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Asymptotic Robustness of Tests of Overidentification and Exogeneity
T. W. Anderson and Naoto Kunitomo

1. Introduction

Two important underlying assumptions of the traditional simultaneous equation ap-
proach in econometrics are the identifying restrictions and predeterminedness (or exogene-
ity in some sense) of several variables in the system of structural equations. Although these
assumptions are often made based on a priori grounds in practice, it may be advisable to
examine these two conditions from a statistical point of view. In this respect a number of
statistical testing procedures for these restrictions have been proposed by econometricians.
For instance, the test procedures by Anderson and Rubin (1949), Koopmans and Hood
(1953), Basman (1960), Wu (1973), Byron (1972), Revankar and Hartley (1973), Revankar
(1978), Hausman (1978), Kariya and Hodoshima (1980), Hwang (1980a), and Revankar
and Yoshino (1989) among many others have drawn some attention and have been applied

in empirical work.

Anderson and Kunitomo (1989a) derived systematically several test procedures and
obtained relationships among different test statistics. For these purposes they considered
a subsystem of structural equations and regarded the single equation method as a special
case of this formulation. They obtained three types of test procedures, namely, the likeli-
hood ratio (LR) test, the Lagrange Multiplier (LM) test, and the Wald test for the block
identifiability restrictions and the predeterminedness restrictions in the subsystem of struc-
tural equations; the test statistics derived include all test statistics mentioned above as

special cases and give new interpretations to some of them.

In this paper we shall derive the asymptotic distributions of test statistics discussed in
Anderson and Kunitomo (1989a) under a set of fairly general conditions on the disturbance
terms. For this purpose we shall use a new martingale central limit theorem and a martin-
gale convergence theorem based on a Lindeberg-type condition for martingale difference
sequences developed by Anderson and Kunitomo (1989b) and apply them to the present
situation. We allow a finite number of lagged endogenous variables, and the disturbance
terms are not necessarily independent. We shall show that the limiting distributions of
test statistics considered in this paper are noncentral y2-distributions under local alterna-
tive hypotheses and are central x2-distributions under the null hypotheses when the dis-

turbances are the martingale difference sequences. Because test statistics have often been
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proposed under a set of relatively restrictive assumptions, it is important to show that the

assumptions usually made are not essential for the testing procedures in practice.

In Section 2 we formulate the two hypotheses and in Section 3 we summarize the test
statistics in a subsystem of structural equations. In Section 4 we give some general results
on the asymptotic distributions of test statistics introduced in Section 3. Detailed proofs
of the theorems are given in Section 5.

2. Two Hypotheses in a Subsystem of Structural Equations
2.1 The model

We consider a subsystem of Gy structural equations
(2.1) YB=2ZT+U,

where Y is a T'X G matrix of observations on the endogenous variables appearing in the first
Gy structural equations, Z; is a T x K; matrix of observations on the K. 1 predetermined
variables, B and I are G X Gy and K; x Gy matrices of (unknown) parameters, respectively,
and U is a T x Gy matrix of unobservable disturbances. The columns of matrix B are
linearly independent; that is, the rank of B is Go. When Gg = 1, (2.1) is the usual single
structural equation.

The reduced form equation for the endogenous variables Y appearing in the first G
structural equations (2.1) with K (= K; + K3) predetermined variables is

(2.2) Y =ZII+V,

where Z = (Z),23) is a T x K matrix of predetermined variables (T > K) of rank K, and
Z3 is a T x K, matrix of the predetermined variables that are not included in (2.1). The
predetermined variables may include lagged endogenous variables. V is a T x G matrix of

disturbances whose t-th row is denoted by v!. We assume that

(2.3) E(v,) =0,

(2.4) E(vvy) = Q,

where (2 is a G X G non negative definite matrix.

In this paper we shall consider two hypotheses. One is that the set of Gy equations
(2.1) is identified as a block. That is, any matrix B such that ZIIB = Z;,T for some
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I is obtained from any other by multiplication on the right by a nonsingular Gy x Gy
matrix. The other hypothesis that we consider is that a subset of the endogenous variables
is uncorrelated with the disturbances in the block of equations.

2.2. Block identification

The relationship between the reduced form and the structural equations involves

(2.5) I'=1.B,

(2.6) U=VB,

where II has been partitioned into submatrices of K3 and K, rows:
II,.

2.7 = .

27) I (H2->

Let u} be the t-th row of U. From (2.3), (2.4), and (2.6), we obtain

(2.9) E(uwuy) = B'QB =%,

say. X is a Gy X Gy nonnegative definite matrix. The block identifiability conditions are

expressed as

(2.10) Hf . { = 0,
where
(2.11) ¢ =11,.B.

From (2.11) we obtain the rank condition of the block identifiability in (2.1),
(2.12) rank(Il;.) = G — Gy = G..

The order condition is

(2.13) L=K,-G,>0.
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In the above notation L is often called the degree of overidentification.

Let vg > -+ > v; 2 0 be the roots of

1
(2.14) 76T~ =0,
where
(2.15) Or = II3. A2z 11z,
(2.16) Aggn = Z5Zy — 2321(2121) "1 21 Z,.

Then from (2.10), it is clear that the block identifiability condition is equivalent to the
hypothesis H, : v; = -+ = vg, = 0 and vg, + 1 > 0. The existence of a matrix B such
that £ = 0 is equivalent to (2.12), which in turn, is equivalent to H,. This testing problem

is mathematically equivalent to the hypothesis for the rank test in multivariate analysis.
(See Anderson (1984), Chapter 8.)

2.3. Predeterminedness

An essential difference between a system of structural equations and regression models
in the multivariate analysis is that in the former correlation may exist between the endoge-
nous variables y}, which is the ¢-th row of Y, that is, vs, and the corresponding disturbance
term u}, but in the latter some components of y; and uj may be uncorrelated. In order to
state this hypothesis we partition ¥ = (Y;7,Y2) into G; and G columns (G = G; + G3),
V = (V1,V2), vt = (vyy,v3¢)', and

Q11 Q12)
2.17 Q= .
(2.17) (921 Q22

From (2.9) the covariance matrix of vj, and uy is

(2.18) n = Cov(va, uy)
= (Q21, 22)B.

