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ABSTRACT

In this paper, we consider a two period decision problem, where the feasible set is the set
of “certain x uncertain” consumption pairs. That is the decision maker chooses (z,m) in a
feasible set, where z is a certain first period consumption and m is a random second period
consumption, a Borel probability measure on the set of real numbers. The purpose of this
paper is to present revealed preference theory for nonexpected utility on “certain X uncertain”
consumption pairs. We present necessary and sufficient conditions for the data to be consistent
with some nonexpected utility functions. In contrast to the standard revealed preference theory,
it is shown that the acyclicity of the binary relation naturally introduced from the decision is not
sufficient for the existence of a utility function.



1 Introduction

These two decades have seen a growing interest in nonexpected utility theory both in atemporal
and in intertemporal frameworks; see, for example Chew [1983], Dekel [1986], Epstein and Zin
[1989], Kreps and Porteus [1978], and Selden [1978]. However, not much has been developed
in revealed preference theory for nonexpected utility.! In this paper, we consider a two period
decision problem, where the feasible set is the set of “certain x uncertain” consumption pairs.
That is the decision maker chooses (x,m) in a feasible set, where z is a certain first period
consumption and m is a random second period consumption, a Borel probability measure on the
set of real numbers. Typical examples of such a problem are financial decision problems, see
for example Fama and Miller [1972], general intertemporal decision problems, see for example
Selden [1978], and so forth. The purpose of this paper is to present a revealed preference theory
for nonexpected utility on “certain X uncertain” consumption pairs.

A typical approach to modeling an individual choice in this environment is to specify an
additively separable utility function over time with a constant discount factor, and further hy-
pothesize expected utility maximization in the second period, but this is not the only approach.
Clearly, there is no intrinsic reason why utility functions should be additive over time and also
there are behavioral hypotheses other than expected utility maximization. In fact Epstein and
Zin [1989], Kreps and Porteus [1978], and others specify a recursive intertemporal utility function
and consider nonexpected utility maximization behavior, for example. Thus there is no unique
way to define a “rational consumer” whose preference we attempt to reveal from given data.

Therefore, we can define varieties of classes of utility functions and, for each class, can seek
necessary and sufficient conditions for data to be consistent with a utility function in the class,
i.e., the nonparametric restrictions on the data derived from the utility maximization. In this
paper, we investigate several types of nonexpected utility functions.

In order to obtain necessary and sufficient conditions for the existence of a nonexpected
utility functions, we follow the revealed preference tradition. In contrast to the standard revealed
preference theory, it is shown that the acyclicity of the binary relation naturally introduced from
the decision is not sufficient for the existence of our utility functions.

The plan of this paper is as follows. The next section specifies the economic environment
in which the decision maker makes choices and the data we assume to observe. Moreover, we
intuitively explain how a utility function is constructed. In section 3, we then proceed to provide
necessary and sufficient conditions for a data set to be rationalized by a risk separable utility
function. Then, in Section 4, we discuss the case that the second period utility has an expected

! As for expected utility theory, Border [1992], Green and Osband [1991], He and Huang [1994], Kamiya and
Ichimura [1995], and Kim [1991] presented some conditions for expected utility maximization. On the other hand,
Epstein and Melino [1995] recently investigated semiparametric restrictions of nonexpected utility rationalization.



utility representation and the case that the utility is not risk separable.

2 The Model and Examples

Let X be a compact subset of R, where R is the set of real numbers, and M(X) be the set of all
Borel probability measures over X. The domain of the agent’s choice is X x M (X). The data
consist of a finite number, N, of choices, y' = (z!,m!),...,y"¥ = (zV,y"), and corresponding
feasible sets, B,..., B, from which these choices are made, i.e., y" € B",n = 1,...,N. We
assume that B!, ..., BN are all subsets of X x M(X). Let D = {(y", B")}_;, D = {(z", m™)}}_,
and Xp and Mp be the projections of D% on X and M(X), respectively, i.e., Xp = {z"}}_; and
Mp = {m™}_,. Note that our “certain x uncertain” environment is the same as that of Selden
[1978].
The following example illustrates a typical case we have in mind.

Example 1. At ¢t = 1, the decision maker obtains an exogenously given income /1, and consumes

z1 and holds security s; at prices p; and ¢y, respectively. ;
There are two states u and d in the second period. The probability of u is denoted by « € [0, 1].

