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In the simultaneus estimation of a mean of a multivariate normal distribution, Charles
Stein discovered the surprising decision-theoretic result that the usual maximum likelihood
estimator is inadmissible with respect to quadratic loss in three or more dimensions. Since
then, the researches on this Stein phenomenon have received considerable attention. This
paper surveys the theoretical study of the Stein phenomenon. The minimaxity of the
James-Stein estimator and its improvements are demonstrated instructively, and various
extensions and developments in Bayesian frameworks and non-normal distributions are
reviewed. The paper shortly refers to the Stein phenomenon in confidence sets and a
series of decision-theoretic results in estimation of a covariance matrix.
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1 Introduction and Summary

The theory of the statistical parametric estimation has been remarkably developed for these
twenty years in two main topics: the efficiency of the maximum likelihood estimator (MLE) in
a large sample and the Stein problem for the inadmissibility of the MLE in a small sample. The
large sample theory clarified the structure of the parametric estimation theory and provided the
higher order asymptotic efficiency of the MLE and its differential-geometric interpretation. On
the other hand, we have lots of practical situations where a large sample can not be expected
in biometrics, engineering and others. In these cases, available informations, for instance,
guessed a priori or contained in correlated data, may be used to modify usual estimators such
as maximum likelihood or unbiased estimators for increasing their accuracies. The theoretical
researches of the modification of the estimators in the small sample have been studied in
a decision-theoretic framework since Wald(1950). For fundamental or general theories, see
Zacks(1971) and Lehmann(1983). In particular, the researches on the Stein problem have
received considerable attention since 1970, and a remarkably large amount of theoretical results
have been produced.

When the simultaneous estimation of mean vector 8 = (0y,...,0,)" based on random vec-
tor X = (Xi,...,Xp) having p-variate normal distribution Np(8, Ip) is considered relative to
a quadratic loss function, Stein(1956) presented the surprising, important and seminal result
that the MLE X is inadmissible for p > 3 while it is admissible for p = 1 and 2. James
and Stein(1961) succeeded in giving an explicit form of an estimator improving on X. This
means that the MLE X of # is inadmissible in the framework of the simultaneous estimation
of several parameters, although the components X;’s of the estimator are separately admissible
to estimate the corresponding one-dimensional parameters 6;’s, which is called the Stein phe-
nomenon or Stein problem. Stein(1973) developed an integration-by-parts approach, called the



Stein identity, which is very powerful and useful for deriving improved estimators. Since then,
the researches on this Stein problem have been developed remarkably. For the good accounts,
see Judge and Bock(1978), Berger(1985), Brandwein and Strawderman(1990), Hoffmann(1992),
Mikhail and Vassily(1994), Robert(1994) and Rukhin(1995).

In this paper, we survey the theoretical results of the Stein problem from various aspects.
Sections 2 gives an explanation of the Stein problem with a motivation from an empirical Bayes
approach and a simple proof through the Stein identity. The improvements on the James-
Stein estimator is treated in Section 3 through a new technique for improving on equivariant
estimators. Several extensions and developments in the normal or non-normal distributions are
provided in Sections 4 and 5. The Stein problem in a confidence set is surveyed in Seciion 6
and the related problem of estimating a covariance matrix is treated in Section 7.

Although our interest is limited to developments of theoretical results for a restriction of
the volume of the paper, the concept of the Stein (or shrinkage) estimation has been applied
to some practical problems. Since Efron and Morris(1972) indicated the empirical Bayesness
of the James-Stein estimator, especially, the shrinkage estimation based on the empirical Bayes
approach has been effectively used by Efron and Morris(1975) for estimation of batting av-
erages of baseball players and for estimation of epidemic rates, by Fay and Herriot(1979),
Battese et al.(1988), Prasad and Rao(1990), Ghosh and Rao(1994) and others for the small-
area problem, by Tsutakawa et al.(1985), Clayton and Kaldor(1987) and others for estimation
of mortality rates and indices and by Wahba(1985), Li(1985), Li and Hwang(1984) and Ans-
ley et al.(1993) for smoothing data by a spline function (see also Copas(1983), Morris(1983)
and Casella(1985)). Thus the shrinkage estimation originated by Stein has been evaluated as
an effective procedure in a small sample from a practical point of view while the theoretical
progress has been made markedly.

2 The Stein Phenomenon

Let X = (Xj,...,X,)" be a random vector having p-variate normal distribution Np(0, Ip) and
consider the problem of estimating mean vector 6 = (64, ...,0,)" by estimator 6(X) based on
X. Every estimator is evaluated in terms of the risk function relative to the quadratic loss
function ||6(X) — 8|2

A natural estimator of 6 is X and it is a maximum likelihood, uniformly minimum variance
unbiased and minimax estimator. Also this estimation problem is invariant under the transfor-
mation I'X + d, I'0 + d for orthogonal matrix I', vector d when the estimator §(X) satisfies the
equivariance §(I'X + d) = I'6(X) + d, which implies §(X) = X + d for vector d, and X is the
best among this class of equivariant estimators.

For the admissibility of X, Stein(1956) presented the surprising, important and seminal
result that X is inadmissible for p > 3 while it is admissible for p = 1, 2. This means that
a usual estimator is inadmissible in the framework of the simultaneous estimation of several
parameters, although the components of the estimator are separately admissible to estimate
the corresponding one-dimensional parameters, and we call it the Stein Phenomenon. Every
estimator equivariant with respect to the transformation I'X and I'0 is written by

_ XTI 5
64, = {1 — -—ﬂ—iﬂ'r} X (1)

and Stein(1956) proved that there exists an estimator improving on X among the class (1).



