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. Introduction

The proliferation of 'logit' papers has characterized marketing science literature in the
last decade and a half. Explicitly or implicitly, an individual consumer's decision was
assumed to be compensatory there. By compensatory we mean that a consumer's
evaluation of an object is such that a low score with one attribute (e.g. too high a price)
may be compensated for by a high score with another (e.g. very easy to use). Although
there is reasonable theoretical and empirical evidence that a compensatory model is a
good approximation to non-compensatory decisions under various conditions[Dawes
and Corrigan(1974); Johnson and Meyer(1984)], there is as strong an argument
primarily by consumer researchers that individuals do actually employ non-compensatory
rules very frequently[Bettman and Jacoby(1976), Payne and Ragsdale(1978)] and that
the process can't be approximated by a compensatory model under some conditions, e.g.

negative correlation among attributes[Johnson, Meyer and Ghose(1989)].

Given the state of the art in the discussions of compensatory vs. non-compensatory
decisions, the unbalanced popularity of compensatory models in empirical marketing
studies is difficult to justify solely on its ability of 'approximation’. At a risk of being too

wild, the authors suspect that an easy accessibility of the estimation technologies for a



compensatory model like logit drove researchers to apply it without scrutinizing the

legitimacy of its use.

The scarcity of the applications of non-compensatory models doesn't imply that non-
compensatory processes have been studied very little. Far from that, we have seen a
considerable amount of efforts particularly in theoretical developments. Lexicographic,
conjunctive and disjunctive models are among the simplest and best known
[Einhorn(1970)]. Another class of models are developed to deal with sequential
elimination processes, including Tversky's Elimination By Aspects(EBA) model
[Tversky(1972)]. A simplest deterministic version is known as a gatekeeper model that is
actually a sequencial extention of a conjunctive rule and was proved to account for
supermarket buyers' buying decisions better than a linear rule [Montgomery (1975)].
Other interesting elimination models are Pretree model[Tversky and Sattath (1979)] and
Hierarchical Elimination Model (HEM) [Hauser(1985)]. Among more recent
developments is Elimination By Cutoff (EBC) model [Manrai and Sinha (1989)] that is

an extention of EBA to a product map setting.

Unlike the theoretical developments, the statistical estimation technologies for non-
compensatory models as accessible and as easy to use as ML logit are surprizingly
underdeveloped. Of course, there are some models equipped with estimation methods,
like an MLH model by Gensch and Svestka(1985) but they either model a very specific
decision strategy, require a complicated estimation algorithm or both. To the authors'
knowledge, transportation research is the only field where statistical models of non-
compensatory processes are developed and applied relatively widely. There, such models
are used to describe and predict the screening of alternatives for the formation of a
choice set. A random constraint model by Swait and Ben-Akiva (1987) is an example

and shares some inspiration with a conjunctive individual version of the present model.



The primary purposes of this paper are first, to present a simple and flexible model of a
non-compensatory choice together with an easy estimation procedure, and secondly to
demonstrate experimantally and empirically that our non-compensatory model works
better than a compensatory (logit) model in terms of fit and external validity under

certain conditions.

The next section presents a set of models. Section 3 discusses the maximum
likelihood{ML) estimation procedures of the model and presents some results of Monte
Carlo simulations on the small sample properties of our ML estimators. The pilot
application results are introduced in Section 4 and summary and conclusion is given in

the end.

2. Model

The proposed model is a model of noncompensatory choice including conjunctive and
disjunctive ones. It is a model of an individual as well as of a heterogeneous aggregate
population. It basically deals with GO-NO type binary data but is good for any type of
data that could be transformed into a binary type, i.e. ordered category data. As a starter,
a base model of conjunctive choice of an individual using binary data is presented.

Extentions from the base model are discussed subsequently.



A Base Model: An Individual Conjunctive Model for Binary Data

A base model is a model of an individual making a conjunctive choice. The outcomes are
GO and NO given an object with / dimensional attributes. The conjunctive rule assumes
that one is GO with object j if all the attributes of j clear his/her bottomline and is NO
otherwise. Let y,, be a binary dependent variable taking 1 if individual & is GO with
object j and 0 otherwise, x; ith attribute of object j and 7 ; threshold of individual & with

attribute i. The conjunctive(satisficing) rule requires that

1) Ve =1 iff x; > 7, foralli

=0 otherwise.

For the time being, x, is assumed to be positive, continuous and positively related to the
dependent variable. Also subscript & is omitted for simplicity in discribing the individual
version. Now z, is assumed to be a random variable whose randomness comes from
intrinsic temporal variation in the individual's threshold level. When the model is
aggregated over individuals, we might naturally be able to incorporate heterogeneity in
the mean level of thresholds into the randomness of 7 ;. This aggregation issue is

elaborated on later.