We define the econometric predeterminedness restriction considered in this paper to be the
hypothesis H, : 7 = 0. The two hypotheses H¢ and H, imply the hypothesis He , : { =0,
n = 0. When the disturbance terms follow the multivariate normal distribution, the
uncorrelatedness implies independence between any subset of regressor Y3 and disturbance
terms in (2.1), This testing problem has been sometimes called the test of independence.

The hypothesis of predeterminedness in this paper may be called weak exogeneity. (See
Engle, Hendry, and Richard (1983) and Holly (1987).)
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3. Test Statistics for Two Hypotheses

In this section we summarize test statistics for the block identifiability condition and
the predeterminedness condition in a subsystem of structural equations. The derivations
of the statistics have been given in Anderson and Kunitomo (1989a). Three types of test
procedures were discussed: the likelihood ratio (LR) test, the Lagrange Multiplier (LM)
test, and Wald test for two hypotheses. In order to derive test procedures the multivariate
normal distributions for the disturbances v; was assumed. However, this assumption shall

be relaxed considerably in this paper.

3.1. Tests for block identifiability

Under the assumption of multivariate normality of the disturbance terms {v:}, the
log likelihood ratio (LR) times ~2 for Hg : { =0 vs Hq : { #0118

Go
(3.1) LRy =T log(1+X\),

=1

where Ag > - -+ > A1 > 0 are the characteristic roots of

(3.2) |Y'(Pz — Pz,)Y = AY'PzY| =0,

Pz = Z(2'Z)~1Z' denotes the projection operator onto the space spanned by the column
vectors of Z, and Pz = It — Pz for any (full column) matrix Z.

The equation (3.2) is a sample analogue of (2.14). For Gy = 1 the likelihood ratio
statistic (3.1) was derived by Anderson and Rubin (1949). In this case LR, is a function
of the smallest characteristic root in the limited information maximum likelihood (LIML)
estimation method. When Gg = 2, LR, is the statistic proposed by Koopmans and Hood
(1953) for the nonidentification test.

The Lagrange Multiplier (LM) statistic, which is identical to the Rao Score statistic,

has been developed as a statistic to test a hypothesis H about a vector parameter 6 in a
likelihood L. In these general terms the criterion is

dlog L PlogL| \ (alogL )
.3 = ——2
(33) = (T5],) (7 ) 5L

o0
where H denotes the null hypothesis and the value of the parameter in (3.3) maximizes

the likelihood under the null hypothesis. Applying this general principle to our present
testing problem for He := 0 vs Hy : £ # 0 yields

(3.4) LM, = tr B'Y'(P; — Pz,)YBE™,
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where B and £ = B'Y'P, Y B are the maximum likelihood estimators of B and ¥ under
the null hypothesis. When we use the roots of (3.2), this statistic is

(3.5) LMy =T) —.
=1 1+

When Gy = 1, this statistic LM; is identical to the LM statistic proposed by Byron (1972).
When Gy = G, (3.5) is the Bartlett-Nanda-Pillai trace criterion in multivariate statistical

analysis.

In general terms the Wald test is based on the statistic
”~ P ,_,.1 A
(3.6) h(9) [C(6)) " h(d),

where 8 is the maximum likelihood estimator of the parameter vector § under the alter-
native hypothesis and C(f) is an estimator of the asymptotic covariance matrix of k().
In our problem the null hypothesis is that rank of II,. is G — Go = G, say. We par-
tition the matrix ¥ = (¥5,Y,) as T X (Go + Gu«). By expressing (2.10) in the form of
h(6) = vec(Il;. B) = 0, we obtain a Wald test as

(3.7) Wy = tr [S BhgY'(Pz — Pz,)Y Brs),
where E&‘S = (Ig,, ——E,’,) is the two-stage least-squares estimator and
(3.8) §* = [Y,:(Pz — Pz, )Y*)] —IY,:(PZ — Pz,)Ys.

The numbering of the columns of ¥ may be arbitrary. When we use the unrestricted
estimator § = (1/T)Y'PzY for Q, the resulting Wald statistic W; is the statistic derived
by Wegge (1978) for Go = 1, which is also identical to the Wald statistic derived by Byron
(1974). When we use the maximum likelihood estimator of £ under the null hypothesis
Q = (1/T)Y'P,Y, the resulting W, is the statistic proposed by Basman (1960) for the

case of Gy = 1.

The limited information maximum likelihood estimator §L runder He : £ = 0 is
asymptotically equivalent to Brs in the sense that \/T(ﬁ L1 — ﬁTg) -2, 0. Thus we may
substitute B L1 for ETS for an estimator of £. (See Lemma 1 in Section 4; it is assumed
that the rank of II;, consisting of the last G, columns of II,. is G4.) To construct B LI
define the vector ¢; by

3.9 Y'(Pz — Pz,)Y — ANY'PzYle=0
1
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and ¢'Y'PzYc=T,i=1,...,Gy, and define the matrices C, Cy, and C, by

C
(3.10) C=(c1y...,¢q,) = (C"),
where Cy is Gy X Gy. Then
(3.11) B.=c.c;t

and By; = (Ig,, ——§,’,)' . The statistic W; can be modified by replacing Brs by Brs to
obtain

Go
(3.12) Wi=T> X\,

i=1
where A;, ¢ = 1,...,Gy, are the Gy smallest roots of (3.2). When G = Gy, W] is the
Lawley-Hotelling Trace Criterion.

3.2. Test statistics for predeterminedness against unrestricted alternatives

Under the assumption of the multivariate normal distribution for the disturbance
terms {v;}, the log likelihood ratio criterion (LR) times —2 for He, : £ = 0, np = 0 vs

Hp:E#0,n#0is

Go
(3.13) LR =T log(1+1X}),

i=1

where AGo = *** 2 AT 2 0 are the roots of

(314) Ilfl’(PYz,Z - PY:,Z1)Y3 - )\*}/Y—PY272},1| = 0.