James and Stein(1961) found an explicit form of an estimator better than X as
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which is called the James-Stein Estimator. Since it shrinks X towards the origin, such an esti-
mator is generally called a Shrinkage Estimator. Intuitive explanations of the Stein phenomenon
are given in Stigler(1990), Brandwein and Strawderman(1990) and others.

Although one has an impression that the James-Stein estimator is artificial and strange from
its form, it can be derived as a natural and empirical Bayes estimator from the Bayesian aspect
(Efron-Morris(1972a), Robbins (1983)). Let us suppose that the parameter 6 is a random
variable whose prior distribution is Np(fp,a 'I,) where a is an unknown parameter and 6y
is a known vector to be chosen beforehand. Then the posterior distribution of # given X is
Np(Oo+ (1 = 7)(X —bp), (1 —7)1,) for 7 = /(1 +a), and the Bayes estimator of 6 is thus given
by )

03(0@) == 00 -+ (1 — 7") ()( — 90).

Since the hyperparameter 7 is unknown, it is needed to be estimated from the marginal distri-
bution of X, Np(fg, 7 'I,). The marginal distribution of [|X —6||? has 77'x2, and an unbiased
estimator of 7 is

By substituting 7 for 7 in the Bayes estimator, we get the empirical Bays estimator

{

o) 0o+ (1= DX =) — 0+ {1 = b or )

and 0z5(0) is identical to §75. The value of f is given based on a prior information and
0r5(6o) has a large risk-reduction for 6 near 6, so that in the case where one can guess or
take a prior information about 6, 91:73(90) brings a good estimate. Even if one can not suppose
any exact prior information, the risk of fzp(f) is always less than that of X and it does
not yield any actual harm from a frequentist point of view, that is, 015(6,) is robust for the
prior information. The Bayes estimator depends on the prior knowledge completely while the
knowledge is neglected in the maximum likelihood estimator. The empirical Bayes estimator is
thus interpreted as an intermediate of the Bayes and maximum likelihood ones such that the
drawbacks of both estimators are made up for.

The above motivation of 67 from the empirical Bayes aspect was presented by Efron and
Morris(1972a), and they also proved the Stein phenomenon through the empirical Bayes ap-
proach. For the proof of the Stein phenomenon, we have two other approaches: one is an
original method of James and Stein(1961), which utilizes the fact that a non-central chi square
distribution is represented by a Poisson mixture of a central chi square distribution; the other
is a method of Stein(1973), which uses an integration by parts. The latter is very simple, quite
useful and powerful and so we introduce it here.

More generally we begin with obtaining sufficient conditions on the function ¢ for the
estimator &4 improving on X. For absolutely continuous function h(x) and its differential
derivative h'(x), an integration by parts gives the equality

E[(Xi — 0)h(X3)] = E[R(X4)), (3)



which is called the Stein identily(Stein(1973,81)). Using this identity, we can write the risk
function of é4 as

2 p
R(0,65) = FE [P + W - 22(1\’}; - Hz)XzH)'“?HE]
= E[P+ H%F{(b-%p—?)}-—%’}- (4)

The unknown parameters ;’s thus disappear in the interior of the expectation F|-|, which turns
out to be an unbiased estimator of the risk function of &;. Since R(¢, X) — p, the conditions
on ¢(w) for &, improving on X are given by solutions of the following differential inequality:

P(w){p(w) —2(p — 2)}/w — 4¢'(w) <0,

which is, for instance, satisfied by
(i) ¢(w) is nondecreasing,
(ii) 0 < p(w) <2(p—2).
Thus a class of the estimators &, better than X is constructed. Since the conditions (i) and (ii)
are satisfied by ¢(w) = p — 2, the James-Stein estimator 67 is included in this class and the
risk function is given by
R(8,8”%) = p— (p = 2E[lIX]I 7],

which shows that the minimum risk is given when the non-centrality parameter ||0||* or the mean
vector 6 is the origin. The usefulness of the Stein identity produced remarkable developments
in this field.

When || X|]? < p — 2, the James-Stein estimator yields an over-shrinkage and changes
the sign of each X;. For eliminating this drawback, the positive-part Stein estimator 6,{5 =
max{0,1 — (p — 2)/|IX|[*} X is considered and it is shown to be better than §75. From the
general theory that admissible estimators are analytic, it follows that §7% itsell is inadmissible.
However it was a big open problem to find an explicit estimator dominating (‘5;{5 . Recently Shao
and Strawderman(1994) successfully obtained the estimator

\ 55 ag(IXIP) o
@53(0) =61° — m‘||hX||2|| )X[[P—#éllxllzé,ip]’ ()

dominating 61°, where g(t) is a function symmetric at ¢ = p - 1 satisfying g(p —2) = g(p) =0
and
t—p if p <t<p
t — Y . —_ — ’
9(t) {Qp*mp—-t, if p—1<t<yp’,
for suitable constants p* and a. Since 553 (a) is not smooth, it is inadmissible still and the

problem is not resolved completely yet. Sugiura and Takagi(1996) extends this result to the
case where the covariance matrix is fully unknown.

An admissible estimator improving X (or minimax) was developed by Strawderman(1971)
as

where

2

f[)l op/2-2p(1-2)w/25’

dap(w) =p—2-



which is a generalized Bayes estimator against the prior distribution

1= 1
OA ~ Np (0, —8), 55 o (VA

A
In fact, the minimaxity of &g can be easily shown by checking the conditions (i) and (ii). The
admissibility can be verified from the results of Brown(1971) as pointed out in Berger(1980)
and Brown and Hwang(1982). Also another type of admissible and minimax estimators was
given by Alam(1973).