The randomness of 7, renders y; random. The probability of y, = 1 is now a joint

probability of x; - 7, > 0 for all IR

(2) Prob.(y;=1 y=1I, Prob.(x;, -z, >0 ).



Assuming that 7, isiid. logistically distributed with mean7 , the probability of x;;

exceeding 7, is given as;

3) Prob.(x;>7)= Py=1/ {1+exp-A(x;- 1)}

Inserting this into (2) gives

4) Prob.(y;=1)=1I,P;= T, 1/{1 +exp-Bx;- 1)} =P,

While ¢, is the mean threshold for 7 th attribute, A, is inversely proportional to the size

of the variance.

To give a deterministic flavor to our construct of stochastic threshold, we might define

"95 % threshold", g, as follows;

%) 95=1/{1+exp- B, (o5~ 1, )}

Obviously, 7 is the minimum level of attribute 7 for satisfaction 95 % of the time. The
concept of 95 % threshold is graphically illustrated in Exhibit 1.

(Exhibit 1)
So far the attributes are assumed to be continuous. Although the concept of 'threshold' is
only relevant to the continuous attributes, one might like to include discrete variables to
explain satisfaction. Let z,; be a dummy variable taking 1 if object j has a discrete
attribute g and 0 otherwise. The probability that object j is satisfactory with respect to

attribute g , P,;is specified as,

© Py= {1/(1+exp-B)} z;+ {1 -1/ (1 +exp-5)}(1 - )



Including these terms for discrete attributes, P;in eq.(4) are rewritten as,

7 P,=(LP)I,Py.

For the brevity of exposition, the remaining discussion only deals with the case where all

the attributes are continuous.

Aggregating Heterogeneous Population

One of the beauties of the present model is its excellent aggregation properties. Unlike
the linear logit formulation that requires various complicated and often ad hoc
procedures to cope with heterogeneity in parameters including generalized probit
[Hausman and Wise(1978)] and cluster-wise logit [Kamakura and Russell(1989)], it is

structurally straightforward with the present formulation.

Assuming that the mean of an individual is distributed logistically around the grand mean,

z 4 is decomposed as;

(8) Ty =ttt Vit &y

v, and ¢ , being independently logistically distributed with mean 0, the unconditional

probability that object j is GO is given by eq.(4) with £ replaced by 7.

9 Prob.(y,=1)=1I; 1/[1+exp- £ (x;- )] -



Now the small £, implies either that the intrinsic variation in an individual's threshold is

large or that the population is highly heterogeneous with respect to a mean threshold.

Explosion of Ordered Category / Continuous Rating Data

The original data should not necessarily be binary. Rating and other types of data are
also good to the extent that they are meaningfully transformed into a binary one. The
rating data might be converted to binary by dichotomizing the categories like ‘top two
box or not'. Let y, be a transfomied dependent variable taking 1 if the object j is rated in
the top s categories and 0 otherwise. Also let the corresponding parameters be 4, and
t,. ©represents that level of threshold for attribute i which determines whether the
object is rated in the top s categories. An interesting feature of this explosion of rating
data is illustrated in Exhibit 2. By comparing the levels of, say, #s,; over s for all 7, one
could find which attribute is critical in order to obtain s th rather than s+1 th rating. The
Exhibit tells, for example, that attribute 1 is critical in having 'definitely will buy' response,
while attribute 2 is important only to avoid the bottom box. The former might be called
'an enhancing attribute’ while the latter is often called 'a screening attribute’.

(Exhibit 2)
A similar explosion is possible, of course, with continuous rating data. 'The s th rating

category' is now replaced by 'over s point rating' and the same argument applies.

With either type of explosion, managerially of great interest is the demonstration that the
critical attribute is conditional on the level of performance (e.g. the very top vs. better
than average) one aspires to achieve. In the case of Exhibit 2, the implied

recommendation would be to make sure that attribute 1 be just above x and to spend all



the remaining resources on enhancing the level of attribute 2. Unfortunately, a

compensatory model is not capable of doing this.
Extention to a Disjunctive Model
The base model is easily extended to accomodate a disjunctive choice. According to the

disjunctive rule, one is GO with an object if at least one of the attributes is above its

threshold. More specifically, the probability that object j is GO is given as follows;
(10) Prob.(y; = 1)=1-1IL [1-1/{1+exp- B (x; - 1)}].

Tt might be noted that this is structurally very similar to a conjunctive model.

3. Estimation and Some Small Sample Properties

The maximum likelihood estimation procedures for a base model pooling across
individuals are introduced and the small sample properties of the estimators are examined
via Monte Carlo simulation.