The price of security, the price of good, and the exogenously given income at state ¢ are denoted

by qa(i), p2(%), and I(i), ¢ = u,d, respectively. Note that at ¢ = 2 the decision maker does not

go(2)s1+12(2
p2(2)

Take X to be a compact subset of Ry. For 23,29 € X, let @0 z1 + (1 — @) o 23 denotes the

hold security and consumes , 1 =u,d.
lottery which has rewards z; and z9 with probability « and 1 — « respectively. Then, in the case
described above,
' Bl = {(21,0 zp(u) + (1 — @) 0 29(d)) € X x M(X) |
2], z2(U), zZ(d) € X7
ds; € R such that
piz1+qis1 =1y
pa(u)z2(u) = ga(u)s1 + I2(u)
pa(d)22(d) = qa(d)s1 + I2(d)  },

and the decision maker chooses
y! = (z1, 0 0 xy(u) + (1 — @) o 29(d)) € BL.
Suppose we have other data B" C X x M(X) andy" € B",n=2,...,N.
As for the timing of the decision, there are two cases: (i) the decision maker chooses (z,m)

at t = 1 and (ii) the decision maker chooses x at t = 1 and m at the beginning of ¢t = 2. The
following arguments can be applied to both cases.



There are several types of nonexpected utility functions. In this section, we only investigate
the risk separable case. A pair of functions (W, u), where W : X x R — R and p1: M(X) — R,
is said to be a risk separable rationalization for D if for alln =1,..., N

W(z"™, u(m™)) > W(z,pu(m)) forall (z,m)e B™\ {(z",m")}, 2

W is strictly increasing, and p is strictly increasing with respect to first order stochastic domi-
nance; for the precise definition, see Section 3.

i can be considered as a utility function on uncertain second period consumption and W
can be considered as a utility function of a pair of certain first period consumption and the
utility of uncertain second period consumption. The binary relation derived from (W, u) is risk
separable, i.e., the ranking of the uncertainty about the second period consumption is independent
of the level of the first period consumption. That is 37, W(Z, u(m)) > W(Z, u(m’)) implies
Vo, W(z, u(m)) > Wz, u(m')). Tt is also worthwhile noting that W(z, u(m)) > W (Z, u(m'))
implies pu(m) > p(m') because W is strictly increasing.

Remark. We may consider the case that p has an expected utility representation, i.e.,
wu(m) = [udm for some increasing function u : X — R, and the case that the second period
utility u depend also on the first period consumption, i.e., the case that the utility function is
not risk separable. These cases are discussed in Section 4.

From the data, we can naturally define a binary relation:

(z",m") = (z,m) if (z,m) € B" and (z,m)# (2", m").

<

It seems that if the binary relation » defined above does not have a cycle, then there exists
a risk separable utility function which rationalizes the data. However, because of the special
structure of our utility function, we need further conditions for the existence of the risk separable
rationalization. The following example shows that there exists a data set for which we can
construct a utility function on X x M(X) that rationalizes the data but there does not exist a
risk separable rationalization.

Example 2.

Consider the economy in Example 1. The good’s price is 1 in both periods. We have two
observations. In the first observation security price in the first period is 1, and in the second
period, it is either 1 or —1 with equal probability. The first period income [} is 6 and the second
period income I is always 3. We observe that the first period consumption x; and the amount

*Let u : X — R be u(z) = 2. Then p(m) can be written as (U), where U is the distribution of utility in the
second period.



of security purchased s; are 4 and 2, respectively. In the second observation security price in the
first period is 1 and both the security price and the income in the second period are stochastic:
(q2,I5) = (—=1,5) or (1,1) with equal probability. We assume that [; = 2. We observe that
(:23‘1, 81) = (1, 1)

Clearly we can construct a utility function on X x M(X) that would rationalize the two
observations. But the data caanot be rationalized by a risk separable utility function. To see
this, first observe that the purchased security in the first observation implies a purchase of the
lottery .50 5+ .50 1. Moreover, with even less purchase of the security the decision maker could
have purchased the lottery .5 04 + .50 2. Next, note that the distribution of second period
consumption in the second observation is equal to .5 04 + .50 2. In the second observation, the
decision maker could get the cheaper lottery .5054 .50 1 which is equal to the chosen distribution
in the first observation. Thus p cannot be constructed in this case.

Below, we sketch how to obtain a necessary and sufficient condition for the existence of a risk
separable rationalization.?

