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Abstract

It is well known that likelihood ratio statistic is Bartlett correctable. We consider
decomposition of a likelihood ratio statistic into 1 degree of freedom components
based on sequence of nested hypotheses. We give a proof of the fact that the
component likelihood ratio statistics are distributed mutually independently up to
the order O(1/n) and each component is independently Bartlett correctable. This
was first shown in Bickel and Ghosh (1990) using a Bayes method. We present a
more direct frequentist proof.
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1 Introduction

Tt has been now well established that likelihood ratio test under the null hypothesis is
Bartlett correctable. The first general treatment of the distribution of the likelihood
ratio test was Lawley (1956). Despite Lawley’s result, Bartlett correctability of likeli-
hood ratio tests did not seem to be a generally accepted fact for a long time. Later
Hayakawa’s extensive calculation (Hayakawa (1977), Hayakawa (1987)) gave a proof of
Bartlett correctability. Harris (1986) pointed out an incompleteness of Hayakawa’s 1977
proof. Cordeiro (1987) showed that Hayakawa’s 1977 calculation is consistent with Law-
ley’s result. Furthermore Bickel and Ghosh (1990) gave a proof based on Bayes approach.
See Cordeiro (1993) for more recent work.

As in Bickel and Ghosh (1990) in this article we consider decomposition of overall
likelihood ratio statistic into 1 degree of freedom components based on nested hypotheses.
Let © C RP denote the parameter space and consider sequence of nested subspaces of
O:

O, C ©;, C "'C@p:@, with dlm@]'—‘j (1)



Let
Hj Z@E@j

and let X; be the likelihood ratio statistic for testing H,_i vs. H;, j = 1,...,p.
Note that 2log )\; is asymptotically distributed according to chi-square distribution with
1 degree of freedom under Hj;_;. Let the overall likelihood ratio statistic for testing
Hy vs. H, be denoted by A. Then A is decomposed as

A=A A

We give a proof of the fact that under Ho , A, j=1,...,p, are mutually independently
distributed up to the order O(1/n) and they are independently Bartlett correctable. This
was already stated and proved in Bickel and Ghosh (1990) using Bayes method. Our proof
is more direct frequentist proof. Because we have decomposed the overall likelihood ratio
statistic into 1 degree of freedom components, it follows immediately from our result that
likelihood ratio statistic for intermediate composite hypothesis Hy vs. H,, k<m,is
Bartlett correctable as well.

Our result is based on formal asymptotic expansion of the joint characteristic function
of the component likelihood ratio statistics under the null hypothesis. We do not treat
the validity aspect of the asymptotic expansion.

In Section 2 we state our result in terms of characteristic function and in Section 3
we give our proof. By considering joint characteristic function of the 1 degree of freedom
components A; , our proof of the independent Bartlett correctability of A;’s became
much harder than the proof of Bartlett correctability of the overall statistic A . During
the course of our proof in Section 3 we point out added complexities in the form of
remarks.

2 Main Result

Before stating our result we set up our framework somewhat more precisely. Let 6 be the
p -dimensional parameter vector. We assume that independent and identically distributed
observations T, ..., T, areobtained from a density f(z,6). The likelihood ratio statistic
); for testing H;_; vs. H; is defined as

| MaXgeo, [T, f(z,0)
I maxgpeo,;_, H?:1 f(xi» 9),

j=1,...,p. (2)

We state our main theorem in terms of joint characteristic function of A;, j=1,...,p.

Theorem 2.1 Under Hy, Ai,...,A, are mutually independently distributed up to the
order O(1/n) and independently Bartlett correctable. Namely, there exist constants
ci,.--,Cp (depending only on H, ) such that

Em,[exp(iti2log Ay + - - - + it,2log Ay)]

= Ip} (- 2it;) "2 (1+ %( !

1 — 2it,

~1))] +o(1/n). (3)



Note that up to the order O(1/n) (3) is equivalent to

Ep,lexp(iti2log A + - -+ + 1t,21og Ay )]

p
_ _ -1/2
_(11211(1 %t ;) )(1+ Z 1_2t —1) +o(l/n).  (4)
Settingt1=~-:tk:tm+1:~-~‘:tp20andtkH:'--:tm:t,k<m,the

following corollary follows immediately from (4).

Corollary 2.1 Consider the likelihood ratio statistic Agm for testing Hy vs. Hy, k<
m . Aem 1S Bartlett correctable under Hy .

3 Proof

Here we give our proof of Theorem 2.1. We divide our proof into 4 parts. First we
setup necessary notations. Second, we discuss choosing appropriate parameterization to
make our calculation simpler. Third we give stochastic expansion of 2log ;. Finally we
evaluate joint characteristic function of 2logAy,...,21ogA, .

3.1 Notation

Let 6 = (6',...,0°) € ©, be the parameter vector. We use tensor notation and we
index parameter components by superscripts. Although we mostly follow standard tensor
notation as in McCullagh (1987), we shall later introduce some simplifying notational
convention for convenience. Let 6% = (6'°,...,67°) be the true parameter vector, i.e.
0, = {6°} .

We denote higher order derivatives of the log likelihood function and related quantities
as follows. Let

8k
gjl-nﬂk - ng Jk (I 0) W 10g f(.%‘, 0)’ (5)
and

1 n
Ejlmjk = ﬁ Z e]l Tk (xi; 90)’ (6)

=1
lemjk Ejgo [gjl Jk ($; 00)] (7
Zjl,..jk = \/;i('cjy.-jk - le-'-jk)‘ (8)

Since the dimensionality of z;’s is irrelevant, subscript ¢ for z is used to index the
observation.
Denote the higher order mixed cumulants and moments by

Ky iy sf1 oo ok ook, cumg (&, ip, > Ljr.img s -+ + > Chrcimy, ) (9)
Liy iy gtojmy ekt ckmy, = Ee(eil,..imlfjl...jm"'fkl...kmh) (10)

Note that ’s and L’s are functions of #. However we usually use these quantities
evaluated at 6° and in that case omit 6.



