
m, =%, ¥y, d'} (46)
According to the specifications of Model I, (45) can be written simply
PG+, yry 31", ¥ ah)
=p@) Y™, ¥, 6"l 1578,y 186 ,)
xd(x,~F,(x,_y, H,(a,, 2,)5 ENDE,ICT, 80
X (44117, ) A &', ﬂe)"(yrﬂ ~Byyy &fyr s Br)
xd(y,—G,(x,,{,)) (47)
Now we assume the p.d. p(2@) | ¥, yt—1 , a1 beknown. Then, since the other factors in the
right-hand side of (47) are all known, the lef t-hand side becomes known. By integrating this with
respect to 2(t+1) we have
PICHPIE A A
=[-[p@+1), 5}, . 3,09", 5", @)@+ (48)
Also by the multiplication law, we have
PG+ 1y, ¥, a")
=pQU+D), ¥ 3,19, ¥ a9, 19" YT d) (49)
The nﬁmerator and the denominator in the right-hand side of this equation are given by (47) and
(48) respectively, so that p(Q(t+1) | yw+1
The only thing left is to show that p(Q(?) |y, ¥y, a'™1) is known fort=1;i.e.,
p(R(1) 1y}, y,) is known. Similarly with (49)
p(Q(1) lyl; » 99) = {p(Q(1) ,yf ) }/{f" . °fP(Q(1) ’ yf , ¥,0d2(1)} (50)
By the specifications of the model, we have '
PO, ¥y ¥) =Dy Bys %00 g 110610050 0¢0 00 RENED
=p)p(0 p(B 10 ,,)p(x)pB )DL 10 )
xp0,)p(7, W,,).b(ﬂf)[)({’l 16,.)
x3(y}—B(x}, B0, =G, (g5 C4)) (51)

t oty
, ¥, a ) isalso known.

and ,
p(xy)=[Dy(x,10,)0(8,)d0, (52)

Since the factors in the right-hand side of (51) are all known, p(2(1) ny » ¥,) is also known. Thus,
by (50), p(QW) |y*, ", a'") witht=11is also known.

On the other hand. 'We have by (40)

_ ¢t+1(ot+lllt’at)=p(y:+l’ytly#’yt_l’a‘)

Since this is given by (48), ConditionC, is also satisfied in Model I .

Thus, it has become clear that both of conditions C, and C, are satisfied in Model I, so that

an optimal strategy can be derived through the algorithm.
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