Maximum Likelihood Estimation

Given the data { y;;Jj = 1.,...,.}’, k=1,..,K }, the likelihood of observing them is;

(1)  L=TLILPY#[1- Pl



where P, for each k is given by eq.(9). The ML estimates of #,;and 4,= 7, x /4, fori
= 1,...,] are obtained by maximizing the above likelihood by, say, such standard method
as Newton-Raphson algorithm. The estimates of z /s are obtained by dividing the
estimates of 4/s by that of Z/'s. In formal terms, this is nothing but a binary logit and

its existence and uniqueness conditions equally apply here as well.

Some Monte Carlo Results

From applications point of view, it is of vital importance to examine to what extent a

large sample theory can be applied in making inference.

To examine the small sample properties of the ML estimators, 2 Monte Carlo experiment

was designed as follows.

¢y Specify a set of the true values of parameters, 4,*'s and #*'s. Emulating the
environments of the pilot application of next section in terms of the size of
parameters and variables, £ ¥'s are uniformly set across jat.01,.05and .1 and

1¥s at 50, a mid point for 100 point scale.
2) Generate x;, by independently generating uniform random numbers in [0, 100].
Note that this corresponds to a case of ‘orthogonal environment' in Johnson,

Meyer and Ghose(1989)'s terminology.

(3) Generate Logistic random numbers for ¢ ; by generating uniform random

numbers»in [0,1] and transforming it.

10
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Simulate a choice by comparing x;; with 7, = 1¥ + ¢y overiand determining

Yike
Pooling 1280 observations.
Estimate the parameters using N = 20, 40, 80, 160, 320, 640, and 1280

observations out of the pooled 1280, for each set of prespecified parameters.

Repeat this 100 times.
Calculate following indicators to evaluate the small sample properties for each

case. Let a typical parameter be denoted by 4, its g th estimate by 4, and the

number of repetitions by G . The indicators are,

bias rate = {E( 47 - %}/ f*={(2,0,/0) - g*y/ 6%

tvalue= {((£,6, /6 ~ 6%} / s( 87, where

2 IN=2 (0, ~ Ave(2/ (6~ D

it

Mean Absolute Error= 2,18, = 0% /G

The results of the experiments are summarized in Exhibit 3.

(Exhibit 3)

Found from the Exhibit were the following.

1

The small sample properties are moderate with N > 160 and good with ¥ > 320
in terms of bias and MAE.

11



2 With the sample size fixed, the larger the number of attributes, the more likely is
the case that the ML estimators don't exist and the estimates, if existent, get less
accurate.

3 With the sample size and the true mean thresholds, z *'s given, the larger the
variance of a threshold (the smaller the 4,*'s), the better behaved the estimates
are.

Modifying McFadden's Lemma [Lemma 3 and Axiom 6 in McFadden(1974)}], a

necessary condition for the existence of the ML estimators is that there doesn't exist any

solution z = {v,} satisfying the following system of inequalities;

(12)  yulxg- v) + (1 -y) (- v)>0; foralljand k

The first part of the point 2 above is exactly related to this. Given the same number of
observations(J times K), the solution space for inequlities (12) is more 'open’, the larger
the number of attributes, . Consequently, nonexistence of ML estimators is more likely

due to this consistency of response data.

To sum, with up to 4 attributes, a smple size of 160 appears an absolute bottomline in
terms of well-behaved small sample properties. If one encounters a case of nonexistence
of estimators, it is very likely that inequalities (12) hold and the multiple solution space

might be obtained by directly solving the system of inequalities.

12



5. A Pilot Application

To illustrate how the model is estimated using actual data, an application was made to a
case of individuals' response to TV commercials. Specifically, the dependent variable
was whether the response was among the top two categories in five point advertising
attitude scale. The explanatory variables were 100 point ratings of the commercials in

terms of various emotional response variables.

The respondents were 48 people( including 1 woman) working at the leading Japanese
firms whose average age was approximately 35. They were first shown a series of 8
different commercials, 4 in PC and 4 in beer categories. Then, they were shown each one
of them twice and asked to fill in the questionaire, repeating it 8 times for all the
commercials. Such criteria as brand recall, brand attitude, purchase intention and others
were measured as well as advertising attitude. Twelve variables were used to measure
the emotional response to the commercials, including 'upscale image', 'irritating), 'fresh

image' etc.

Exhibit 4 illustrates two sets of average ratings in these variables for the four beer
commercials; one for those who gave the top 2 box ratings in ad attitude and another for
the rest of the sample. From the Monte Carlo results, it is reasonable to use a maximum
of 4 variables given the sample size of 192(48 people times 4 commercials). The Exhibit
demonstrates that 'amusing’, 'suitable cast', 'irritating’ and 'familiar' are the four variables
that gave rise to the highest differences.