In Example 1, let & = .3, p1 = pa(u) = pa(d) = q1 = 1, 1 = 10, I(u) = Ir(d) = 0,
g2(u) = 1.5 and qa(d) = .5. Suppose the decision maker chooses 1 = 4 and s; = 6. Then,
by the budget constraints, za(u) = 4 and z2(d) = 12. We denote this consumption pair by
(4, (4[.3],12[.7])), where the probabilities are in the brackets. On the other hand, the decision
maker could choose 7 = 7 and s; = 3. That is (7,(2[.3],6[.7])) is feasible. Then it can be
considered that (4, (4[.3],12[.7])) is revealed preferred to (7,(2[.3],6[.7])). Thus if there exists a

rationalization, the following binary relation > must be consistent with the rationalization:

(4, (413, 12.7])) = (7, (20.3], 6[.7))).

3We present some definitions used in this paper.

e For a set A, a set of ordered pairs, denoted by = C A x A, is said to be a binary relation. Moreover,
(a1, a2) € = is also written as a1 > as.

A binary relation > C A x A is said to be transitive if Vai,a2,a3 € A,a1 > a2 and a2 > a3 imply
ar > as.

For a binary relation = C A x A, =’ C A x A is said to be the transitive closure of > if >’ is the smallest
transitive binary relation such that > C »'. That is, >’ is the intersection of all transitive binary relations
which include .

A binary relation = C A x A is said to be cyclic if there exist a1,...,a4n € A, such that a1 > az > --- >
Un > Q1.

A binary relation > C A X A is said to be acyclic if & is not cyclic.

A binary relation > on a set A is said to be total if Ya,b € A such that « # beither a > b or b > a holds.

.

(a1,a2) ¢> is written as ~ (a1 > a2).

wn



That is, for any rationalization (W, p) for D,
W (4, 1 (4].3],12[.7])) > W(7, u(2[:3}, 6[.7]))
must hold. Similarly, for all feasible (z1,m), we denote
(4, (4].3],12[.7])) = (z1,m).

Since the number of data is N, similar binary relations can be defined for each data.
Further, we wish to require the monotonicity of utility functions. Thus we define the following
binary relation which is also consistent with the utility function:

(z1,m) = (zy,m') if (i) z1 >}, and m first order stochastic dominates m’ or
(i1) zy > 7} and m=m/'.

That is, for any rationalization (W, u) for D,
W (21, p(m)) > Wz, p(m'))
must hold. For example, for any rationalization (W, p),
W (7, 1(10[.4], 12{.6])) > W (6, u(9[.4], 12[.6]))

holds, so that
(7,(10[.4], 12.6])) > (6, (9].4},12[.6])

must be consistent with the existence of (W, u).
If the binary relation introduced so far has a cycle, then clearly there does not exists a
rationalization (W, ). For example, if

(zy,m) = (2}, m') = (x1,m),
holds, then for any realization (W, i)
W (1, p(m)) > W (zh, u(m)) > Wz, p(m)),

must hold. This is a contradiction.
Further, binary relation can be also naturally introduced. Suppose

(7,(10[.4], 12[.6])) =~ (7, (11[.4], 11].6})
holds, then we need to introduce the following binary relation:

(+) (2, (10].4),12[.6])) = (z,(11[.4),11[.6])) for all z € X.
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The reason is as follows. If there exists a rationalization (W, ), then
W(7,u(10[.4],12[.6])) > W (7, u(11].4], 11[.6]))
holds. Thus, by the monotonicity of W,
w(10[.4],12[.6]) > p(11[.4], 11[.6])
must hold so that
W (x, u(10[.4],12[.6])) > W(z, u(11[.4],11[.6])) for all z € X

holds. Thus the existence of (W, ) must be consistent with (x). By this way, we extend the
binary relation as large as possible. (The details are discussed in the next section.) By the
construction, if the extended binary relation has a cycle, then clearly there does not exists a
rationalization (W, u).

In the standard revealed preference theory, the acyclicity of the binary relation naturally
introduced is sufficient for the existence of a utility function; see, for example, Richter [1971].
However, in our case, the acyclicity of the extended binary relation is not sufficient for the
existence of (W,pu). The following example shows that the acyclicity of the extended binary
relation is not sufficient for the existence of a risk separable rationalization.

Example 3. Let N = 16. For i =1, let
B = {(z',m}), (% + 1,m'®)}, y* = (2" + 1,m’%)
BY = {(z%* +1,m?), (2", m™)}, Yy = (2% m?)
B = {(z*, m?), (%, m™)}, v*° = (*°,m")
B = [(z,m?), (2, mi9)}, ¢ = (2™, m?),

where the probability measures of second period consumption in the above do not first order
dominate each other, and z¢, 2*% + 1,2°°, and z** are all different real numbers. The other
feasible sets, B i = 2,3,4,j = a,b, ¢, d, choices, /,i = 2,3,4,5 = a, b, ¢, d, will be given later.
Clearly, we obtain the following binary relations:

2 3 1b

, M7 = m la,

mt = m ,m* = m

Then, by risk separability,

(x,m“’) - (x,mQ), (z, m3) - (x,mlb), and (z, m4) - (w,mm)



hold for all z. Note that risk separability does not create further binary relation. Suppose we
have a rationalization (W, p1), then one and only one of the following cases holds:

(1) p(m") > p(m®) and p(m?) > p(m?)