Differentiating the identity
0

the following well known relations on the third order and fourth order mixed derivatives
can be easily established:

Lijk + Lij[3] + Lijx = 0, (11)
Kijk + Kijk3] + Kigr = 0, (12)
Lijii + Lijeg[4) + Lijwi[3] + Lijra[6] + Lijg = 0, (13)
Kijkt + Kijial4] + Kij[3] + Kijeal6] + Kigag = 0. (14)

General result of this type is given in Skovgaard (1986).

In addition to the standard tensor notation and summation convention we introduce
further notational convention for convenience. We shall later assume that the Fisher
information is the identity at #°. Because of this assumption we often encounter terms
of the following general form

5”#...1...#...]'..,,

where 6% is the Kronecker’s delta. In this case we simply write

i M .. - (15)

Furthermore in order to discuss joint characteristic function we need to consider terms of
the form Y?_, t;z;z; . Omitting the summation sign we simply write this as #;2;2; .
More formally, we introduce the following notational convention for our proof.

Notational convention on summation Indices appearing more than once as
subscripts are interpreted as running variables and summed over.

3.2 Parameterization

Here we try to choose some canonical parameterization, which makes our derivation sim-
pler. First by considering 8 —8°, 6° can be taken to be the origin, i.e., #° = (0,...,0) .
Then in some neighborhood of the origin we can choose parameterization such that

® = {(00,...,0)},
0, = {(6,0,...,0)|0" :free },
(16)
1 = A (91""701)_1’0) | g, ... 677" : free },
O, = {(6,...,6°)]06"....0°:free}.

Now considering appropriate triangular linear transformation @' — ti67 where t; = 0
for ¢ > j, we can without loss of generality assume that the Fisher information at the
origin is the identity (matrix), i.e.,

Kij = —kij = —Li; = 0ij, (17)
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where ¢;; is the Kronecker’s delta.

Further simplification is possible by considering nonlinear reparameterization in a
neighborhood of the origin. Define new parameter vector 7 = (r1,...,77) by the follow-
ing relation

0 =1"+ %a}ijT’“ + %aélekaT’ +oee (18)
Here the coefficients a’, a}y,... are invariant under the permutation of subscripts.
Note that the Jacobian of (18) is the identity at the origin and (18) is 1-to-1 in some
neighborhood of the origin. Furthermore for our purpose (18) can be taken as a polynomial
with finite but sufficiently high degree and there is no problem of convergence.

The Fisher information in terms of 7 at the origin remains to be the identity and (17)
is satisied. Now we want to choose 7 such that (16) remains to be satisfied. Consider
©,-1 . We want

=0« =0 (19)
for arbitrary values of 6',...,67~! . We claim that a necessary and sufficient condition
for (19) is

a =0 if max(i,..., i) <p. (20)

Note that (20) holds if and only if % can be written as
97 = TP(1 + bymd + bjrITE 4.
Then obviously 77 = 0 = 67 = 0. Conversely, writing
P = 0P(1 + b0 + R
and expanding and expressing the right hand side in terms of 6, 77 can be written as
P = P (1 + ;07 + 0" + ).

Therefore 67 =0= 7" =0.
Next consider ©,_, . We want to ensure that

(6P, 67) = (0,0) & (77", 77) =(0,0). (21)
A necessary and sufficient condition for (21) is

L =0 if max(i,...,i) <p-—1 (22)

112k

If (22) holds,
Pt =711+ A)+ "B

for some polynomials A, B . Hence (rP~!,77) = (0,0) = (6*~1,67) = (0,0) . Conversely,
expressing the right hand side of

Pl =gr (1 4+ A)7 - PB(1+ A)7!

in terms of 0, we see that (7~1,67) = (0,0) = (7771, 77) = (0,0) .
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Arguing recursively, we see that any nonlinear reparameterization of the form (18)
satisfying

al ;=0 for max(iy...,10) <t (23)
satisfies (16). In other words, if max(ig, . ..,4k) > i1 then we can choose the value of
ag 4, for our convenience.

Now by choosing appropriate nonlinear reparameterization, we can make some of the
higher order cumulants vanish. Consider the following relation.

a? _ 96°0¢” a?aa

Evaluating this at the origin we obtain

Cin(@;7) = 5 la(@:0).
Uin(z;7) = Lig(a;0) + afyla(z;0)  (at 7=0,0=0).
Therefore at the origin
COVT:()(EJ']C(.Z'; ’T), &(117, T)) = /‘Ji,jk: + (5ma§‘k.

Lettlng
o _ ot L.
6i0ajk = CLJk - _K;L]k

we can make &, vanish for (i,7, k) such that max(j,k) > ¢. Similarly from

00> 86° 067 920> 968
Ejkl(xﬂ') = g}jgﬁ—a—ﬁ%ﬂv(m? )+ 910k oL Cop(T; 0)[3]
+___aiai._g (.’E 0)
origrkort
we obtain at the origin
COVTzo(gjkl(x; T), éi(a:; 7')) = Kijkl + a;?‘kki,at[?)] + (5iaa§‘kl. (24)

Hence for max(j, k,l) > 1 letting
U = —Kikt — O5xkial3]

we can make £; i vanish.
Arguing recursively, it follows that we can choose parameterization such that

Kiyip.i, =0 if  max(i, ..., ) 2> i1. (25)

The simplification in (25) is very useful for calculation of O(1/n) terms needed to
prove our result.