(Exhibit 4)



Estimation Results
Starting with the four explanatory variables, the variables are eliminated one by one by
sequentially applying a likelihood ratio test, The test results as well as the final estimation
results are shown in Exhibit 5.

(Exhibit 5)
Tt was found that two variables, ‘amusing' and ‘familiar’, are sufficient to account for the

advertising attitude ratings.

Using 'top box’, 'top 2 box, etc. for dichotomizing the responses, that is, exploding the
rating data into multiple binary response data, the response profiles are obtained for each
of the two explanatory variables and shown in Exhibit 6.

(Exhibit 6)

The Exhibit demonstrates that the profile for 'familiar' is linear, while that for 'amusing'
is more kinked, implying that a very high score in 'amusing' is required to secure a top
box response in advertising attitude. The probability response curves, F;(x,)'s, given in
Exhibit 7 show that the distributions of the thresholds for the two variables are quite
tight implying that neither inter- nor intra-individual variations were large.

(Exhibit 7)
It might be noted that the use of a logistic distribution to a bounded dependent variable

is only an approximation and that extrapolational inference is dangerous.

Comparison with a Linear Model. Holdout Sample Tests

To validate our conjunctive specification and to compare it against a linear
compensatory, holdout tests were made estimating both specifications on both test and
holdout samples. The test sample was the responces t0 all but a holdout commercial and
the holdout sample was those to the holdout commercial. Kirin Ichiban commercial, the

most popular in ad attitude, was used as holdout commercials.

14



The test results are given in Exhibit 8. Although the fits of our model are slightly worse
in terms of log likelihood, the holdout predictions are better in all the cases. The criterion
was the observed % of the top box responses as against the average of the estimates of
P,,'s over k, J being the holdout commercial. These results clearly demonstrates that the
conjunctive specification gives consistently robust predictions, where a linear
compensatory model suffers from greater overestimation of success probabilities.

(Exhibit 8)

6. Summary and Conclusion

A simple model of noncompensatory choice was set forth and an easy method of its
estimation by maximum likelihood was proposed. The ML estimators are found to be
reasonably well-behaved in a problem of moderate size; 4 attributes and N > 160. A pilot
study demonstrated that our model explains advertising attitude ratings just as well as a
linear binary logit analysis and did clearly better in holdout validation. The model is
neither grand nor novel but it is a mere variation of familiar binary logit. It, however,

seems to do a number of nice things that a linear compensatory analysis failed to cover.

A contribution of the present study is simple and straightforward. It opened up a path to
simple and handy estimation of conjunctive and disjunctive models of consumer choice.
Given the 'algorithm dominates theory' phenomena in marketing and consumer studies
represented by the linear logit sovereignity, the presentation of our algorithm is hoped to
encourage the proliferation of empirical applications and testing of non-compensatory

models.

15



Secondly, the present study empirically demonstrated that our non-compensatory model
could be a better 'misspecification’ of a real decision process. The finding that our model

outperformed a binary logit in predicting ad attitude ratings is particularly promising.

Thirdly, it makes better anatomy of the architecture of satisfaction. Taxonomy of the
relevant attributes into various categories including linear, screening and enhancing
attributes coupled with the estimation of the structure as such enables to better
understand how people are dis/satisfied. This at the same time gives strong policy
implications regarding what attributes to improve under specific conditions and

objectives.

This is virtually the first easy step to an empirical world of non-compensatory choice.
One might easily think of following directions for further research. An obvious direction
would be to replicate applications to make the technology a more reliable one. Of
particular interest is the further examination of external validity as compared with linear
compensatory specifications. In a due course of increasing applications, we will
hopefully have better understanding of under what conditions a non-compensatory

model describes and predicts better than a compensatory counterpart.

The present model typically takes care of the 'pick any / N' situation. It is therefore very
appropriate to use it for explaining the choice set formation processes as Swait and Ben-
Akiva(1987) did in transportation research. A natural extention is to integrate the
present model with 'pick one / "any™ type of models that explain the choice of an object
from the choice set. The idea of two stage model was already empirically explored by
Gensch(1987) using his MLH model for the first stage and logit for the second. Very
recently, Morikawa(1995) proposed a model of integrating conjunctive choice set

formation with logit choice together with a simultaneous estimation algorithm. This is a

16



right direction to follow. Instead, it might also be of interest to apply our conjunctive
model directly to purchase records of store scanner panel data. Suppose an individual
chose brand A out of N different brands of a category on the shelf. We might treat this
brand choice as a series of N binary decisions of buy or not buy. This offers an additional

advantage of being able to take care of multiple choices in a category on the same basis.