Letting V = (8/0z1,...,0/0z,) and V? = ¥ 0%/0z?, Stein(1973,81) showed that if f(z)
satisfies the super-harmonic condition V2 f(z) < 0, then the estimator 657 (f) = X + Vlogf(X)
dominates X, which suggests deep relations between the potential theory and the Stein phe-
nomenon. The generalized Bayes estimators are represented by the form %7 (f) for the marginal
density f(z) and it was shown by Stein(1981) and Haff(1991) that if f(z) satisfies the super-
harmonic condition, then &7 (f) dominates X. Berger and Srinivasan(1978) characterized
admissible estimators of @ through the generalized Bayesness. For other interesting discus-
sions about admissibility, the characterization of admissibility of generalized Bayes estimators
were given by Brown(1971), Srinivasan(1981), Brown and Hwang(1982) and Berger(1985), and
the diffusion characterization of admissibility was given by Brown(1971), Johnstone(1984) and
Eaton(1992).

3 Improvements on the James-Stein Estimator

The inadmissibility of the James-Stein estimator is stated in the previous section. We shall
construct a broad class of estimators improving on the James-Stein estimator. From the ex-
pression (4) of the risk function based on ‘the Stein identity, we get the condition for &, to
dominate 67 as
{(w) — (p — 2)}* — 4wd/(w) < 0.

From this inequality, however, we cannot find any meaningful or general solutions on ¢(w) as
stated in Rukhin(1995), which demonstrates one of limitations of the characteristics through the
Stein identity. Kubokawa(1994a) and Takeuchi(1991) proposed a new approach to improving
on equivariant estimators. Their idea is to express a difference of risk functions through an
integral, and we shall call it the IERD (Integral Expression of Risk Difference) method. Letting
limy, ,eo@(w) = p — 2 and using (4), we apply the IERD method to have

R(0,87%) — R(0,6,)

- (c0) _ CAUXID) Ly w ,
) [IIXIIQM() 20p =2} = = (UIXIR) 20 - 2)}}“113[ HUIXIP)

2
- |7 { AR e -2 -2 fa] - amgie
= 28] [ {(UIXIP) — (0 — 23 (eI IP)at] + 4B (1X]P)]
- 2/ / {b(tz) — (p — 2} (1) £, (z; N dtda + 4E[¢' (|| X] )], (7)

where A = ||0]|* and f,(z; ) denotes a density of a non-central chi square distribution with p
degrees of freedom and non-centrality parameter A. Making the transformations w = tz and
y = w/t, we rewrite the first term in the r.h.s. of the extreme equation of (7) as

2 [ [ 10w ~ (b~ 208 ) (5 3) s



— 92 Aoo ./O‘w{qﬁ(w) — (p— 2)}¢' (w) fply; Ny tdydw,
so that
R(8,87%) — R(9, 8p)
= 2 [T {{ow) ~ -2} [ v Sy + 26,0 3) pdw. (®)

From (8) and the inequality

RN/ [y o Ndy = ) [y )y

for fp(y) = fp(y;0), we see that &, is better than 677 if the following conditions (a) and (b)
hold:

(a) ¢(w) is nondecreasing in w and limy, ,o@(w) = p — 2,
(b) $(w) > go(aw), where

dolw) = p—2=26w)/ [ v )y
= /0 ALY, /0 Y ) dy.

It can be easily checked that the functions ¢t (w) = min(w,p — 2) and ¢o(w) satisfy the
conditions (a) and (b). ¢*(w) yields the positive-part Stein estimator. Noting that ¢o(w) =
dap(w), the admissible (hierarchical Bayes) estimator dgp given by Strawderman(1971) is seen
to be better than the James-Stein estimator. Kubokawa(1991) applied the method of Brewster
and Zidek(1974) in estimation of a variance and showed that é¢p is derived as a limit when the
number of partitions tends to infinity. It is interesting to note that the improvement on the
James-Stein estimator is strongly related to the problems of estimating a variance of a normal
distribution with an unknown mean and of estimating a positive normal mean as suggested by
Rukhin(1992b), which established that their three problems are equivalent asymptotically.

From a practical sense, it is important to discuss the case where a variance of the underlying
normal distribution is unknown. For instance, a canonical form of a multiple regression model
is given by

X~ ’/\/;)(0’0_2]?)’ S/U2 ~ X;zz;
where random variables X and S are independent and x2 denotes a chi square distribution
with degrees of freedom n. When we consider the simultaneous estimation of the mean vector
0 under the loss function ||@ — 0||2/02, James and Stein(1961) showed that 6§75 = {1 — (p —
2)(n+2)"'W1}X for W = || X|?/S is better than X for p > 3. More generally we consider

the shrinkage estimator
(W)
bp =<1l ——-32 X
¢ {1 W

for absolutely continuous function ¢(-). Using the Stein identity and the chi square identity
given by

for absolutely continuous function h(-), Efron and Morris(1976a) gave an unbiased estimator
of the risk function of &4 as

p— {22 =2) — (14 D) + 4OV (14 600
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which implies that 84 improves on X if ¢(w) is nondecreasing and if 0 < ¢(w) < 2(p—2)/(n+2).
By the arguments based on the IERD method, Kubokawa(1994a) showed that &, dominates
879 if

(a) ¢(w) is nondecreasing in w and limy ecp(w) = (p —2)/(n 1 2),
(b) ¢(w) > do(w), where for h(w) = [5° v fn(v) fp(vw)dv,

(p—2) Jo’ s h(s)ds — 2h(w)

P = T2y 7 ThG)s T 20 (w)