A Lagrange multiplier statistic for testing He, : € = 0, n = 0 vs Hy4 is similar to
LM;y; it is

(3.15) LM; =T
A (modified) Wald statistic for He , : € = 0, n = 0 vs Hy is similar to W}; it is
Go
(3.16) Wy =T)» Al
=1

When Gy = G; = 1, W; reduces to the statistic proposed by Revankar and Hartley (1973).
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3.3. Test statistics for predeterminedness against the alternative

of overidentification

Another possible alternative hypothesis against He¢ , is H¢, which defines the struc-
tural equations with the block identifiability restrictions. Because H , is nested within
H¢, the log likelihood ratio criterion for Hg , vs Hg is the difference between the statistic
for He , vs Hy and the statistic for H vs H4, namely,

Gy
14 A}
3.17 == t
(3.17) LR; T;log(1+/\i),

where A} and ); are the roots of equations (2.14) and (3.14), respectively. For Go = 1 and
G1 > 1, LR; is the statistic obtained by Hwang (1980a). For Gy = Gy = 1, LR3 reduces
to the statistic obtained by Kariya and Hodoshima (1980).

The development of the Lagrange multiplier statistic for testing for Hg , vs H¢ is more

complicated. The statistic is

(3.18) LMj3 =tr [E;Yl'ﬁyz,zlaszé(Yi‘,’_ﬁz—ﬁRpupzlﬁ)_1Yz'—pz_pyz,zlY1§1 2-1]
= tr [B1Y{(Px — Pop)V1 3,571,

where R = (Y2,2), X = (Yz,Zl,—PzYz), J1 =(0,I¢,-g,), p= 92_21021, and

(3.19) F= Knl. fﬂz.p) , (Iangl)]

is evaluated at its maximum likelihood estimator. We have used Lemma A.6 in Anderson
and Kunitomo (1989a). When Gy = Gy, we have Prr = Py, z, and

(3.20) LM; = tr [Y{(Py,,z, — Px)V157!]
Go  yax

14+ A

where AT are the roots of

(3.21) |Y{(Px — Py,,2,)Y1 = X*Y{PxYi| =0,

and X = (Y2, 2, ,PzY3)is a T x (G2 + K + G3) matrix. In the present formulation of the
LM test, $ should be the maximum likelihood estimator ¥ under the null hypothesis

(3.22) $ = B!Q11.2B, = =BY{Py, 2,Y1B:.



Several alternative estimators of £ could be used. If s = (1 [(T—-2G2—K; )) §; Y/P XY1§1,
LMs; is the statistic proposed by Wu (1973) and Wu (1974) when Go = G1 = 1. Haus-
man (1978) proposed a specification test statistic that is proportional to LMz when
Go = G; = 1. (See Nakamura and Nakamura (1980) and Hwang (1985).) Another possible
estimator of £ is & = [1/(T - K - G,)] B\Y/Py, zY1B: because it is an unrestricted sum
of squares of the regression residuals. Then the statistic LM; is the statistic proposed by
Revankar (1978) when Go = G1 = 1.

A Wald statistic for the null hypothesis Hep : € =0, 7 =0 vs He is

(3.23) Wa = tr B'Y' P2, Yy (TO:(p1, I, 0)(D' 2'2D) ™ (b1, I6,,0) Doz + 022) "
Y,PzYBE™,

where p = ﬁ;;ﬁn and B are the maximum likelihood estimators of B and p under Hg,
that is, B = C given by (3.10). This Wald-type statistic is similar to that of Smith (1985).

4. Asymptotic Distributions of Statistics

We shall show that the test statistics given in the previous sections have x?%- distribu-
tions under conditions much more general than the conditions under which the tests were

derived. Let the o-field F;_; be generated by 2z1,v1,...,2t-1,Vt—1, 2t. We assume that

(4.1) E(vt|Ft..1) =0 as,

(4.2) E(vive|Fio1) = Q¢ ass..

Note that Q; can be a function of 2z1,v1,...,2t-1, V-1, 2. Since u; = Bv;, we obtain
(4.3) E(us|Fi-1) =0 as.,

(4.4) E(u',ut|Ft_1) =X, as..

In the conditional expectation operator in (4.1) to (4.4) Fi— is the information set available
at ¢ — 1. The predetermined variables z; may include a finite number of past endogenous
variables y¢_1,Yt—2,---,Yt—p. In order to investigate the asymptotic distribution of the
test statistics, we use two theorems for martingale difference sequences given by Anderson
and Kunitomo (1989b).



‘Theorem 1. Let {z;,v¢},t = 1,2,..., be a sequence of pairs of random vectors, and
let {F:} be an increasing sequence of o-fields such that z is F,_i-measurable and v, is

F;-measurable. Suppose

T
(4.5) % Z 22 = M,
t=1

where M is a constant matrix, and

(4.6) max az 250
) 1<t T

b

as T — o0o. Suppose further that E(vtIFt_l) =0 as., E(vv}|Fi_1) = Qs ass,,

T
1
. t=1

where € is a nonnegative constant matrix, and

(4.8) - sup E(vjved(vjve > a)|Fi-1) 250

t=1,2,...

as a — 0o. Then

1 -,
(4.9) vec (—\7_&1— ; ztv,) RN N(0,Q ® M).