3.3 Stochastic expansion of log likelihood ratio

Here give a stochastic expansion of 2log) in terms of the random variables Z;, i,
defined in (8). Equivalent expansions are already given for example in Hayakawa (1977)

‘~

or Section 7.4 of McCullagh (1987), but we give the expansion here for reference. Let 6
be the maximum likelihood estimate. Expanding the likelihood equation

9

t=1

around the origin, we get
Aj 1 sk L 5 skt
02Li+0£ij+§09£ijk+699G»Cijkl“'"'- (26)
Let Vi=/mf' . Multiplying (26) by /1, (26) is rewritten as
. 1 , 1
0=27;+ V],Cij + mvjvk»cijk + EEVJV’“VIEUM + op(l/n). (27)

Let £9 be the inverse (matrix) of L;; . Because

1 1
cij = Li]' + —‘—\/.ﬁZU == _611]' + ——\/ﬁZija
L% can be expanded as
i i 1 ia 57b 1 1a $jb sed
L: = -6 — %‘6 &’ Zab - -')’_L(S &% Zachd + op(l/n) (28)

Solving (27) for V* and substituting (28), V* can be expressed (using our notational
convention) as

| 1 1
Vi = Zit—ZyZ+ 5
AT

1 1 3
+ ;ZijaZj + %ZiijjZk + ‘z“ﬁijaZiaZjZk
1

+ %‘(Liﬂcl + LijaLkla[S])ZjZkZl -+ op(l/n). (29)

LijkZ;iZk

Now consider log likelihood ratio statistic. For the moment we look at the overall
likelihood ratio statistic A for Hp vs. H, . Expanding 23 i, (log f(z,0) — log f(zt,0))
around 0 we obtain

) . 1 o 1 L
2log\ = 2V'Z+ViVIL;+ 3~ﬁvzwv’“ciﬂc + TQ——T;V@VJV’“V’&W +0p(1/n)
. o 1 o 1 o
= OViZ — VIVIs, + —=ViIVIZj+ —=VVIVFL,
1 1.
+ 3—nVlVJVkZijk + mV’VJV’“V‘Lijkl -+ op(l/n). (30)
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Substituting (29) into (30), the stochastic expansion of 2log A in terms of Z’s is obtained
as follows:

1 1 1

210g)\ = ZZZZ + %ZUZ,ZJ + gj—ﬁLiijiZjZk -+ ;L‘ZiaZjaZiZj

1 1
+ —Zijk2iZ; 2y + — LijkaZiaZiZi Zk
3n n

+ T;E(Lijkl + LijaLk:la[3])ZiZjZkZl + op(l/n). (31)
Note that (31) is the expansion for the overall log likelihood ratio A, hence the range of
the running variables 4,7,k qa, ..., are from 1 through p. Now the stochastic expansion
of the 1 degree of freedom component A, for H,_; vs. Hy can be obtained from (31) by
the following simple argument. Consider the likelihood ratio statistic Xor for Hyvs. H, .
Because of (16), the stochastic expansion for 2log Ao, is the same as in (31) except for the
range of running variables, which is now 1 up to r. Therefore the stochastic expansion
for
2 log )‘q =2 IOg AOq -2 IOg /\O,q—l

is as in (31), where at least one of the running variables equals ¢. From this argu-
ment it follows that the stochastic expansion of Yf_, t;2log ); , needed to evaluate the
characteristic function, can be written as

1 1
%ZijZithmax(i,j) + ——=Lijx 2 Z; Zxtmax(i,jk)

3v/n
1 1
+ ‘ﬁZiaZjaZithmax(i,j,a) + ':S_nZiijiZjZktmax(i,j,k)
1 1
+ EijaZiaZiZjZktmax(i,j,k,a) + E—TZ

1
+ o L ZiZs ZkZitmaxtinien) + 0p(1/7). (32)

(LijaLwia[3]) Z:2; Zk Zitmax(ijokt.o)

3.4 Evaluation of the joint characteristic function

We now evaluate the joint characteristic function of Ay,..., A, using the stochastic ex-
pansion (32). From now on we omit the pure imaginary number ¢ for convenience and
write 2t;log); instead of 2itjlogA; . By doing this we can use i again for index. We
take the expectation in two steps. First we consider conditional expectation given the
first order derivatives Z,...,Z, and then we evaluate the expectation with respect to

Zl, ceey Zp :
Elexp(2t;log \;)] = E[E(exp(2t;log M) Zy, . .., Zp)]- (33)

For the first step we need the conditional expectation E[Zj;|Zy,...,Z,] to the order
O(n~'/?) . For this we use the following lemma.