The estimator &4, is a generalized Bayes estimator(Lin and Tsai(1973)), but the proof of the
admissibility is so difficult.
It is interesting to note that the James-Stein estimator §7° is represented by

~2
55 = {1 —&2&——})(
X

where 62 = (n + 2)71S is the best affine equivariant estimator of ¢® relative to the quadratic
loss. The problem of improving on 62 by using the information contained in X has been studied
by Stein(1964), Brown(1968), Brewster and Zidek(1974) and others. For a good review of this
field, see Maatta and Casella(1990). The improved estimator of Stein(1964) is given by

O = min{

LS' Lg‘}‘”X“Q
nt2 nitp+2 |

George(1990) conjectured that 675 is improved on by the estimator (1 — 6%,(p — 2)/|| X|]*)X
given by replacing &5 with 6%p, and this conjecture was affirmatively verified by Kubokawa
et al.(1993) and Berry(1994).

4 Extensions and Developments in Normal Distributions

Various extensions and developments for the Stein phenomenon have been studied. We here
survey them for normal distributions.

The risk of the James-Stein estimator 675 is given by p — (p — 2)2E[1/ ¥%_; X?], which
implies that the risk-gain is quite small if one of X?'s is very large. For this drawback, some
modifications of the James-Stein estimator were proposed by Efron and Morris(1972b) and
Stein(1981). The truncated estimator proposed by Stein(1981) is given by, componentwise

50 _ (1 (¢— Z)min{l,Z(@‘/]Xil} X,
l SN A,

where £ is a suitable constant, a A b = min(a,b) and
Zay <Zgy <0< L)

designate the order statistics of Zy, Zs, ..., Z, for Z; = || X;i||. Then the risk function of §*) is
represented by

P
R(0,69) = p— (£ —2)*E[1/ > XJQ A Z(Qe)Ja
Jj=1

which shows that some large values X;z.’s do not affect the risk of §®. The discussions of a
choice of ¢ and a robust estimation were given by Dey and Berger(1983), Berger and Dey(1985).

7



The multinormal model with unequal variances, X == (X1,...,X,)" ~ Np(8, D), for D =
diag(ds, . ..,d,) is practically important, and the shrinkage procedures have been studied by
Efron and Morris(1975), Fay and Herriot(1979) and Morris(1983) in some applications. A usual
minimax shrinkage estimator is given by Berger(1976) as

-2 1
(SMS pan 1 — ,__,Z_)__.._’._.._..._,____ AXIL, P 1.,
4 { ZzXf/dz dz ? 2 ’ P

but the risk-reduction is quite small when one variance of d;’s is much smaller than others.
On the other hand, empirical Bayes estimators are much shrunken and they give practically
reasonable estimates while their minimaxity is not guaranteed from a frequentist point of view.
Using the implicit function theorem, Shinozaki and Chang(1994) developed a minimax empirical
Bayes estimator as

5;;9(,' =1 = Y(P (Zdznax
(p—2)d3

max

d;
X, i1,
A,di} /[ p

where @ is a solution of the equation

X2

p
Zla+d 77777 ~%

and provided numerical comparison of the estimators.

When 0 is guessed to be in subspace V based on a prior information, it is reasonable to
consider the Stein estimator 675(V') shrunken towards V, and a large risk-reduction is expected
for @ in/near V. The prior information, however, may be vague. When several subspaces
Vi,..., Vi up to 0 are guessed, George(1986a,b) proposes an adaptive, random weighted com-
bined estimator of the Stein estimator §7%(V;) shrunken towards V;, given by

k

Z pz(X)éJg(V;)a

=1
where p;(X) is an adaptively weighting function which has a high weight when a risk-reduction
of §7%(V;) is expected to be large.

The researches on the robust Bayes estimation were developed by Berger(1980b). In the
model X ~ Nj(6,Y) for known matrix ¥, the Bayes estimator of ¢ against prior distribution
My 6 ~ Np(p, A) is given by

60 = X =BT+ A) (X — p),
where the hyperparameters p and A are determined subjectively. Let A — 3 > 0 and let
B(A) = A1A— % for 0 < XA < 1. For k > 0, consider the hierarchical prior distribution

1R (0/2) »
— - _ —(@—p) BO)~H0-p)/2
gr(0) = A |B())]172 € d,

which is an extension of Strawderman(1971). Then the generalized Bayes estimator is given by

(X —p)'(E+A) HX —p
(X =p)(E+A) X —p)

v fi AFexp{-—-Av/2}d\

o Me=lexp{—Av/2}d\’

sRB . x ) N+ A) X - p)

Tk (’U)
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which is approximated to ry(v) = min{p — 2,v}. If
(XS4 (X =) Sp-2,

this is the subjective Bayes estimator 6™ and otherwise a Stein type shrinkage estimator. In
other words, when the prior information is exact, the subjective Bayes estimator is selected,
otherwise the Stein type shrinkage estimator or the usual estimator X yields and so 5%8 has a
robust property for the subjective prior information.

The robust Bayes estimator §7% is not always minimax for any 3 and A. On the basis of
the idea of Bhattacharya(1966), Berger(1982) developed a minimax estimator incorporating the
subjective hyperparameters p and A. For simplicity, let > = diag(o?, ... ,(rg), A= (a,...,ap)
and q; > g2 > ... > g, > 0 = qpyy for ¢; = 0%/(6? + ;). Then the minimax and robust Bayes
estimator is given by, componentwise

2

5£VIB = X,,'——-—'Ui Xi—' L
0,?+a¢( !)