Theorem 2. Let {v¢}, t =1,2,..., be a sequence of random vectors, and let {F;} be
an increasing sequence of o-fields such that vy is Fi-measurable. Let E(v¢|Fi—1) = 0 a.s.,
E(vvi|Fi—1) = 4 a.s., and
(4.10) =y 0 5Q,

where € is a constant matrix, and for any € > 0,

T
(4.11) %Z E(viv I(vivy > Te)|Fimy) = 0
t=1
as T — oo. Then
1 T
(4.12) | T > v 2 Q.
t=1
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The proofs of the above theorems are given in Anderson and Kunitomo (1989b).
Theorem 1 generalizes Theorem 5(i) of Lai and Robbins (1981), where the scalar vy’s
are independently identically distributed. Theorem 2 is a martingale convergence result.
Because it is relatively easy to check the conditions in the theorems, they may be useful for
many applications. The most important point is that we do not require any condition other
than the conditional second-order moments. Both Theorems 1 and 2 allow conditional (as
well as unconditional) heteroscedasticities for the martingale difference disturbance terms.
We note that condition (4.8) implies condition (4.11). Hence conditions (4.5)-(4.8) and
(4.10) are sufficient for the following results.

Consider a sequence of local alternatives for the identifiability restrictions,

o ns = () + 2z = (5) + 77 (52)

where ¢; is a K X Gy matrix. We consider II = II(T) as depending on T in such a way
that II(T) — II(0), where II5,(0) has rank G.. The matrices B and T’ do not depend on
T. In the rest of the paper we suppress the index T. The condition [12.(0) having rank G.
is written as II5, having rank G,. When & = 0, (4.13) reduces to the block identifiability
restrictions. Kunitomo (1988) discussed the formulation of these local alternatives in some

detail. We obtain the following theorems.

Theorem 3. Suppose (4.5) to (4.8) and (4.10) hold, M is nonsingular, and Iz, has
rank Gy. Let B be defined by (3.8) and T by
(4.14) T = (2,2,)"'Z}(Yo — YuB,).
Then under the local alternatives (4.13) B. -2 B, T 2T, and

(4.15) vec VT (EJ& - B*) 4, N{vec [(D'MD)'lD'M&], >®(D'MD)™ '},

r-r
where
(4.16) D= [H (I’Oﬁ )] :
(4.17) I = (Mo, IL.4).

Corollary 1. Suppose (4.5) to (4.8) and (4.10) hold and M is nonsingular. Let B,
be defined by (3.11) and T by

(4.18) T = (2,2,)"'2,(Yo — YuB,).
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Then under local alternatives (4.13) B. % B., T-25T, and

(4.19) vec VT (Ei,’t ~ g*) <, N{ vec [(D'MD)—ID'M&], Y ®(D'MD)™ '}

The matrices in the limiting distributions are

, WM, I',M,
(4.20) D'M = ,
My, M,

Mo, I, ,M;
(4.21) D'MD = ,
Ml.n.* M]l

(422) (D'MD)'=

( (11, M2.1T5.) ™ (I, Mg 1 T154) " T M.y M )
— MMy (T, Moz TT2,) M;ll1\41.r1.,‘(n'2,,1\422.1r12,,)—1II{,,M.IM;I1 +M3 )’
where

M.
(423) M= (Ml) = (M-17M~2)a

2.
(4.24) M22.1 = M22 - MglMl—ll M12,
Then

(4.25) (D'MD)"'D'M¢&

( 0 (H'Z*Mzz.lnz*)_lniz*Mn-l (611)
IK1 ——Ml—llM1.n.*(nlg*Mn.le*)—_lH’2¢M22~1 +M1_11M12 621 .

For the case of Go = 1 Anderson and Rubin (1950) gave the result of Theorem 3
under different conditions and using a different proof. Textbooks in econometrics often
refer to Mann and Wald (1943) for the asymptotic results in the case of Go = 1 under the
identifiability conditions. (See Chapter 10 of Theil (1971), for instance.) Anderson (1951)

proved the theorem for arbitrary Go under the null hypothesis and normality. However,
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earlier results were obtained under stronger conditions than ours here. Our proof seems

much shorter and simpler than the ones already known.

Theorem 4. Suppose (4.5) to (4.8) and (4.10) hold, M is nonsingular, and II,, has
rank G.. Then under the local alternatives (4.13) each of the statistics LRy, LM;, Wi,
and Wi has the limiting distribution of the noncentral y? with Gy x [K2 — (G - Go)] =
Gy X [K 9 — G*] degrees of freedom and noncentrality parameter

(4.26) & =tr (0,27),
where
(4.27) ©1 =& [M — MD(D'MD)™' D' M|

= ¢n [M22~1 - M22-1H2*(H'2*M22-1H2*)_1H'Z*MéZ-l]§21‘

When &2; = 0, each of the above statistics has the limiting distribution of y? with
Go X [Kz - (G - Go)] = Gy X [K2 - G,,] degrees of freedom. This result for the case
of Gop = 1 has been obtained previously under the assumptions that disturbances are
independently, identically, and normally distributed and there are no lagged endogenous

variables in the explanatory variables.

Next we consider a local alternative hypothesis for the predeterminedness condition,
1

—=M

VT

where p = 92_21921 and 7; is a nonzero G; x Gy matrix. We consider @ = Q(T) as

(4'28) (p, IGz )B =

depending on T such that Q(T) — £(0), which is nonsingular. In order to avoid severe
complications in Theorems 5 and 6 we shall assume that

(4.29) E(vevy|Fi1) = UT) a.s.

Then (4.7) and (4.10) are satisfied automatically (for Q, = Q(T), t = 1,...,T). More

general theorems could be stated, but to prove them would require a central limit theorem

more general than our Theorem 1.

Theorem 5. Suppose £(v¢|F;—1) = 0 a.s., (4.5), (4.6), (4.8), and (4.29) hold, M
and Q) are nonsingular, and II;, has rank G.. Then under the local alternatives (4.13)
and (4.28) each of the statistics LRy, LM, and W, has the limiting distribution of the

noncentral x? with Go x [Kz — (G1 — Go)] degrees of freedom and noncentrality parameter

(4.30) 62 = tr(6,X71)
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where

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

» =([Q7 - F(F'QF) ]G

=(Q ¢ [@ - QF(F'QF)'QI(Q™ ')
= (€21 — Ta2m)' [Ma2.1 — M2z Tl24 (15, Ma22.1 T2 + Qa2 Q57 Qau) 115, M2
- (€21 — T22m1),

o= (MaMlla TWyM
Mo, M )’

P Ig, 0
My —2p | J1, | O |, Ik, )
I3 —a2p 0 0
_ (1, Q22m
Cl——(IK)M&-I-( 0 )

-1, _ m
e h= (fl —11277_1) ’

F =

-71=( 0 ), G x Gy,
I, -G,

(21, R22) = (D20, V24)-

Theorem 6. Assume E(v¢|Fi—1) = 0 as., (4.5), (4.6), (4.8), and (4.29) hold, M
and Q are nonsingular, and II;, has rank G.. Then under the local alternatives (4.13)
and (4.28) each of the statistics LR3, LM3, and W3 has the limiting distribution of the

noncentral x? with Go X G2 degrees of freedom and noncentrality parameter §3 = 65 — 6] =

tr [(92 - 91 )2_1] .