(2) p(m') > p(m®) and p(m?) < p(m?)
(3) pm?) < p(md) and p(m?) > p(m?)
(4) p(m?) < p(m®) and p(m?) < p(m?).

Suppose (1) holds. Then it must be consistent with m! = m? and m? > m*. So, by (z'¢,ml) =
(z1,m3) = (z°,m!), m! = m! holds. Similarly, by (z'¢,m?) - (z'%,m?*) » (x4, mte),
m2 > m!® holds. Then, we have a cycle

(', mb) = (2%, m') = (2 +1,m?) = (2" +1,m'*) = (z¢, mb).

For the cases (2), (3), and (4), we construct {(B*, ), ..., (B“,y")}L, in which the roles of
mt, m®, m2, and m* are properly replaced, the probability measures of second period consumption
do not first order dominate each other, and the first period consumptions are all different real
numbers. It is easy to check that there is no cycle of the binary relation defined by the data.
However, by the same argument as for (1), we obtain a cycle in the other three cases.

We should introduce further condition for the existence of (W, p). In the next section, if
there exists a total binary relation on D¢ such that, (i) it is consistent with the extended binary
relation, and (ii) when we further extend the total binary relation on D%, it is still acyclic, then
there exists a rationalization (W, ). The condition is also shown to be necessary.

3 Risk Separable Rationalization

In this section, we present our results on risk separable rationalizations. Recall that, in our
model, there are a finite number of sets of alternatives, B!,..., BV, such that B C X x M(X)
for n = 1,..., N and that the decision maker chooses (2", m") € B™. Thus the choices of the
decision maker are represented by D = {(z",m"), B"}."_,. Recall also that D% = {(z", m”)}ﬁzl,
Xp={z"}N_,, and Mp = {m"}_,.

Next, we introduce the topology of weak* convergence on M(X).* It is well-known that
M(X) endowed with the topology of weak™* convergence is a compact separable metric space; see

“The topology of weak* convergence is often called the topology of weak convergence. In the topology, m? — m
if and only if f udm? — f udm for all bounded continuous function v : X — R.
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Parthasarathy [1967]. The metric, called Prohorov metric, is denoted by d? : M(X) x M(X) —
R,. The metric on X x M(X) is defined by

d((z, m), (2, m")) = |z — 2| + & (m, m’).

DEFINITION 3.1 . For m, m' € M(X), m first order stochastic dominates m/, denoted mFm/,
if m#m' and Vo € R, m({z|z > a}) > m'({z]z > a}).

Now we are ready to present the definition of a risk separable rationalization.

DEFINITION 3.2 . The pair of functions (W, u), where W : X x R — R and p: M(X) — R, is
said to be a risk separable rationalization for D if, for allm =1,..., N,

1. W(z™, p(m™)) > W(z, u(m)) for all (xz,m) € B™\ {(z",m")}>
2. W is continuous and strictly increasing,

3. p is continuous in the topology of weak™ convergence and is strictly increasing with respect
to first order stochastic dominance, i.e., p(m) > u(m') for all m,m’ € M(X) such that
mbm'.

If D has a risk separable rationalization (W, u), then by the monotonicity of W and p it needs
to be consistent with the following binary relations.

DEFINITION 8.3 . For all (z,m) € X x M(X), we define the following binary relations.
1. (z,m) »=p (&',m) if (i) z>2 and mFm/, or (it) z >z and m =m/.
2. (,m) =p (',m) if (z,m) >=p (2/,m) or (x,m) = (', m).

Let B" = {(z,m) € X x M(X) | 4(z,71) € B", (z,7) =r (x,m)}. If D has a risk separable
rationalization (W, u), then it also needs to be consistent with the following binary relations.

DEFINITION 3.4 . For all (x,m) € X x M(X), we define the following binary relations.

1. (z,m) =g (@, m) if (z,m) # (&', m), and In, (z,m) = («",m") € D% and («',m') € B™.

2. (x,m) =g («,m') if In, (x,m) = (", m") € D* and («/,m') € B".

*Let u: X — R be u(z) = z. Then p(m) can be written as p,([j), where U is the distribution of utility in the
second period.



Note that =g is a revealed preference type binary relation.

In what follows, we assume the following condition for the data.