12 . it
X [”q— > (g5 — gj41)min {1, (J—2) }] |

i =i a1 (Xe — )2/ (0F + ax)

The robust Bayes estimation against an e-contaminated prior distribution 7 = (1 —¢)m+&q
for subjective prior my has been studied by Berger(1985), Berger and Berliner(1986). Letting
g be the distribution ¢ maximizing the marginal distribution of z, m(z|q), for the prior distri-
bution 7, they called # = (1 — &)mg + 24 the ML-I] prior distribution and obtained the Bayes
estimator against the prior as

§%(z) = Ae(2)6™ () + (1 — Ae(2))8%(2),

where 8™ designates the subjective Bayes estimator against the prior my and 87 is the empirical
Bayes estimator against the prior §. 67 is an intermediate between 6™ and 89 where the weight
depends on the rate of the contamination £. For a series of theoretical results concerning
the robust Bayes estimation, see Berger and Berliner(1984). Berliner(1985) indicated that
the problem of finding an estimator minimizing the Bayes risk uniformly against a class of
prior distributions I' comes down to that of the simultaneous estimation of scale parameters of
independent Gamma distributions, and he showed that 6’ is a robust Bayes estimator against
the class I'.

In connection with recent developments of Bayesian computations like the Gibbs sampling,
the hierarchical Bayes estimation has been studied by Berger(1985), Ghosh and Sinha(1988),
Berger and Robert(1990). In the model X ~ AN (0, 0*I) for known o2, for instance, suppose the
first step prior distribution § ~ Np{(81,021) for 1 = (1,...,1)" and for the hyperparameters 3
and o2, suppose the second step prior distributions 8 ~ N (8°, A) and o ~ m3(c2). Then the
Bayes estimator can be obtained against the hierarchical prior distributions. If the second step
is the non-informative prior distribution, that is, A — co and 75(c2) = 1, then the hierarchical
Bayes estimator is given by

2

(SHB = X — Eﬂg(aﬁl}() [ g ] (X ”"T].)

a?+ o2

2.2 2 | 2v-(p-1)/2 IX —z1| _ Ls
my (07| X) o (0 + 07) exp —————2(02 77;0-——2) , I=p E X;.
ks i=1



It is seen that the drawback of the over-shrinkage in the empirical Bayes estimation does not
arise in the hierarchical Bayes estimation. The hierarchical Bayes estimators in more general
models, the derivations of unbiased estimators of their risk functions and general conditions for
their minimaxity were discussed in Berger and Robert(1990).

In the case where the covariance matrix is fully unknown, it is sufficient to substitute an
estimator for the unknown covariance matrix with a modification of a constant as long as
we consider a loss function invariant under affine transformations (James and Stein(1961),
Baranchik(1970), Lin and Tsai(1973), Bock(1975), Alam(1975), Efron and Morris(1976a)). For
a non-invariant loss function, however, the uniform domination was recognized to be a difficult
issue (Berger et al.(1977)). For this open problem, Gleser(1986) succeeded in derivation of a
class of improved estimators, and Honda(1991) and Tan(1991) extended it to the multivariate
regression models and growth curve models, respectively.

It is interesting to note that the estimation of a matrix mean is related to that of a covariance
matrix. When p x r random matrix X has Ny« (0, I, ® I,,), Efron and Morris(1972a) showed
that the MLE X is improved on by the empirical Bayes estimator

OFM — (I, — (r —p— (X X) '}X.

Stein(1973) discussed the further domination of OEM and through the empirical Bayes ar-
guments Efron and Morris(1976b) showed that the improvement on ObM is reduced to the
estimation of the inverse of a covariance matrix and developed the 1mprovod estirnator

OIM — BFM _ (5% p - 2)(trX X)X,

Zheng(1988) extended the result of Stein(1981) to the case of the matrix mean. A canonical
form of a multivariate regression model with an unknown error covariance matrix is represented
by

X ~ Ny (0,2 @ 1), S~ Wp(n, ¥),

and various types of shrinkage estimators for © have been proposed by Bilodeau and Kariya(1989),
Konno (1991) and Shieh(1993). Some extensions to a growth curve model have been done by
Kubokawa et al. (1992) and Kariya et al.(1994, 96), which developed an interesting domination
result about a double shrinkage estimation.

The Stein phenomenon has been studied in various other situations: by Chang(1982) and
Sengupta and Sen(1991) for ordered restrictions of parameters 6y, ..., 6, by Takada(1984) and
Chosh et al.(1987) for a sequential analysis and by Stein(1960), Baranchick(1973), Takada(1979),
7idek(1978) for a multiple regression problem with random independent variables correlated to
dependent variables. Brown(1990) discussed the latest issue in two situations of the condi-
tional and unconditional inference given an ancillary statistic and indicated the interesting
result, called Ancillarity Paradox that the decision-theoretic conclusions are different in the
respective cases. Brown’s paper includes lots of interesting discussions and comments. The
Stein phenomenon has been investigated relative to other criteria for comparing estimators:
by Brown(1973), Shinozaki(1980) and Hwang(1985) for whether the Stein domination holds
uniformly in a class of loss functions and by Sen et al.(1989) for the Pitman closeness criterion.

George(1991), Krishnamoorthy(1992) and Sarkar(1994) considered the problem of estimat-
ing a common mean vector of two multivariate normal distributions with possibly different
unknown variances and established an innovative result that a linear estimator is dominated
by a shrinkage estimator even if no statistics for estimating variances are available.

The problem of estimating the loss functions of the MLE and the James-Stein estimator was
treated by Johnstone(1987) and the inadmissibility of usual unbiased estimators was shown.
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Lu and Berger(1989a) studied the estimation of the loss functions of the positive-part Stein
and the generalized Bayes estimators and Lele(1992) discussed similar issues for an exponential
family.