The noncentrality parameter can also be written

(4.38)

63 = (3" [Q22 — Q2u(I5, Ma2.1 T2 + Qu2 Qg5 V24) " Q2 G5,
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where

(4.39) GG=m-— 9;2192*(H'2*M22-1H2*)_1le*M22-1€21-

Note that when £2; = 0 the noncentrality parameter for LRy, LM,, and W, is the
same as for LR3, LM3, and W3. However, since the number of degrees of freedom for
the first set of statistics is greater than for the second set, the second set yield greater

asymptotic power. If, in addition, Gy = G4, the noncentrality parameter is

(4.40) 6; = 65
= n} [, Ma2.11T2s — Iy, Moo Tou (I1) Mooy Iay + Q22) ™' 115, Moz 1 Tau | m
= 0y [T}, Moz Mau (T15, M2z Taw + Q22) ™' Qa2] m1.

When n; = 0, the noncentrality parameter for LR3, LMj3, and W3 is

(4.41) 0, — 0, = 0
= &9 Ma21 115, [(TT5, M2 112.) ™}
— (Mg, M22.1 124 + 9*2952192*)~1]H'Z*M22-1€21-

Thus LR3, LMj3, and W3 could be used to test H;. The noncentrality parameter for LR;,
LM, and W; is smaller than the parameter for LR, LM,, and W;, but the number of
degrees of freedom is also smaller. A comparison of asymptotic powers may depend on the

significance level.

When n; = 0 and §; = 0, each of the three statistics LR, LM>, and W3 has a limiting
distribution of x? with G x [Kz —(Gy —Go)] degrees of freedom. When 7; = 0 and §; =0,
LR3, LM3, and W; are asymptotically distributed as x? with G¢ x G, degrees of freedom.
Some of these results for the case of Go = G; = 1 have been obtained previously under
the assumptions that the disturbances are independently and identically distributed and
there are no lagged endogenous variables. Furthermore, in this case it is known that
Wu'’s statistic, Revankar’s statistic, and the Revankar-Hartley statistic adjusted by their
numbers of degrees of freedom are distributed as F' when the disturbances are normally
distributed.
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5. Proofs of Theorems

5.1. Asymptotic normality

Proof of Theorem 3. To prove the consistency of ﬁ* we use the fact that

1 -
(5.1) TY’(PZ ~Pz)Y S I'(M — My M3 M )T
= H;,Mzz.lnz. .

From (5.1) we obtain
(5.2) B. -2 (T, Myz1115,) "' Tu Mag .y Iz
Since I}, M32.1112, is nonsingular and II3g = I, B., it follows that ﬁ* -?, B.. Then with
B=(1,-B.)
(5.3) F=(1z2 —l-l—z' (zl+V)B
' ) T
P, M (Myy M) 2V
— My (M M) I, B
=T.

From (3.8) and (4.14) we derive

(5.4) Y!PzY,B, +Y!Z,T = Y!PzY,,

(5.5) ZY.B. + ZI Z;T = 2.Y,.
From these two equations we obtain

(5.6) 1 (YJPZY* Y,,’Zl)ﬁ(f?*—B.) 1 [(YiPzU + =Y, PzZ¢
T\ z2ty., 20z I-r /) T ZiU + 2=2{2¢ '

The matrix on the left-hand side of (5.6) converges in probability to D'MD. The right-

hand side is

N

F(.z'+v')z
/ U+[T( W2+ V) ]51-
Zy

122

3/~
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The first vector in (5.7) converges in distribution to N[0,< ® (D'MD)] and the second
vector converges in probability to D'M¢;. Theorem 3 follows. |

To prove Corollary 1 we want to show that B, is asymptotically equivalent to B,. We

use the following lemma.

Lemma 1. Under the local alternatives given by (4.13), for any 0 < 6 < 1
(5.8) TN 20, i=1,2,...,Go,

where A; are the Go smallest roots of (3.2).

Proof of Lemma 1. From (3.2) we have
Go
(5.9) T; i =min tr B'Y'(Pz — Pz,)YB
under the condition

1

(5.10) =

B'Y'P;YB=Ig,.

(This is a modification of Lemma A.3 in Anderson and Kunitomo (1989a) for a sum

replacing a product of roots.) However,

(5.11) "}}ntr B'Y'(PZ - le)YB <tr B'Y'(Pz - PZI)YB
= tr (B’H'Z' + B'V') (PZ - le) (ZHB + VB)

1 ' 1
=tr U+ —=2 Pz — P U+ —=2
r( + = El)( Z Zl)( = 51)
1 ' 1
Str{U+—=264 ) P (U +—=Z )
r ( \/T 61) Z \/T gl
since Pz — Pz, is positive semidefinite. The minimum on the left-hand side of (5.11) is

over matrices B satisfying (5.10) and the parameter matrix in the second term also satisfies
(5.10). In turn, the right-hand side of (5.11) is not greater than

(5.12) 2tr U'PzU + %tr E12'PzZ¢,.

17



The second term converges to 26} M&; and the first term converges in distribution to a

Wishart matrix with covariance matrix ¥ and K degrees of freedom. Then for 0 < § < 1

Gy
(5.13) T8> M 20

i=1
Because \; > 0,:=1,...,Gy, we obtain (5.1). ]
Lemma 1'. Under the conditions of Theorem 3

(5.14) VT (B. - B.) % o0.