Lemma 3.1 Let Y =Y (n) = (Yl, ..., Yy) be an asymptotically normal random vector

with E(Y;) = 0, E(Y;Y;) = 8;j,cum(Y;, Y, ) = n™ ki . Then
1 m—1
E(YulY1, ..., Y1) = Y map(YaYs — ) +o(n”?). (34)

\/—ab 1

Proof.  From multivariate Edgeworth expansion of the density function of Y we obtain

- Ym)
f(yla"wym 1)

FWmlys, - Ym-1) =

= (ym){l + —= 6\/— Z ﬁa,b,c(yaybyc - 5abyc[3])}

max(a,b,c)=m

+o(n~1?).
Therefore

oo
E(ymlts, - Ymmt) = / oo Wil Y1)l + 00 *7%)

—00

- \/_ Z Kom,a,b(YaYp — dap) + 0(n —1/2)~

a,b=1

Now consider Z,...,2Z, and s '(Zij — kr;Zk) With s = Var(Z;j — ki;jZx) - These
p+ 1 variables are uncorrelated and satisfy condition of Lemma 3.1. Therefore

E(S_l(Zij — lik,ijZk”Zl, ey Zp)
1
= —2-Cllm($_1(Zij - KJk,ijZk), Za, Zb)(ZaZb — 5ab) + O(TL#1/2)

5 (i — Kns o) (ZaZy — Ba) + 0(n™2),

1
2y/n

or
1
(Z”‘Zl, ce ) Kk UZk + —= (K'z] ab — Kk,ijFk,a b) (Z Zb 6ab) + 0( 1/2)' (35)
2\/n

For our purpose the conditional expectation appearing in terms of the order O(1/n)
can be evaluated as if Z;; j are normal random variables. Therefore for example it
suffices to write

E(ZijZk”Zl, e ,Zp)
:E(Zilel,...,ZP)E(ZM\ZI,..., )+COV( l])Zkll‘Zl,-'-;Zp)
= Ka.ijZakb g1 + Kijkl — KaijKakt + 0(1). (36)

For the last equality we used the usual formula on residual variance.



Now we can carry out the calculation of the conditional expectation of the joint char-
acteristic function.

E(exp(2tilog \;)| Zy, ..., Zp) (37)

, 1 1
= Elexp(t:Z:Z;){1 + —“\/ﬁZijZithmax(i,j) + mLiijiZjZktmax(i,j,k)
1

+ %Zz’jZiZJ‘Zklethmax(i,j)tmax(k,l)

1
+ -1-8—nLiijiZjZkLtthlZmZntmax(z‘,j,k)tmax(l,m,h)

1
+ 3—nZijZiZjLklmZkZzthmax(i,j)tmax(k,l,m)

1 1
+ EZiaZjaZithmax(i,j,a) + 3_nZiijiZjZktmax(i,j,k)

1 ‘ 1
+ "T;ijaZiaZiZjZktmax(i,j,k,a) + m(LijaLkla[3])ZiZjZkthmax(i,j,k,l,a)
1
+ mLijklZiZjZkthmax(i,j,k,l)} | Z1,...,Zy] +0(1/n) (38)
1 1
= exp(t; Z; Z;){1 + mLiijiZjZktmax(i,j,k) + ﬁﬁk,ijZiZjZktmax(i,j)
1
+ %(Kij,k,z — Kmaijbmi ) (ZeZ1 — Ont) ZiZjtmax(i,g)
1

+ %ZiZjZkZl(/ﬂa,z‘jl‘db,uZaZb + Kijki — Ka,ijKakl)tmax(i,j) tmax(k,l)

1
+ E‘ﬁLijklehZiZjZkZlZmthmax(i,j,k)tmax(l,m,h)

1
+ %Zz'ZjZkZzZmlﬂa,z‘jZathmtmax(i,j)tmax(k,z,m)
1
+ ;l'Zithmax(i,j,a)(Kfc,ia’{d,jaZch + Rag,aj — K‘c,ia’{c,ja)

1
+ %ﬁa,iijaZiZjZktmax(i,j,k)

1
+ 5ija/fb,iaZiZjZkthmax(i,j,k,a)

1
+ M(LaijLakl (3))Zi Z; Z Zit maxs j ke 1,0)

1
+ Té‘ﬁLijklZiZjZkthmax(i,j,k,l)} +o(1/n). (39)

It remains to take expectation of (39) with respect to Z;,...,2, .

Remark 3.1 Compared to the proof of Bartlett correctability of just the overall likelihood
ratio statistic X\ , we have added complezity in (89) due to the fact that t ’s are indezed by
the mazimum of the individual indices. Therefore we need to keep track of the mazimum
value of the indices in the calculation below.

10



Now we rearrange (39) as follows. Let

1
Al — —L: 232 ‘Zktmax(i j k)
3\/,,7} 1/] J 5T ?
A 1 t
9y = —\/——Kk’ijZiszk max(i,j)»
n
1
Bi = o (Kijkt — Kmigtimt) (2621 — Okt) 22 tmax(s.j)
B, _ %ZiZjZkzl (Kzij,kl — Kva,ijlﬁa,kl)tmax(i,j)tmax(k,l))
B, = & Zitmax(ij.a) (KevakdjaZeZd + Kaiaj — Kejakega)s
1
By = g KaijkZaZiZiZkbmax(ig k)
1
B; = ;ija'fb,mzizjzkthmax(i,j,k,a)v
By = oo (Luijlanl3) 2220 tmaxti ki)
1
B = TQ—HLU‘MZizjzkzttmax(i,j,kvl)' o

Then we can write
Elexp(2t;log \; | 1, ..., 2p)]
= exp(tizizi + Ay + A9) X (1+ By + By + -+ Br) +o(1/n).  (41)
We combine (41) with the Edgeworth expansion of the density of z,...,2, and take

the expectation. The Edgeworth expansion of the the density of z1,...,2, can be written
as follows (see Takemura and Takeuchi (1988)).
1 1 1
flz1y.00h2p) = W exp[— z:Z i 6\/_Kl’7 KZiZj %K + \/ﬁql(z)