5 The Stein Phenomenon in Non-Normal Distributions

5.1 Spherical distributions

The Stein phenomenon has been shown for non-normal distributions. Brandwein and Straw-
derman(1990) presented a good survey for spherically symmetric and elliptical distributions.
For a distribution of 7, G/(7), the G(r)-scale mixture of a normal distribution

) 9

f(lz—0|) = / (l)p/ e”(n/Q)Ha:-..9||2(}(d7])
2T

has been studied by Strawderman(1974), Berger(1975), Srivastava and Bilodeau(1989) and

Chou and Strawderman(1990), and the Stein phenomenon has been shown for p > 3. Bravo

and MacGibbon(1988a) gave a domination result in a scale mixture of a normal distribution

with an unknown variance.

For the general spherically symmetric distributions without any restrictions to scale mixtures
of normal distributions, Brandwein and Strawderman(1978, 91a,b) and Bock(1985) showed the
Stein phenomenon for p > 4, and Ralescu et al.(1992) established it for p = 3 in a uniform
distribution on a compact support. In an elliptically contoured distribution, Cellier et al.(1989)
proved that the condition for the James-Stein estimator dominating the least squares estimator
does not depend on the form of the distribution, that is, the domination is robust. By using an
elementary stochastic analysis, Evans and Stark(1996) recently generalized the Stein identity
to a large class of distributions including spherically symmetric ones, and proved that shrinkage
estimators dominate X for p > 3.

5.2 A continuous exponential family

Hudson(1978) extended the Stein identity for the normal distribution to the continuous expo-
nential family and derived an improved estimator corresponding to the James-Stein estimator.
Especially much attention has been paid to the simultaneous estimation of scale parameters
of gamma distributions. Let Xi,..., X, be p independent random variables, X; having the
gamma distribution

f(@i,0:) = exp(—=0sz)zf 71077 /T (), 2 >0

and consider the simultaneous estimation of # = (6y,...,6,) and 0°1 = (07',..., 0,1). Em-
ploying the loss function
p
L(8,0) = 3" 07*(1 — &:6)°

for the estimation of 8!, Berger(1980a) obtained a differential inequality for the domination
and developed solutions for p > 2 when m = —2,—1,1 and for p > 3 when m = 0. It is
the surprising result that the Stein phenomenon (especially called Berger Phenomenon) holds
even for p = 2 while the dimension is at least three for the normal distribution. Ghosh and
Parsian(1980) extended the class of the solutions. For the general loss function

P

L(8,0) = > 0™ (1 — &), ¢ >0

i=1
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DasGupta(1986) showed that the best equivariant estimator &y; = X;/(as + 1), = 1,...,pis
dominated for p > 2 by the shrinkage estimator

X,
§PC = (1 (X)), =1,
1 (11‘"'*1( +¢( ))7 U 2 72)7
p b
Pi(X) = —c(sgnmi)asin’/2 :c;m’ﬂp, c> 0. (10)
j=1

Also he proved the inadmissibility of the best equivariant estimator of § for p > 2 under the
loss

p
L(é, 0) = Zcz():’“ (5L/62 - 1)2, o > 0.
i=1

DasGupta(1989) established a general theory concerning the domination in the simultaneous
estimation of positive parameters such as scale parameters of general distributions, eigenvalues
of a covariance matrix and other examples.

Other topics have been studied by Chou(1988) for an extension of Hudson’s identity to a
multi-dimensional exponential family, by Dey et al.(1987) for the Stein phenomenon for p > 3
under the Kullback-Leibler loss, by Haff and Johnson(1986) for super-harmonic conditions in
the exponential family, by Ki and Tsui(1990) for a multiple shrinkage estimation, by Dey(1990)
for estimation of scale parameters of a mixture distribution and by Bilodeau(1988) for estima-
tion of 87 = (0*,..., 91{?)’ , (fi = 1or fi = —1). Shinozaki(1984) showed that the Stein
phenomenon arises by considering the simultaneous estimation for uniform, double exponential
and t-distributions. He also presented the interesting result that even if the underlying distri-
bution is unknown, the Stein effect appears when the second and fourth moments of the usual
estimator are known. The result in an inverse Gaussian distribution was given by Bravo and
MacGibbon(1988b).

5.3 A discrete exponential family

The Stein phenomenon is known for the discrete exponential family including Poisson and
negative binomial distributions. Let Xy, ..., X} be p independent random variables, X; having
Po(8;). For the estimation of § = (0y,...,6,), two types of loss functions Lg(8,0) and L,(6,0)
have been treated in the literature where

3

i=1

For the Ly loss, Clevenson and Zidek(1975) obtained the innovative result that

—| Xi, i=1,...,p
f:IXi"{"/B"{‘p_l

improves on X = (Xi,..., Xp) forp>2and 0 < 4 < p—1 and gave admissible and generalized
Bayes estimators dominating X. Ghosh and Parsian(1981) constructed a class of generalized
Bayes estimators, Tsui and Press(1982) provided various classes of improved estimators, and
Tsui(1984) proved the superiority of the Clevenson-Zidek estimator in a negative binomial
distribution.

For the loss Lg, on the other hand, Hudson(1978) derived an identity in the discrete exponen-
tial family to give a difference inequality for the domination, which was resolved for p > 3. A se-
ries of results was unified and summarized by Hwang(1982), Ghosh et al.(1983) and Chou(1991)
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in a general discrete exponential family under the general loss function ¥3(6; — 6;)%/6;". For
comparison of several proposed estimators for the Lo and L; losses, see Jun(1993).