Among the remaining problems are elaboration of model structure and/or estimation
technologies, development of a powerful method of comparing alternative models (e.g. 2
stage vs. 1 stage) and integration of protocol, experimental, econometric and other

research outcomes in the field.

Finally, the authors hope that the present paper shed a small light on the 'dark continent

of the choice model' and stimulate a continuing flow of empirical studies in the field.

17
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Exhibit 3 Results of Monte Carlo Simulation
(1) gi=0.01, Ai=0.5 (=14, 7 i=Ai/ Bi=50)
b) 4 attributes

a) 2 attributes

Test Statistics Ij)\;tggzr g2 A2 A1 Al B4 Ad B3 A3 B2 A2 g1 Al
20 0.030 -0.312 0.088 3.488 0.047 3.325 -0.019 1.804 0.017 -0.004 0.050 -0.491
40 0.027 0.803 0.053 1.170 0.040 -1.012 0.010 2.096 -0.007 1795 0.003 1.725
80 0.021 0.645 0.017 -0.055 0.035 1.886 0.083 0.399 0041 0.783 0.025 -0444
Average of 160 0.024 0.224 0.025 0405 0.043 0.854 -0.018 -2,593 0.021 0291 0.059 1.953
Estimated 320 0.020 0.383 0.023 0.309 0.008 -0.237 0.022 0.058 0022 -0.268 0.042 0.120
Parameters 640 0.022 0429 0013 0.555 0.030 0449 0038 -0.112 0.029 -0377 0.034 0.172
800 0.020 0.429 0.017 0587 0.027 0.336 0.031 0.056 0.034 0.638 0.035 0301
1280 0.019 0437 0.020 0.574 0.019 0409 0.034 0.350 0.034 0416 0.042 0.605
20 0.080 5.221 0.256 11.486 0.022 1.209 0.051 3.959 0.052 7.524 0.093 8493
40 0.056 2.600 0.190 7.737 0.071 8211 0083 2340 0078 2931 0074 2990
80 0.041 1.783 0.042 2.652 0.072 4565 0.232 11.194 0.070 6.303 0.042 6.388
Standard 160 0.070 3.740 0.046 1.657 0.136 3.182 0.119 7.175 0048 1979 0.148 5.040
Error 320 0.049 3.023 0044 1.292 0.063 4.536 0.050 3.251 0.065 3.040 0.084 3.572
640 0,027 0.748 0.016 0.774 0.105 3.188 0.093 3.661 0.111 3.673 0079 3418
800 0.023 0.672 0.029 0.627 0.063 1.826 0.085 3.148 0.064 1.338 0.076 3.266
1280 0.024 0.588 0.037 0.536 0.030 1.577 0.065 2.141 0.056 1466 0.092 1.174
20 0.380 -0.060 0.346 0.304 2.089 2.751 -0.374 0456 0318 0000 0.544 -0.058
40 0.476 0309 0278 0.151 0.567 -0.123 0.121 0.896 -0.090 0.613 0.036 0.577
80 0.522 0.362 0405 -0.021 0.484 0413 0358 0036 059 0.124 0.600 -0.070
tValue 160 0341 0.060 0.540 0.244 0.313 0.268 -0.150 -0.361 0.433 0.147 0401 0.387
320 0403 0127 0523 0.239 0.128 -0.052 0.448 0.018 0.338 -0.088 0496 0.033
640 0.818 0.574 0.850 0.716 0.289 0.141 0.402 -0.031 0.265 -0.103 0.433 0.050
800 0.862 0638 0.595 0.938 0.430 0.184 0.360 0.018 0532 0477 0465 0.092
1280 0.806 0.744 0.539 1.031 0.628 0.259 0.515 0.164 0.604 0.284 0456 0.515
20 2.031 -1.624 7.845 5.976 3.666 5.650 -2.913 2.607 0.662 -1.007 4.043 -1.982
40 1.654 0.606 4.299 1.339 3.047 -3.025 0.011 3.191 -1.704 2.591 -0.733 2.449
80 1.119 0.290 0714 -1.110 2489 2.771 7.313 -0.202 3.149 0.566 1546 -1.888
Bias Rate 160 1.393 -0.552 1.465 -0.191 3.252 0.708 -2.784 -6.186 1.080 -0.419 4.937 2906
320 0973 -0.234 1.312 -0.382 -0.195 -1.475 1.244 -0.885 1.185 -1.535 3.168 -0.761
640 1.240 -0.141 0.345 0.102 2.029 -0.103 2750 -1.224 1.9245 -1.755 2419 -0.656
800 1.02C -0.143 0.746 0.173 1.701 -0.328 2.072 -0.888 2.382 0.276 2.540 -0.398
1280 0905 -0.125 0980 0.147 0.862 -0.182 2.358 -0.299 2.358 -0.167 3.177 0.209
20 0.048 2.841 0.121 5.297 0.037 2.825 0.041 3.544 0.036 5.351 0075 35.839
40 0.036 1.439 0.064 3.233 0.056 5.277 0.060 2.169 0.063 2469 0.044 2.540
80 0.024 1.204 0.027 1.639 0.054 3.448 0.090 7.017 0.044 4237 0.036 3.815
MAE 160 0.030 1471 0.023 1.045 0.055 2.138 0.056 4.350 0.038 1.395 0.057 2.637
320 0.022 (0938 0.020 0914 0.034 2490 0.031 2.062 0.037 1.899 0.048 2.000
640 0.016 0497 0008 0575 0.040 1.874 0.051 1906 0.045 2065 0043 1.637
800 0.013 0499 0.012 0.500 0.033 1.231 0042 1604 0.031 1.111 0.040 1.342
1280 0.012 0479 0.013 0460 0.018 1.081 0034 1.301 0.031 0.933 0.036 0.868
20 30 (-10.31) 4 (-7.49)
Nuniber of 40 52 (-21.09) 9 (-15.75)
Convegence 80 63 (-43.13) 10 (-17.30)
in 100 Trials 160 72 (-86.93) 26 (-33.39)
(Log- 320 79 (-177.63) 49 (-73.159)
likelihood) 040 81 (-354.22) 66 (-147.09)
800 92 (-444.29) 66 (-181.79)
1280 91 (-712.28) 76 (-294.70)