1 1
+ %‘(/ﬂ,j,k,l - lii,j,af‘dk,z,a[?)])zizjzkzl + EQz(Z)] +o(1/n), (42)

where ¢, is linear in zy,...,2, without the constant term and ¢, is a second degree
polynomial in zy,...,2, without the linear terms. Concrete forms of ¢; and ¢, are
irrelevant for establishing our result. Denote

1

Cl - 6\/—l{7' k21252 k + \/ﬁ(h (Z),
1 1
02 = 24n (ﬁzj kl ™ lii,j,afik,l,a[?)])ZiZjZkzl + qu(z)_ (43)

We combine (41) and (42) and our problem is reduced to evaluating the following
integration term by term:

1
E(exp(2t;log \;)) = / ./exp(——2—(1 — 2t) 2z + A1 + A2 + CY)
{1+ By + By+ -+ Br + Co}dz; ...dz, +0o(1/n). (44)

At this point the following simple recursive argument is useful.

11



Lemma 3.2 In order to prove Theorem 2.1 it is sufficient to prove that all the O(1/n)
terms containing t, in (44) do not contain t;,i < p, and are linear (i.e. first degree
polynomial) in 1/(1 — 2tp) .

Proof. If the assertion is true, then for some ¢, we can write

E(exp(2t;log \;)) = [[(1 — 2t:)~/*
Cp 1

(

h(ty, ..., t,— -~
x((l, 7p1)+n1_2tp

— 1)) +o(1/n).

Now put t, = 0. Then because of the recursive nature of the subspaces in (16), we have
exactly the same problem with dimensionality reduced by 1. Therefore

1
1—2t, |

~1).

Cp—
h(ty, .. tpe1) = B(t1, .ty 2) + ”nl(

This recursive argument implies (4).

Remark 3.2 For our proof we have to eliminate not only the terms of the form 1/(1 —
2t,)F, k> 2, but also terms of the form (1—2t;)/(1—2t,) . This is an added complezity
n conszdemng joint characteristic function of the component likelihood ratio statistics.

For the term by term integration we just use

/oo 1 kex (_1 21 - 2t))dy = (—5_3%—)((’;{%))5 k: even, (45)
AN Tlo k: odd.

Our proof now consists of exhaustive verification of each term of (44) that each term
of the order O(1/n) containing ¢, is linear in 1/(1 — 2t,) .

3.4.1 Terms containing third order cumulants

We begin by considering the term exp(A4; + A; + C1) . Using
Lijk = Kijk = —Kijhl3] = Kigk

we obtain

A+ A+ C = —~—=HKi 4, kzzzjzk(l 2tmax(i,j,k))

6f
6\/’“(1{1 Jk[g])zzzjzk(l max(zy k )
1

2\/-—/‘!719 ljzl'z]zk(l 2tmax(z,])) %ql (Z)

1
= D1+D2+D3+—\/—1—1Q1(Z),

12



where

1
D, = m/‘ﬁi,j,kzizjzk(l - 2tmaX(i,j,k))’
1
D2 = mﬂk,ijzizjzk(l - thax(i,j,k))a
1
Dy = ~2—\/~ﬁ~f€k,ijzizjzk(1 - thax(i,j))'

Then we again expand exp(D; + Dy + D3 + q1(2)/v/n) as

14+ Di+aq(z)/v/n+ %Z(Diﬁ + Z D;D;
=02 C D 500 (2 + o1/,

Note that ¥ D; + ¢i1(z)/+/n is odd polynomial in z and this vanishes by integration.
Furthermore the index for ¢ agrees with one of i, j, k& and hence in view of (45) integration
of terms ¢;(z) ¥ D; yields only linear terms in 1/(1 —2t,), a=1,...,p. Also ¢(z)?
is quadratic in 2z and yields only linear terms in 1/(1—2¢t,), a=1,...,p. We see that
qi1(z) is irrelevant for our argument. We note here that ¢,(z) is quadratic as well and
irrelevant for our proof.

Therefore integration of only 6 terms (D;)?2, (D2)?, (D3)?, DDy, Dy D3, D3D; require
- close inspection.
These terms consist of basic terms of the form

ZiZjZk(l - QtQ)ZlZmzn(l - 2tﬁ),

where « € {i,7,k} and B € {[,m,n}. We only need to consider the cases where each
distinct indices appears even times.

Suppose that « # 3. Then both « and  have to appear at least twice. In view of
(45) these lead to terms linear in 1/(1—-2¢,), a=1,...,p. If o= and if there are at
least 4 «’sin {i,7,k,1,m,n} , then again only terms linear in 1/(1—-2¢,), a=1,...,p,
appear.

We see that the only essentially difficult terms to check are of the form

(1-— 2ta)2(za)2zazbzczd,

2 out we have

where a,b,c,d # « . Integrating (z,)
(1 = 2to)za2b2c2d (a,b,c,d # ). (46)

We have to verity that terms of this type in D;D; cancel somewhere in the entire ex-
pression of the joint characteristic function.
Consider (Dl)z, (D2)2, (D3)2, DIDQ, D1D3, D2D3 in turn.

1. (D1)2 )
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1

(D) = ,72—”Ki,j,kf@z,m,hzizjzkzzzmzh(1 — 2tmax(iik)) (1 = 2tmax(tm,h))-

We need to consider the case max(s, j, k) = max(l,m, h) . If these are less than p,
then ¢, does not appear. Therefore we can restrict our attention to the following

term, which remains to be canceled.

1 ..

S—nnp,i,jnp,k,g(l — 2tp) 22252 (i,4,k,1 < p). (47)
(D2)?:

Noting k;,; = 0 by (25), similar reasoning applied to (D)?/2 yields the following
term yet to be canceled.