Other topics have been studied by Ghosh and Yang(1988) for the Stein phenomenon for
p > 3 under the Kullback-Leibler loss, by Dey and Chung(1992) for a discrete mixture distri-
bution, by Johnson(1987) for a domination result in a binomial distribution, by Brown(1981),
Johnstone(1984) and Brown and Farrell(1985) for admissibility in discrete distributions, by
Gupta et al.(1989) and Albert(1987) for contingency tables, by Lwin and Maritz(1989) and
Gupta and Saleh(1996) for a multinomial distribution and by Kuo(1986) for a Dirichlet distri-
bution.

5.4 Asymptotic theories

In nonparametric models, the asymptotic improvements on L-, M-, R- estimators by the Stein
effect in terms of a distributional risk criterion have been developed by Sen and Saleh(1985,
87), Saleh and Sen(1985) and Shiraishi(1991) and others. The Stein phenomenon in time se-
ries models was shown by Chaturvedi et al.(1993), Nickerson and Basawa(1992) and Koul and
Saleh(1993), and the decision-theoretic results in a Gaussian process were given by Spruill(1982),
Majumdar(1994) and Mandelbaum and Shepp(1987).

Yanagimoto(1994) noticed that the relation that

ENIX - 6]]") = E[[X — 8"%|] + E[||6”* — 0]*]

holds for the James-Stein estimator 679 and called it the Mean Pythagorean Relation. Recently
Eguchi and Yanagimoto(1994) showed that the mean Pythagorean relation holds asymptotically
for every regular distributions. Let (¢7(8));; be the inverse of the Fisher information for density

p(z;0), 0 € RP, and denote
P

(gradf)’ = Z ‘f 6).

J:
When we consider the estimator ]
0* = 0 + —grad u(f)
n

for the MLE 6, the mean Pythagorean relation
Rn(0,0) = Rn(0,0") + Ru(0",0) + O(n ')

holds asymptotically if and only if exp(u) satisfies the super-harmonic condition given by Stein
(1981), where Rn(O 6) designates the risk function with respect to the Kullback-Leibler loss. In
other words, 0 is asymptotically improved on by 6* if exp(u) satisfies the super-harmonic con-
dition. Also Komaki(1996) provided an differential-geometric interpretation for the asymptotic
domination of a shrinkage estimator.

6 Confidence Sets

One of marked developments of the Stein problem in the 1980s is the construction of
improved confidence sets. A usual confidence set in the model X ~ Np(8,1,) is given by
Co(X) = {6;]10 — X||* < ¢} where ¢ is a constant satisfying P(Xf) < ¢*) = ~ for confidence
coefficient 1 — a = . ‘

It is said that a confidence set C'(X) improves on Cy(X) if the following two criteria are
satisfied:
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() {0 € C(X)} > P{0 € Cy(X)} for every 6,

(IT) (the volume of C(X))<(the volume of C4(X)) for almost all X.

Since Brown(1966) and Joshi(1967) proved the inadmissibility of Cy(X) for p > 3, various
improved confidence sets have been proposed. Berger(1980b) obtained a confidence set based
on the generalized Bayes estimator, and indicated that it has a marked improvement in both
of the coverage probability and the volume while it has a bit computational troublesomeness
and no uniform improvement. Hwang and Casella(1982) gave the first work of developing a
confidence set improving on Cy(X) in an explicit form, which is given by

Cla, X) = {0:110 — 6" (a, )|I* < o}

for the positive-part Stein estimator 6 (a, X) = max{0,1 — a/|| X|[*}X. In fact Cy(X) can be
proved to be improved by C(a, X) in terms of (I) if p > 4 and a satisfies 0 < a < a, where a,
is a solution of the equation

{Vet Vet alr = (a9 2evee,

The condition on a was further extended in Hwang and Casella(1984) so that the domination
holds for p = 3. Thus the simple and useful confidence set which guarantees the uniform im-
provement is presented. Extensions to the spherical symmetric distribution including uniform,
double exponential and multivariate #-distributions and construction of improved confidence
sets were studied by Hwang and Chen(1986) and Ki and Tsui(1985), and an improved confi-
dence set shrinking towards a linear subspace was given by Casella and Hwang(1987).

In the models with unknown scale parameter(variance), Chen and Hwang(1988) and Hwang
and Ullah(1994) demonstrated that a usual confidence set based on F-statistic is asymptotically
or numerically dominated by a shrinkage confidence set. Robert and Casella(1990) succeeded in
the derivation of an exact dominance result for the spherically symmetric distributions including
a multivariate t-distribution, but the normal distribution is not contained and it remains still
open as an interesting problem under the normality.

The above improvements are done in terms of (I) while the same volume holds. From a
natural sense of a confidence set, however, the improvement in terms of (I1I) may be desirable.
By shrinking the sphere Cy(X) towards the origin, Shinozaki(1989) succeeded in the derivation
of improved confidence sets in the sense of minimizing the volumes while the same confidence
coefficient holds.

The empirical Bayes confidence sets have been studied by Morris(1983) and Casella and
Hwang (1983). Let Ig(#) = 1if 6 € C and = 0 if 8 ¢ C. Then Cp(X) is minimax relative to
the loss

L(0,C) = ko(the volume of C) — I(6),

for ky = exp(—c?/2)/(2m)P/2. Casella and Hwang(1983) constructed an empirical Bayes confi-
dence set with respect to the loss L(#,C). The Bayes confidence set against the prior distribu-
tion 6 ~ Np(0,721) is given by

Cp(X) = {616 — BX|[* < B[¢" — plogB]}

for B = 72/(r% + 1). Estimating 7 or B from the marginal distribution, we get the empirical
Bayes confidence set

Cs(X) = {6:116 — 57 (0 — 2, X)|* < us(1X 1D},
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where

2 [ (-8 [E-peg(1-2E)],  ilIXII<e
e (1X11) = { él - n’%ﬁg‘) [cz~plog (1 - IJ‘%%)]’ if ||X1] > ¢

While Cgp(X) has a smaller volume than Cy(X), no analytical result is given for the cov-
erage probability. It is numerically demonstrated that Cgp(X) satisfies requested confidence
coefficients for small p (p > 5).