Exhibit 3 Results of Monte Carlo Simulation
(2) Bi=0.05, Ai=2.5 (i=1~4, 7i= A1/ Bi=50)
b) 4 attributes

a) 2 attributes

Test Statistics T;’;g:r g2 Az g1 A1 g4 a4 B3 A3 B2 a2 g1 o1
20 0.174 8070 0.281 11.199 0071 3.454 0099 5756 0589 9078 0052 1.764
40 0121 4.656 0179 6.813 0.098 6.052 0082 5779 0057 6.138 0071 6.135
80 0126 4.250 0.080 3.666 0.110 7259 0093 4968 0091 5159 0.111 5210
Average of 160 0072 3.153 0062 2.977 0.166 6402 0.069 2.974 0.033 -1.622 0.082 3.711
Estimated 320 0060 2.826 0056 2738 0065 3.538 0.095 3.546 0085 3.248 0099 3.817
Parameters 640 0056 2.685 0052 2591 0.063 2.857 0079 3.059 0073 3.164 0065 2.867
800 0055 2.615 0.051 2.562 0.060 2.824 0.058 2646 0069 2.888 0066 2.872
1280 0053 2570 0051 2.547 0.059 2.880 0059 2.688 0.063 2.852 0062 2.727
20 0253 9.600 0411 13271 0062 2.686 0.159 5355 0.847 6994 0079 3.247
40 0.194 7.483 0313 8.928 0.153 4305 0112 4.623 0054 4254 0076 4.256
B0 0295 5.570 0.124 4.006 0.167 9.162 0211 6554 0.131 2672 0259 12.185
Standard 160 0074 2.133 0028 1.070 0306 7.396 0.076 2.757 0.361 24.339 0.135 5.047
Error 320 0024 0921 0020 0670 0058 3.319 0.081 2.863 0090 2.805 0.125 3.943
640 0014 0418 0012 0.383 0053 1.063 0084 2193 0044 1.501 0031 0.965
800 0.011 0344 0010 0326 0.029 0767 0026 0796 0029 1.143 0064 1343
1280 0.008 0.246 0008 0.255 0.027 0705 0033 0.855 0025 0617 0023 0.605
20 0688 0.84]1 0.682 0.844 1.137 1286 0621 1075 0695 1.298 0.656 0.543
40 0621 0622 0571 0763 0.640 1.406 0730 1250 1.067 1443 0933 1442
80 0428 0763 0647 0.915 0.660 0792 0440 0.758 0692 1.931 0.429 0.428
t-Value 160 0965 1478 2.193 2.782 0.542 0.866 0909 1.079 0092 -0.067 0.606 0735
320 2479 3.069 2.826 4.090 1.126 1.066 1.166 1238 0936 1.158 0.792 0.968
640 4.133 6.428 4.457 6.773 1.182 2.687 0948 1395 1671 2107 2081 2972
800 4.798 7.607 5.128 7.847 2089 3.684 2275 3.323 2.378 2.528 1.036 2.139
1280 6.598 10.460 6.416 10.000 2174 4084 1.783 3.145 2550 4.620 2721 4.505
20 2486 2228 4.613 3.480 0.411 0381 0972 1.302 10.784 2.631 0.031 -0.294
40 1413 0862 2573 1.725 0963 1421 0632 1312 0.148 1455 0419 1.454
80 1.525 0.700 0.602 0.466 1205 1.904 0.856 0987 0.820 1.064 1.221 1.084
Bias Rate 160 0.437 0261 0237 0.191 2318 1561 0385 0190 -0.338 -1.649 0.633 0.484
320 0200 0.130 0.112 0.095 0296 0415 0.896 0418 0692 0299 0980 0.527
640 0.128 0.074 0039 0037 0256 0.143 0584 0224 0468 0266 0302 0.147
800 0.093 0046 0022 0.025 0.209 0130 0.164 0058 0379 0.155 0322 0.149
1280 0.058 0028 0.017 0019 0.180 0.152 0.181 0075 0.256 0.141 0.234 0091
20 0.145 6485 0.249 9.710 0.050 2424 0094 4035 0559 6578 0058 2.576
40 0086 3.587 0.143 4.870 0.104 3.613 0070 3.806 0035 3.700 0063 3.696
80 0086 2.288 0043 1.607 0.105 4.801 0.103 4.799 0078 2798 0.130 7.073
MAE 160 0031 1.079 0021 0824 0.136 4.593 0046 2.180 0.166 9318 0.054 2.530
320 0016 0554 0014 0518 0.028 1.480 0050 1.694 0046 1.298 0062 1.902
640 0011 0337 0009 0309 0025 0729 0039 0996 0033 1086 0025 0.727
800 0.009 0283 0008 0.266 0.022 0635 0018 0557 0025 0.833 0.027 0745
1280 0.006 0211 0.006 0.201 0017 0.543 0019 0487 0020 0.556 0.017 0.466
20 36 (-7.65) 4 (-12.83)
Number of 40 65 (-16.61) 15 (-27.79)
Convegence 80 82 (-32.83) 16 (-29.03)
in 100 Trials 160 96 (-67.10) 14 (-30.46)
(Log- 320 100 (-136.65) 39 (-56.64)
likelihood) 640 99 (-276.22) 63 (-115.28)
800 100 (-347.38) 56 (-145.18)
1280 100 (-557.92) 79 (-230.15)