1 .
871%’“%’“(1 — 2t,)2i252K2 (4,7, k, 1 < p) (48)
D1D2 .
Similarly DD, yields
1 ..
Z;L-/ip,i,jlﬂ?p,kl(l — QtP)ZiZjZkZl (Z,j, k,l < p). (49)
(Ds)?:
Now let us take a look at (D3)?/2. In
1 1
-2—(D3)2 = S—nlik,ij/‘&z,mhzizjzkzzzmzh(1 — 2tmax(ij)) (1 — 2tmax(m,h)) (50)

we need to consider the case max(i,j) = max(m,h) = a (say) . If a = p then
kiij = 0 and the term vanishes. Therefore a < p and relevant terms in (50) are

1
8—n’€k,aanl,aazkzl(za)4(1 - 2ta)2
(k,l <panda<p)
1
+'Z—ﬁﬁk,ai’il,amzkzlzizm(za)2(1 - 2ta,)2

(k,l1 <pandi,m<a<p).

t, appears only from the case k== p and we have

1
‘Sz’ﬂp,aa"ﬁp,aa(zp)z(za)zl(l - Qta)2 (a < p)
1
+—2——T—Lnp,am,,,amzizm(zp)Q(za)2(1 — 2t,)? (i,m < a < p).

Integrating z, and z, out yields

3 1

8—n’fp,aa’€p,aaf_—2tp (a <p)

+~1-/£ K amZi% 122 (i,m < a <p)
2n p,at’vp,am~i ml . 2tp b .

14



The first term is linear in 1/(1 —2t,) . Therefore remaining term yet to be canceled

is
1 1-—2t, )
—Q—ﬁnp,amp,amzizm————l TS (i,m < a < p). (51)

9. D1D3 :
D\ Dj is irrelevant. Actually in
K;i,j,k:zizjzk(l - 2tmax(i,j,k))Kl,mhzlzmzh(l - 2tmax(m,h))

we set max(m,h) = max(i,j,k) = a. If a =p then k;,, = 0. On the other
hand if a <p then ?, does not appear.

6. D2D3 :

Similarly D, D3 is irrelevant for our proof.

Summarizing above examination gives the following list of terms yet to be canceled.

1 .
[(D1)2] "%K'p,i,j’{'p,k,l(]- - 2tp)zizjzkzl (Za Js k‘, I < p)7 (52)
1 .
[(DZ)Z] 'S_nﬁp,ijﬁp,kl(l - ztp)zizjzkzl (Za]a kvl < p)a (53)
1 .
(D D,] E/ﬁp,i,jﬁp,kl(l — 2tp)2i2j 262 (1,7,k,1 < p), (54)
1 1—2t, .
[(D3)?] 57, paifpamZiZm T o (i,m < a < p). (55)
P
These terms have to be canceled by terms in Bi,...,B; and C3. We now pick up
terms from By,..., By, Cy, which contain third order cumulants.
1. Bl .
Consider
1
*%fim,ijfﬁm,k,z(zkzz — Ok1) 2iZjtmax(ij)
1

= —%Klm,ijfim,k,tzkZzZz‘thmax(i,j) + é’T—l/im,ij/fm,k,kzizjtmax(z‘,j)

The second term on the right hand side obviously yields only linear term and can
be ignored. In the first term, if max(¢,j) = p then K, ;; = 0. Therefore we only
need to consider max(s, j) < p. The only case where t, appearsis k=10=p and
integrating z, out we are left with

1 tmax(z’,j)

QTLK'm’in/m’p’p ot 2% (m <pandi,j<p). (56)

2. BQI
B, is irrelevant. Actually if ¢, appears from
zizjzkzl"'Ca,ijRa,kltmax(i,j)tmax(k,l)

then either max(i,j) = p or max(k,l) = p and hence Kqijkqm =0.
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ﬁ 242 Zczdtmax(i,j,a) Kejgabd,ja — ﬁ 2;Zjtmax(a.i,j) Re,iaKe,ja-

In the second term if max(a,i,j) = p then Kejekcjo = 0, otherwise if max(a,1, 7) <
p then t, does not appear. Therefore the second term is irrelevant. Consider
the first term. Again if max(a,i,j) = p then Kejokajo = 0. Therefore let
max(a,i,j) < p. The only possibility where t, appears is when ¢ = d=p.
Integrating z, out, the remaining term to be canceled is

1 tmax(asi.g) -
7 fopaifipaj rlnaj (12;; ZiZj (a,4,5 < p) (57)
4. B4Z

B, does not contain third order cumulants.

5. B5I

1
;L—ijafﬂb,mzi 252k Zbbmax(i,j,k,0)

If a=p then Ky = 0. Therefore let a < p. If max(i,j, k) <p then because b
has to be equal to one of i,j,k, t, can not appear. Therefore the only remaining
possibilities are either b=j=p>i=4k or b=k =p >i=j. Therefore we have

2
ﬁLam"fp,aj (zp)Q(zj)ztp-

Integrating z, out we obtain

1 2,

gl'jg;Lam’fp,aj(zj)Q-

Since Lpj = —Kpaj — Kpa,j the remaining term to be canceled is

1 2%, ,

- E(Kp,aj”p,aj + ”p,aj“p,a,j)l Y (2;) (a,7 < p)- (58)
P
6. BG .
Bg is the hardest term to look at. If max(z,7,k,l,a) <p in
1
m(LaijLakl[3])Zizjzkzltmax(i,j,k,l,a)

t, does not appear. Therefore let max(s, j, k,l,a) =p.