As a problem related to the estimation of the loss function stated in Section 4, the es-
timation of the accuracy of the usual confidence set Igy(x)(6) = I(6 € Co(X)) is discussed.
Decision-theoretic results about the admissibility of the unbiased estimator v have been given
by Lu and Berger(1989b), Hwang and Brown(1991), Robert and Caseclla(1994), George and
Casella(1994), and Casella et al.(1994). A similar estimation problem is also considered in the
testing hypothesis, and decision-theoretic results were given(Hwang et al.(1992)).

7 Estimation of a Covariance Matrix

In this section, we survey the estimation of the covariance matrix, which is related to the
simultaneous estimation of the matrix mean and of the scale parameters.

Let p x p random matrix S have Wishart distribution Wy(n, ¥ With mean nY, and consider
the estimation of ¥ by ¥ relative to the Kullback-Leibler loss Y- — log[Byt —p. Tt
is known that unbiased estimator £y = n~ 'S has a drawback that e}g}envalues of spread
out more than those of ¥, and for modifying 3, it is necessary to shrink eigenvalues of o
towards a middle value. Works along this direction can be found in Stein(1977), Efron and
Morris(1976), Haff(1980), Sugiura and Fujimoto(1982) and others. By use of an integration by
parts, Haff(1979) derived a useful formula, called the Haff identity or Wishart identity, in the
Wishart dlstrlbutlon For p x p matrix V = (v35(S)), define Viy/2) = (v;;) where v;J = v,  for
i = J and = 271y, for ¢ # j, and denote D = (0/0s45)(1/2)- Then the de‘f identity is given by

oS
+(n —p— 1) E[R(S)trS™'V], (11)

E[R(S)trVY™] = 2Eh(S)tr(DV)] + 2E [tr {w . ‘/(1/2)}]

for absolutely continuous real-valued function h(S). It is noted that the identity can be also
obtained by using the Stein identity (Stein(1977) and Takemura(1991)). This identity is very
powerful for the derivation of improved estimators of the covariance matrix.

Since the general linear (GL) group does not satisfy Kiefer’s conditions for the minimaxity,
the best equivariant estimator g is not minimax for p > 2. Letting G} be a set of lower
triangular matrices, which is a subgroup of GL, James and Stein(1961) indicated that the best
G+-equivariant estimator is minimax and is given by

EJS — Y’DT,, D= diag(d1,. . ,dp)7 d’i = (’]’L er‘{- 1 — 27;)*1’

where T' € G such that S = TT'. However 3378 depends on a co-ordinate system, and it is
desirable to construct orthogonally invariant minimax estimators.

Two approaches to the derivation of orthogonally invariant minimax estimators are known.
One is the method of Stein(1977) and Dey and Srinivasan(1985). Let R be an orthogonal
matrix and denote L = diag(éy,...,#,), a diagonal matrix such that S = RLR’. Then 78 ¢
be dominated by the orthogonally mvanant estimator

35T = Rdiag(tidy, . . ., bpdp) R
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Dey and Srinivasan(1985) developed an estimator improving on 5T further for p > 3. Sheena
and Takemura(1992) showed the inadmissibility of Y57 for p > 2 by considering a truncation
rule. Haff(1991) developed a general theory of VFBE( Variational Form of Bayes Fstimator),
and demonstrated through simulation experiments that VFBE of ¥ is better than ST,

The other is an approach of Takemura(1984), which considered the orthogonally invariant

estimator

ST = [ TTe DI dp(T),
O(p)

dominating 375 where p designates the uniform distribution on the orthogonal group O(p)
and TrT} = TVST for I' € O(p) and Ty € Gf. The explicit expressions of STK are given for
p < 3, but it is too difficult to give them for p > 4(Takemura(1984)). The difficulty arises
from a computation of an expectation of a ratio of random variables. Perron(1992) obtained
explicitly an approximated solution by replacing it for a ratio of expectations, and showed it is
an orthogonally invariant minimax estimator.

Other topics have been studied by Yang and Berger(1994) for the Bayes estimation of
¥, by Krishnamoorthy and Gupta(1989), Dey et al.(1990) for estimation of the inverse of the
covariance matrix ¥, by Konno(1995) for an extension to a growth curve model, by Dey(1988),
Dey and Gelfand(1989), Jin(1993) and DasGupta(1989) for the simultancous estimation of the
eigenvalues of ¥, by Eaton and Olkin(1987) for the estimation of a Cholesky decomposition
and by Loh(1991a,b) for the simultaneous estimation of two covariance matrices >; and ¥;.

Related to the covariance matrix, the estimation of the ratio of two covariance matrices
has been studied by DasGupta(1989), Konno(1992), Bilodeau and Srivastava(1992). Especially
Bilodeau and Srivastava derived the Kullback-Leibler loss for estimation of the ratio, and showed
that the quite similar results to the case of the covariance matrix hold in the estimation of the
ratio. Related to the estimation of the covariance matrix and the mean vector, Kuriki(1993)
considered the problem of estimating a skew-symmetric normal mean matrix with applications
to paired comparisons models and derived unbiased estimators of risks of orthogonally invariant
estimators, which provided a class of minimax estimators.
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