Proof of Lemma 1'. From (3.8) and ¢'Y'PzYc = T we obtain

(5.15) -;—;Y'(Pz — Pz,)YC = -%,—Y'-FZYCA,

(5.16) C'-,}Y"P'ZYC = Ig,,

where A = diag(A1,...,Aqg,). As T — oo, the limits of these equations are
(5.17) H’2,M22.1H2.C =0,

(5.18) C'QC = Ig,.

The solutions C to (5.17) and (5.18) are not unique; they are generated by multiplying
a given solution on the right by orthogonal matrices. Define C = (—C'—:,,a)' and the
orthogonal @ by

(5.19) C= (g") = (g") Q

and the requirement that Cy be lower triangular. Similarly define C = (5{,, 6; ) by
(5.20) Y!(Pz — Pz,)YC =0,

5’?26 =TlIg,, and 50 lower triangular. We can write the last G. components of (5.15)
as

1

(5.21) %Y,,’(Pz ~ Pr)YCQ = ZY'P7YCAQ

18



Subtraction of (5.20) from (5.21) yields
(5.22) %Y,{(Pz — Pz )YVT(C-C) = % Y'PzYCVT QAQ'.

By Lemma 1 and the fact that QAQ’ is positive definite, vVTQAQ' -2 0. Hence
\/T(ﬁ — 5) -2, 0. The lemma follows because §,, = —5*_0—; ! and ﬁ* = —-5,.50' 1 [ |

Proof of Corollary 1. We have

(5.23) VT(T-T) = (%,-z;zl) B -;;z; (Z1+V)VT(B - B) 2»0.

5.2. Tests of overidentification

In order to prove Theorem 4, we give the following two lemmas on the convergence of

two random matrices.

Lemma 2. Under the local alternatives given by (4.13),

1

TE'YP‘ZYE 2,5,

(5.24)

where B is the maximum likelihood estimator of B under the identifiability restrictions.

Proof of Lemma 2. From Theorem 3 B -2+ B as T — oco. By Theorem 2 we have

-1
(5.25) %V’?ZV = -;,-V'V - (%V’Z) (-%z’z) (%zv) 2, Q.

Lemma 3. Under the local alternatives given by (4.13),
(5.26) B'Y'(Pz - P2,)YB -5 Wg, (%, L, 6:),

where Wg, (E,L,Ol) is the noncentral Wishart distribution with L degrees of freedom,

covariance matrix ¥, and noncentrality matrix 6; given by (4.27).
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Proof of Lemma 3. Since B = B +(§ — B), the left-hand side of (5.26) is decomposed
as

(5.27)  B'Y'(Pz—Pz,)YB+ B'Y'(Pz — P2,)Y(B - B)
+(B — B)'Y'(Pz — Pz,)YB + (B — B)'Y'(P; — Pz,)Y(B - B).

Since YB = (ZII+V)B = 72§, + U = Z,T'+ U*, where U* = U + -\-}-5,-Z£1, the first term
- of (5.24) is

(5.28) U*'(PZ — Py, )U*.

By the standardization of By = By = Ig,, we have Y(B — B) = —Y.(B, — B,). Then
[since (Pz — Pz,)Z, = (le — P-z)Zl = 0]

—(B. - B*)]

(5.29) (Pz — Pz,)Y(B — B) = (Pz — Pz,)(Y., 21) { ~
~(I'-T)

(P, _P [—I—ZD —1——(V 0)] [\/T(ﬁ*—B*)]
= (Z“‘ Zl) \/-1—,‘ +‘/T- w) \/T-(f_:[‘) .

By Theorem 3 (Pz — Pz, )Y(§ — B) is asymptotically equivalent to

%ZD + 71T—(V.,0)] (D’%,—Z’ZD) - (\/LT.ZD)' U*,

Note PzPzp = Pzp and Pz, Pzp = Pz,. Then the second term of (5.27) is asymp-

(830)  —(Pz—Py)

totically equivalent to
(5.31) —U*(Pz — Pz,)PzpU* = —U*(Pzp — Pz,)U*.

By similar consideration of the third and fourth terms of (5.24), we find that (5.27) is
asymptotically equivalent to

(5.32) U*'(Pz — Pzp)U* =

Loz (Lyy o In-(=2'z2 1/213 1pzzp) p(Lzz v
VT T K=\T T T

-1/2
(%—Z’Z) ——1——Z'U*.

vT
Since the matrix in brackets in (5.32) is idempotent and of rank K — (G, + K;) = K, — G,
(the rank of Pz — Pzp), we obtain (5.26) by applying Theorem 1 to Z'U*/\/T. ]
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Proof of Theorem 4. From B = CCy! we obtain

(5.33) W! =tr A

—tr (C'%Y"P'ZYC) oy (Py - Pa)YC

=tr (B'Y'PzYB) ' BY'(P; — Pz,)YB

= tr (2‘%§Y'?ZY§E‘%)—12’ :BY'(Py — Pz,)YBT 3
converges in distribution to the trace of a noncentral Wishart matrix with covariance
matrix I, L degrees of freedom, and noncentrality parameter ¥~%6,5~%. Then Theorem

4 follows for W{. Since LRy, LM;, and W, are asymptotically equivalent to W{ we have
Theorem 4. |

5.3. Tests of exogeneity and overidentification

If Y = (Y3,Y2) is normally distributed, the model for the conditional distribution of
Y7 given Y3 is

(5.34) Y1 = Yop + Z11I5] + 221051 + VY,
where

(5.35) p =5, O,

(5.36) 03} = Ty — Mz,

(5.37) H;; = H21 - H22p.

The random matrix

(5.38) VP =Vi-Vsp

is normally distributed with mean 0; each row has covariance matrix
(5.39) Q12 = Q1 — 1205592 .