First consider a particular case, where ¢ = j = k =1 =p and a < p. Then
Lopp = —Kapp and we have

3
12n

1

LappLapp(zp)4tp = R"Ja,p,p’ia,p,p(zp)4tp-
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Integrating 2, out, the remaining term to be canceled is
3 t
Em’ia,p@“amm (a < p). (59)

Next consider the case where not all of 4,7, k,l are equal to p. The relevant
subcases are of the following 2 types: 1) 4,7,k,0 <p, or 2) two of i,7,k,1 equal to

P .
For the subcase 1), we need a =p for t, to appear. Then
Lyij = —Kpjij = Kpigr Lokt = —Kpkt = Kpk

and the remaining term to be canceled is

1 1
——(LaijLari[3) zizjzn ity = ——(Kpij + Kpig) (Kpki + Kpk1)2i2i 262ty
12n 4n
(i,7,k,1 < p). (60)

For the subcase 2), let k,l <i=j=p and a <p. Then

Lopp = —Kapp, Lakl = —Kakt — Kkal — Kk — Kak,l

Lapk: = —Kp,ak — Ka,p,k» Lapl = —Kp,al — Ka,p,l
Therefore for this case

1
19n (LaijLakl[3])zizjzkzltp - 12n{ﬂa,p,p(’€a,kl + Kk,al + Kil,ak + K'a,k,l)
+ 2(Kp,ak + Kapk) (Fpal + “a,p,l)}tp(zp)zzkzl

Considering the symmetry, there are 6 possibilities of this type. Therefore the
remaining term to be canceled is

1t
2n1 - 2t,

+ 2(Kpai + Kapi) (Kpaj + Fapg) j22 (.7 <panda<p). (61)

{Fapp(Fais + Fiaj + Kjai + Kaig)

We saw 3 types of terms (59), (60) and (61) to be canceled from Bg .

B;:
B; does not contain third order cumulants.
Cy:
Consider .
—~%(ni,jﬂnk,l,a[?)])zizjzkzl.
If i=j=k=10=p and a < p, then integrating z, out we have
3 1

3n p,p,a"“p,p,am (a < p). (62)
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Otherwise for t, to appear two of %,7,k,1 have to be equal to p. Let i = j =

p>k,l and a <p. Then we obtain

1 1

- (K’P,P»GK’kJﬂ + 2Klp>l’a"€pakya')zlzk 1 2t °
ey

< p).
Sim (k,l <panda<p)

Considering the symmetry, there are 6 possibilities of this type. Therefore the

remaining term to be canceled is

1 .
- E(’%,p,a“ima + 2’§p,i,a’€p,j,a)zizji‘~7tp- (4, <pand a <p) (63)
We have enumerated all the remaining terms containing third order cumulants. Our
list of these terms (including terms coming from D;D; ’s) is as follows.
9 1 .
[(D1)7] g fvadpii(l = 2)zizizen (6,5, k, 0 <p) (64)
1 .
[(D2)?] 8—n/€p,ijf€p,kt(1 —2ty)ziziza (i,5,k,1 <p) (65)
1 .
[DlDz] Zﬁnp,i,j’l{’li,kl(l — 2tp)z¢zjzkz, (Z,j, k,l < p) (66)
1 1-2¢, )
[(Ds)?] oy, FpaifipamZiZm T T (i,m < a < p). (67)
1 tmax(i g o
[B1] ‘%Rm,ijﬂm,p,p%izizj (m <pandi,j<p) (68)
1 tmax(a,iyj) »
[B3] ;K/p,ai"‘:p,ajﬁzizj (a’ 1,) < p) (69)
P
1 2%, .
[Bs] ——(Kpajkpai T Kpajhpai) 7o (%) (6,7 <p) (70)
n 1 —2t,
B 3 ty
[Bel (T o jpreneFens (@) (71)
1 .
[Be] Z;}:(K/p,ij + Kpig) (Kpkt + Kp ki) 225262ty (4,5,k,1 < p) (72)
1t
[B6] —t Ka,p, (Ha,i' + Ki,aj + K j,at + ’ﬁa,i,')
ml ~ 2tp{ p,p J J J J
+2(Kpai + Fapi) (Kpaj + Kapy) 725 (1,5 < pand a < p) (73)
3 1
(&) B e (a < p) (74)
1 1
[Co] ”Zfﬁ(’fp,p,a"“i,j,a + 2“p,i,a“p,j,a)zizj’l’*_‘25
(1,7 <panda<p). (75)

Adding together (64), (65), (66), and (72), we see that ¢, vanishes.
Sum of (71) and (74) reduces to a linear term in 1/(1 — 2¢,) .
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Adding (75) to (73) cancels some terms in (73) and (73) is reduced to
14
onl- 2t,

+2(Kpaikipaj + Epaikapj + Kapikpaj) }2i%; (i, <pand a < p)

{Kapp(Kajij + Kiaj + Kjai)

Because only the the case 7 = j matters and k;4 = 0, (73) can be further reduced
to

14

2n1 - 2t,
Changing some indices and letting 7 = j in (67), (68), (69), (70), our reduced list of the
remaining terms is now

(Kappkaii + 26p.aikipai + 4fcp,ama,p,i)(zi)2 (1t <panda<p). (76)

[(D3)?] e g (i<a<p) ()
[B.] —%nml—fﬂ—(z) (a <pandi<p) (78)
(By) L eyt D ()7 (0,3 < p) (79)
n 128,

5] i + Ry g () (a<n) (80

[Bs] % ] jpz . (KappKayii + 26p,0ikpai + 46p aikapi) (2i)°
(i <pand a < p). (81)

Rewrite (78) as ‘
‘%Ha,iiﬁa,p,pm(ziy + %’{a,ii/{a,p,pi:—;z;(zi)z

The second term becomes linear in 1/(1 — 2¢,) when z; is integrated out and can be

ignored. Add the first term to (81). Then the first term within the parentheses of (81)
no longer contains ¢, . Now add (80) to (81). Then (81) is reduced to

1 ¢ .