Exhibit 3 Results of Monte Carlo Simulation
(3) i=0.1, Ai=5.0 (=14, 7i=Ai/ Bi=50)
b) 4 attributes

a) 2 attributes

Test Statistics Ii‘fg::r g2 a2 g1 Al g4 a4 B3 a3 g2 a2 g1 a6l
20 0.203 8.346 0.300 13.506 0.124 6.884 -0.004 -0.495 0.083 7.876 0495 9.709
40 0.218 10.346 0.246 11.542 0.100 6.225 0.090 7.160 0.000 -1.733 0.062 5.737
80 0.146 7.138 0.156 7.005 0.084 6£.619 0122 9.067 0230 12121 0.121 6.815
Average of 160 0.129 6.265 0.123 6.108 0.038 1.899 0.105 7.516 0.034 -0.851 0.064 5345
Estimated 320 0.113 5597 0110 5.502 0.145 6.818 0.140 6.522 0.129 5216 0111 4.124
Parameters 640 0.107 5292 0.104 5211 0.115 5.485 0130 6.271 0140 6.583 0.106 5.299
800 0.105 5.205 0.102 5.100 0.113 5.583 0.127 6.100 0.120 5.724 0114 5.492
1280 0.104 5.136 0.100 5.028 0.109 5.287 0.100 4981 0.101 4920 0.106 5.112
20 0362 23.178 0.267 10.640 0.124 4.811 0.292 19.513 0.140 5762 0.997 9.382
40 0.173 8476 0.283 11.702 0.141 4.214 0.083 4.884 0.305 25.951 0.058 4.638
80 0.110 4.985 0.138 6.253 0.079 7.13¢0 0.109 6.092 0.265 8.340 0094 5.392
Standard 160 0.071 3.165 0.074 3.002 0.068 7.559 0.061 2496 0.126 9.507 0.036 4.280
Error 320 0.031 1326 0.029 1.298 0.092 3.987 0.100 3.629 0.100 6,999 0.122 10.022
640 0.018 0.779 0.015 0.721 0.058 2310 0.072 3.104 0065 2642 0.046 1.986
800 0.013 0.623 0.013 0.619 0.038 1.795 0.077 3.160 0.054 2.141 0.050 1.763
1280 0.010 0475 0.009 0407 0.075 2.855 0.036 1.823 0.033 1.559 0.053 2.099
20 0.562 0360 1.123 1.209 0.996 1.431 -0.014 -0.025 0.594 1.367 0496 1.035
40 1.258 1.221 0869 0986 0.712 1477 1.077 1466 0.000 -0.067 1.068 1.237
80 1.335 1.432 1130 1.216 1.069 0.928 1.123 1488 0.869 1453 1.276 1.264
t-Value 160 1.799 1979 1.671 2035 0.563 0.251 1.708 3.011 0.274 -0.090 1771 1.249
320 3.652 4.222 3.821 4.238 1.580 1.710 1.400 1797 1.283 0745 0.907 0411
640 6.069 6.793 6923 7.224 1.985 2.374 1.803 2.020 2161 2492 2314 2.669
800 7.789 8334 7.966 8.244 2949 3.110 1642 1930 2.233 2674 2310 3.116
1280 10.034 10.823 11.435 12.345 1.457 1.852 2.736 2733 3.048 3.156 2017 2436
20 1.033 0669 1997 1.701 0.240 0.377 -1.040 -1.099 -0.167 0.575 3.945 0.942
40 1.180 1.069 1458 1.308 0.003 0.245 -0.102 0.432 -0.999 -1.347 -0.379 0.147
80 0462 0428 0.555 0.521 -0.156 0.324 0.225 0.813 1.298 1424 0205 0.363
Bias Rate 160 0.285 0.253 0.234 0.222 -0.619 -0.620 0.048 0.503 -0.655 -1.170 -0.358 0.069