In (5.34) Y2 is treated as predetermined.
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The set of structural equations under the null hypothesis is

(5.40) Y1B; = Y2pB; + Z1I7* By + Z,115* By + V' By
=Y2pB1 + Zy(Il11 — M12p)By + Z2(My — Ia2p)By + (Vi — V2p) By
=YsBy + Z;I' + U.

This has the same form as (2.1) and (5.34) has the same form as (2.2) with the following

correspondences:
(2.1) and (2.2) (5.34) and (5.40)
Y Y
G Gy
Zl (1,2’ Zl)
K; K, + G,
\%4 ' | %y
Q Q1.2
B B,
T (B2, F)
Zz Z2
Z (Y2,Z)=R
m [
1k
IL,. I3
- 0
T = (Ial - GO)
P B, 71
D)= (0] 4 o [ 1 [
B = + —= *x Bl = r + 5= 511 + H127I1
I1,. 0 vT n VT
2 é21 I3y 0 €21 + 22m

Q= Plim—l— [Y2’Y2 Yz,Z]
T T |2'Y, 2'Z
_ [HszH.2 + Q22 Hsz]
MII., M
Qa2 0]

_ [?;?]M(H.Z,IK)+[ 22 0
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p
D = |II.., Ir, F= 41 0 , Ig,+K,
0 Ig, -G, 0
31
Maz M,y = Magy — Maz.1Tlag (M5 Ma2.1 1022 + 922)—1H'22M22.1-

Finally

(5.41) Mjz.q — Ms2.41l2. (H'z*Mzmnz*) _1H'2*M£*M22-1

corresponds to

-1
* 0 *onl 3k 0
(5.42) M;Z-l - M;2.1H2: (IG Go> [(0’ IGI—GO )HZI,M22'1 ;: (IG Go )]
1~ e

(Oa IG1 —GO)H;;'M;2'1 .

When (5.34) is multiplied by B; under the local alternatives

(5.43) Y; By = YapBy + Z1(I11 — M12p) By + Z2(Tl21 — I12p)B:
+ (Ill - %p)B,
1 1
=Y,B, + Z, T+ —=Z&6+ U — —=V
202 1 ‘\/_T 51 \/T- 2M
= Y2By + ZiT + U,
where
1
5.44 Uy =U+ —=E,
( ) 1 \/T
and
(545) == Z{l + Vrzn_l

under the local alternatives (4.28). Then the limiting distribution of
B\Y{(Py,,7 — Py, 2,)Y1B\ is the limiting distribution of

(5.46) Uy (PR - PRF) Uy

L ur)(LrR) 1 pg)
- (Grorn) (zmm) " [rone - (77)
F F'lR’RF —IF' lR'R)1/2] (lR'R)“l/z(——l——R'U”)
T T T VT )
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This limiting distribution is the distribution of
(5.47) A =C'Q ¥ (Ig,+x — QYF(F'QF)™'F'Q%)Q™%C,

where vec C has the distribution N(vec (3,2 ® Q) and
_ (1, Q22m1
(5.48) G = (,K)Mfl s ( 2 )

Since the rank of 4; is G2 + K — (G2 + Gy — Go + K1) = K3 — (G1 — Go) and S is a
consistent estimator of ¥, we obtain the asymptotic distribution of LR, LM,, and W} in
Theorem 5 by applying the same argument as in the proof of Theorem 4.

To justify the application of Theorem 3 we have to show that

1 /Y]
(5.49) 77 (Z":)Vl* 5 N(0, 2112 ® Q);

that is, we have to show that the conditions of Theorem 3 are met when v; is replaced
by v = v1t — p'va¢ and z; is replaced by (yj, 2;)'. The condition corresponding to (4.5)
is met by the facts +2'Z -2, M and V'V -2, Q. The condition corresponding to

(4.6) is met by (4.6) and max¢=1, .. T ||ve]|> == 0, which is a consequence of (4.8). Clearly
g(v;tlft_l) -_ 0,

(5.50) E(viv1¢ Fe—1) = Q11(t) — p'Q21(t) — D12(t)p + p'Q22(t)p
= Q11.2(t),
1 T
(5.51) T Z Q11.2(%) 2, Q11.2,
t=1

which corresponds to (4.10). From the assumptions of Theorem 5

1 T
(552) —T- ; [Qll.z(t) ® (y;‘;t) (y;t?z;)] —B—-) 911.2 ® Q

Finally (4.8) for v}, follows from (4.8) for v;. This justifies the application of
Theorem 3. |

5.4. Tests of exogeneity against alternative of overidentification

Proof of Theorem 6 (a). First, we consider the asymptotic distribution of LR3. Let
J3 = (0,Ik) be a K x (G — Gq + K) choice matrix and Z = RJ3. Then from the derivation
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the derivation of (5.36), the limiting distribution of B'Y'(P; — Pz, )Y B is the limiting
distribution of U*(Pz — Pzp)U*, which can be written as
(5.53)

1 *! ! 1 ! - ! 7! ( 1 ! - I} ! ( 1 ! *)
— J: = - J3| =R'R)JsD| D' :J;{ —=RUY ).
( ,__TUI R) 3{[J3(TR R)J,g] DD J; T 3 \FE
The limiting distribution of (5.53) is the distribution of

(5.54) A = C'JsM™%(Ix — M¥D(D'MD)™*D'M*)M~1JiC

1y—1 110 0 1 110 0
-ea ot 3y ]e e [§ puaino]@

=

}Q—%C.

Let

(5.55) P, = Ig4x — QF(F'QF)'F'Q3,

wop=

1 (g, 0 0 0 Ig, 0
(5.56) P""‘Q’( 0 M—%) [0 IK-M%D(D'MD)-ID'M%]( o Mm-%)9"
Then |
(5.57) A;=C'Q iPQiCc, i=1,2.