_ﬁffaﬂw%m%f (1,a < p).

Here we ignored the case a = p since then k,, =0.
Now our further reduced list is

1 ,1—2t,

[(D3)2] %’{p,aiﬁp,ai(zi) 1_ 2tp (Z <a< p). (82)
[Bs] llf il M-tmxw(zi)2 (a,1 < p) (83)
n PP ot ’
1 ¢ ,
[Bs] "ﬁl“_fgt_’%,ai’%,ai(ziy (4,a <p) (84)
P
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Write

1 1
tmax(a;i) = tp T 5(1 — 2tp) — 5(1 — 2t max(a,i))

in (83). Then the first term cancels (84). The second term is irrelevant. Now consider
the third term:

. -—1—KZ " '(Z')Zl - 2tmax(a,i)

2n p,at’Vp,at (2 1 . 2tp N

If i < a then max(a,i) = a and this cancels (82). We are left with the case 7 > a.
Then (85) is

(85)

-2,

2n

which is linear in 1/(1 — 2¢t,) after integrating z; out.
We have now checked all terms containing the third order cumulants and verified that
these terms yields only terms linear in 1/(1 — 2t,) .

3.4.2 Terms containing fourth order cumulants

Verifying terms containing fourth order cumulants is much simpler than the last subsec-
tion. Picking up relevant terms we have the following list of terms.

(B] %ﬂij,k,l(zkzl — Ok1) 2%t max(i,j) (86)
[B,) 51?;ZizjZkZtKlz‘j,/cltmax(i,j)tmax(/c,z) (87)
[Bs] %Zizjtma.x(i,j,a)"fai,aj (88)
[Br) ﬁLijklzizjzkzltmax(i,j,k,l) (89)
[C2] ﬁ%ﬁi,j,k,lzizjzkzl (90)
Usin
: Lijri = —kijig[4] — Kijpl3] = Kijra[6] — Kigag

expand (89). If max(i,j,k,1) <p in (89), then ¢, can not appear. Therefore we only
need to consider the case max(i,j,k,l) = p in (89). Then there are at least two p’s
among 1,7, k,l and k;jx.[4] = 0. Therefore in (89) we can let

Lijii = —Kijr[3] — Kijuea[6] — Kij (max(i, 7, k,1) = p)
and reduce (89) to the following form

1
——Kij klZiZ'Zkth — —Kijk lZiZ'Zkth - TRy, "k,lZiZ'ZkZ[t
in s J P m DKy J P 12n. J J P

(max(i, 7, k,1) = p). (91)

Now we examine cumulants &; i, Kijey and Kk in turn.
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1. Kijk,d
Adding the last term of (91) to (90) we have

1

mﬁi,j,k,zzizjzkzl(l —2t,)  (max(i,4,k,1) =p).

Integrating z, out, this term yields only linear terms in 1/(1=2t,), a=1,...,p.
2. Kijk,l :
First we take care of d;; in (86). Consider
Kijik b Zi %t max(i,j)
This obviously yields terms linear in 1/(1 — 2t;) .
In (86) and (91) we are left with

1 ..
%Kij,k,lzizjzkzt(tmax(i,j) - tp) (max(i, j, k, 1) =p).

The right hand side is non zero only if p > max(i,j) . Because the indices have to
appear in pairs, then p > i = j . Therefore we have

1
2n

Kiipo(ti — tp)(2:)%(2)” = —;l%ﬁu,p,p((l = 2t;) — (1= 2t,))(2)*(2)".

Integrating z and z, out we get terms linear in 1/(1 —2¢;) and terms linear in
1/(1—2t,) .
3. Kijkl -
Consider
1 1 1

%/@ij,kzZiZjZkZztmax(i,j)tmax(k,z) + ;i'{/ai,ajzizjtmax(a,i,j) - Enij,klzizjzkzltp-

Kpppp appears only when i = j =k = [=p. In this case by integrating z, out
the coeflicient for &y, is

3
4n(1 — 2t,)?

tp tp

(2(15;,,)2 - tp) + n(l _ Qtp) - 4n(1 - 2tp)

which is linear in 1/(1 — 2¢,) .

Kppgi With 7 < p appears in the form

1 1
;f@pp,ii(z,,)z(zi)%,,ti - %’fpp,z‘i(zp)z(zi)gtp'

Integrating this out, the coefficient for rpp,;; 1s

l tpti 1 tp _ tp
n(l—2t)1—-2t,) 2n(1—2t;)(1—2t,)  2n(l—2t,)

21



which is linear in 1/(1 — 2t,) .

Kpipi With 7 < p appearsin the form

2 1 1
‘T;“pi,pi(tp)z(zi)Q(zp)Q + E’“pi,pi(zi)ztp - Eﬁpi,pi(zi)Q(zp)Qtn

Integrating z; and 2z, out, the coefficient for p;p; 18

2(tp)° b Ly

W= 2t) (=26 n(l—26)  n(l—2t)(1— 25

and this term vanishes.

We have now exhausted all relevant terms and completed our proof of Theorem 2.1.
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