320 0.134 0.119 0100 0100 0.446 0.364 0402 0304 0287 0.043 0.105 -0.175
640 0.067 0.058 0.039 0.042 0.154 0.097 0298 0.254 0403 0317 0.057 0.060
800 0.048 0.041 0.018 0.020 0.135 0.117 0270 0.220 0.203 0.145 0.145 0.098
1280  0.036  0.027 0.003 0.006 0.086 0.057 -0.003 -0.004 0.010 -0.016 0.063 0.022
20 0.253 14.086 0.214 9334 0.085 3.021 0.170 9471 0.105 4.013 0456 5.846
40 0.133 6.193 0.165 7.314 0.092 2.517 0.062 3.443 0.142 10475 0.03592 3.005
80 0.063 2.957 0.074 3473 0.062 4.398 0.073 4.282 0.167 7.121 0.067 3.754
MAE 160 0.040 1.850 0.038 1.735 0.062 3.872 0052 2516 0.096 6.623 0.045 3.125
320 0.023 0987 0023 1.000 0.067 2.658 0.065 2.567 0.063 3487 0.062 3.611
640 0.014 0.606 0.012 0.577 0.035 1.445 0.045 1907 0.050 1.988 0.030 1.125
800 0.011 0500 0.010 0477 0.031 1402 0.038 1.590 0.034 1.340 0.032 1.215
1280 0.008 0.378 0.007 0.333 0.035 1407 0.028 1.276 0024 1.062 0.032 1.328
20 33 (-5.44) 7 (-28.13)
Number of 40 61 (-9.31) 10 (-19.13)
Convegence 80 81 (-20.94) 13 (-34.39)
in 100 Trials 160 96 (-43.22) S (-39.23)
{Log- 320 99 (-88.359) 30 (-43.197)
likelihood) 640 100 (-179.18) 38 (-78.679)
800 100 (-226.22) 51 (-100.06)
1280 100 (-364.601) 53 (-168.71)
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Exhibit 5 Result of Estimation (4 Beer Ad's)

4 Variables 3Variables 2 Variables
8 A EA/BT B8 A& AR B A BEA/B
0.089 5.365 ©60.35 0088 5.190 58.84 0.090 5.339 59.65
familiar
(0.035)  (1.903) (0.032) (1.849) (0.042) (2.081)
. 0.088 5712 65.28 0.089 5925 66.50 0.08 5.972 69.76
amusing
(0.030) (1.957) {0.027) (1.966) (0.022) (1.718)
suitable -0.128 -24.032 187.31 0.055 1512 2734
casting (7.552) (744.978) (0.033) (2.571)
o -0.105 -8.194 7841
irritating
(0.072) (5.385)
Log- ‘

Standard error in parenthesis.
* Threshold T is given by A/ 8.
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Exhibit 8 Results of Holdout Sample Tests
Holdout : "Ichiban Shibori's Ad"

DT\
e e e ettt

Non-
Variables Observed** Binomial Logit Compensatory Logit
used* % [ Predicted [  Predicted
% %
XpXgX9X 12 45.7 -47.52 62.0 -52.58 58.9
XgX9X12 44.7 -51.43 60.8 -54.16 58.2
XgX12 44.7 -54.05 59.6 -54.95 57.6

""‘:XZ: irritating, Xg: amusing, Xg: suitable casting, X192t familiar
**:Percentage of respondents who rated top 1 box( I like this ad very much).
Observed percentage is slightly different due to missing values.