We see that P2 = Py, P} = P,, P,P, = P,P, = P, (since P,QF = 0), and (P, — P2)? =
P, — P. Sincetr P, = G2+ K- (G —Gp+ G2+ K1) =Gy —Gog+ Ky and tr P, =
K — (Gy + K;) = G — Go + K3, it follows that tr(P; — P2) = G2. Hence, A; — A; has the
distribution Wg, (2, G2,03), where

(5.58) 0 =ClQ (P — P)Q 3¢, = 6; — 6.
The limiting distribution of LR3 follows because it has the same limiting distribution as

TYE A —TYE . 1

Proof of Theorem 6(b). Next we obtain the asymptotic distribution of LMj3. In
Anderson and Kunitomo (1989a) the Lagrange multiplier matrix is

(5.59) Ao = ~Y;PzPy, 7,1 B157,

where ﬁl and $ are the maximum likelihood estimators of B; and ¥ under the null

hypothesis. The matrix Ag is asymptotically equivalent to

(5.60) AL = —Y}P;Py, 2,Y1B,S™! — Y} P;Py, 7, Yi(B1 — B))Z L.
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Under the local alternatives (4.13) and (4.28), the first term of AJT/ VT is
Y] Pz Py, z, U / /T and the second term is

0

(5.61) %%’Pzﬁn,zl(ﬁ,}’z,zl) —((% _Il‘;)
_lunp Ly ~(By ~ B.)
...\/T_Y;PZPYZ,,ZI[\/_RF—I-\/_(V J1,0, 0)}\/’[ “F-1 ]

The limiting distribution of VT [ T_T

*] is the limiting distribution of

Lomnr) L ppyie
(5.62) | (TFRRF) \/T(RF) U;r.

Then by the similar argument as in the proof of Lemma 3 the limiting distribution of
vec A}/ VT is the limiting distribution of

1 — 1 —
—=Y; Pz Py, 7, Uy — “-\/——TYJPZPY%&PRFUI‘

VT

1 .

= —=Y,(Pz — Pz Py, z, — PzPrr + Pz Py, z, Prr)U}
VT

1 Fs N5 ) *
= ﬁY;PZPRFUl

= %V{P_zﬁRF (U + %E),

where U} is given by (5.35) and u} is the t-th row of Uf. (We have used the rela-
tions Py, z, Prr = Py, z, and Y)PzPgrr = —Y/PzPpgr.) Since the first term of Y}*
is asymptotically uncorrelated to Py, z, and Px«, the noncentrality parameter is given by
82 = tr(6, 1), where

(5.63)

ol = = 1‘ =5 = s = -
(5.64) 04=¥hm TS’PRFPZE(TY;PZPRFPZYQB) Yz’PZPRF-"-"
—00
1 — —
= plim ==’ — Px+) 2
prar® (o= )
—qrgkri-j; ' (Px+ — Prr) E,

where X* = (RF, PzY3)is a T x (G1 —Go+ G2+ Ky + G3) matrix. The second equality is
based on Lemma 6 of Anderson and Kunitomo (1989a). Since V'V/T — Q in probability
and

1 v Q
(5.65) —fR’PZYz = Eﬁ( 2)PZV2 ( 6’-2),
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we have

Q22
’ !
(5.66) P=plimzxvx*=| FOF O F ( 0 ) .
T—co (R22,00F  Qaa
Similarly,
; 1 [+ (%)
(5.67) (2 = gllm -T-X*’ == ghm —T- Z (Zfl + Vz'lh)
I’ [ I
() s [
= Ix ) Mé + 0 222m
0 i Ig,
Jip’
D' I
= ( 0 )Mfl + ;?z Q22m1,
Ig, )

where J; = (IGz,O,Igz)' is a G2 X (G2 + K1 + G3) choice matrix. We note that |P| =
|D'MD||S222| # 0 if both D'MD and Q are nonsingular. Express RF = X*J,, where
J3 = (Ig-Go+k,,0) is a (G — Gog + K1) X (G — Gy + K1 + G2) choice matrix. Then

(5.68) by = (P — Jo(J3PT2) "1 T5) Ca.

By applying Theorem 2 to (5.68), LMj is asymptotically distributed with Wg, (2, G2, 6y).
Under the local alternatives (4.13) and (4.20), the estimator of 3 is written as

o 1o 1 _\'5 1 ~
5.69 Z:—B'(V*+——-E)P (V*-{-——-E)B.
( ) T 1 1 \/T X 1 \/T— 1
As T — oo, $ > Tin probability, which is the limit of the covariance matrix of the rows

of Uf. Some matrix algebra shows that 8, = 63 and, hence, §2 = 62.

Proof of Theorem 6(c). We now turn to the asymptotic distribution of W3. We

write
1

\/T.Y;,'TD'ZYﬁ = VTJIQB + J\QVT(B — B)

(5.70)
+VTJs (%Y'ﬁzl YB - QB) +VTJs (—%Y'_ﬁzl YB - QB) (B - B),
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where J} = (0,Ig,) is the G2 x (G; + G2) choice matrix. The limiting distribution of
JYQVT(B — B) is the limiting distribution of

(5.71) (2171, a2, 0)(D'MD)"‘D’%Z’U1‘.
Similarly,
(5.72) VT Jy (%Y'—pZIYB - QB) = —\/1——1_:1/2'—1321 U* —m,

and the limiting covariance matrix of vec (——\/1-7-1/2'—132 U* — 17‘1) is ¥ ® 222. Because the last
term in (5.70) is asymptotically negligible and U* = V{*B; + ﬁE, the noncentrality

parameter is

1
(5.73) 43 = 92217'1 - (921 Jl, sz, 0)(D'MD)_1D' plim TZ' =
T—+ro0
+ plim (—1-1/'2'?2 = 17.1)
- T—oo \T

= Qoam — (Q21J1, D22, 0)(D'MD)_1D'M§1.

Furthermore
~ 1x,,, -1 [ J1p' - .
(574) sz(p-]l, IG27 0) (TD A ZD) IG’, Q22 + Q22
0
Jip'
= Q2(pdh, I, 0(D'MD) ™ | Ig, | Qa2 + Qa2
0
Further matrix algebra verifies that the noncentrality parameter is 62. ]
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