CONDITION 3.1 . Foralln=1,...,N, B" is closed and there does not ezist (z',m') € B™ such
that (', m') > (2", m™).

Let =% = =5 | »r and =Y = =g |J >=F. The transitive closures of »0 and »Y are denoted by
=0 and EO, respectively. Of course, for the existence of a risk separable rationalization, the binary
relation introduced in X x M(X) through 1-4 above should be acyclic. But, as we have shown
in Example 2, even when it is acyclic, the data may not have a risk separable rationalization.

The plan of the rest of this section is as follows. We first define risk separability and time
consistency in terms of binary relations. Then we define the smallest risk separable, time con-
sistent binary relation containing >°. However, the acyclicity of the extended binary relation is
not sufficient for the existence of (W, p1); see Example 3 in Section 2. We need further condition
for the existence. If there exists a total binary relation on X x Mp such that (i) it is consistent
with the extended binary relation, and (ii) when we further extend the total binary relation on
Xp x Mp using risk separability and time consistency, it is still acyclic, then there exists a ratio-
nalization (W, u). The condition is also shown to be necessary. It is not easy to check whether or
not the binary relation has a cycle, since the domain has an infinite number of elements. Thus
next we define a binary relation only on Xp x Mp and present a condition on the new binary
relation which is equivalent to the acyclicity of the binary relation on X x M(X). Since Xp x Mp
has a finite number of elements, it is easy to check the new condition.

Risk separability and time consistency can be defined in terms of binary relations as follows.
Note that the following definition parallels those in Chew and Epstein [1989] and Johnsen and
Donaldson [1985].

DEFINITION 3.5 .

o A binary relation = C (X x M(X))x(X x M(X)) is said to be risk separable if IT, (T, m) >
(T, m') wmplies Yz, (z,m) > (z,m').

o A pair of binary relations (=, G), where = C (X x M(X)) x (X x M(X)) and G C M(X) x
M(X), is said to be time consistent if Iz, (T, m) = (T, m') implies mGm/’.

The smallest risk separable, time consistent binary relation is defined as follows. Let (=%, F*¥)
be a pair of binary relations on X x M(X) and M(X), respectively, such that (i) =° C =
and FO ¢ F® and (ii) (=%, F®) satisfies risk separability and time consistency. Then clearly
(1, FI)y = (N, =% N, F®) satisfies risk separability and time consistency and it is the smallest

10



binary relation satisfying (i) and (ii). As we have shown in Example 3, the acyclicity of this pair
of binary relations is not sufficient for the existence of (W, p).

ASSUMPTION 3.1 . There exists a total binary relation =7, on D% satisfying the following con-
ditions:

(x) the srnqllest risk separable, time consistent binary relation which contains =13 = +%, -1,
denoted by =™, 1s acyclic.

Note that =%, can be naturally considered as a binary relation on X x M(X). Thus in the above,
=% U =1 can be naturally defined.

THEOREM 3.1 . Suppose Condition 8.1 holds. Then there exists a risk separable rationalization
if and only if Assumption 3.1 holds.

The proof of the above theorem is given in the following manner. At the end of this section,
we present a theorem (Theorem 3.3) which is equivalent to the above theorem. Then, in the
appendix, we prove Theorem 3.3.

At first glance, the condition seems not to be necessary. Indeed, if there exists (W, u), then
there may exist (z,m),(z',m') € Xp x Mp such that W(z,u(m)) = W(z',u(m’)), ie., the
elements of X p x Mp are not totally ordered. However, in this case, we can generate a new binary
relation, which is total and acyclic on Xp x Mp, by modifying the binary relation generated by
(W, ).

It is not easy to check whether or not the given data satisfy Assumption 3.1, since s-min g
not constructively defined and the domain contains an infinite number of elements. First, we
construct >™2 by a finite number of steps.

Step 1 For all m,m’ € M(X), if there exists Z € X such that (T,m) =9z, m'), then we define
mFlm’. Moreover, we define (x, m)T(z,m’) for all z € X. Let T be the transitive closure
of F1 and T] be the transitive closure of the union of > and 7. Let >! be the union of
>0 and Tl, and = be its transitive closure. Moreover, let =! be the union of >° and Tl,
and El be its transitive closure.

11



Step h For all m, m’ € M(X), if there exists Z € X such that (F,m)=""1(Z,m’), then we define
mF'm/. Moreover, we define (z, m)T!(z,m’) for all z € X. Let F" be the transitive closure
of F and T" be the transitive closure of the union of > s and T". Let =" be the union of
>0 and —’I_’h', and =" be its transitive closure. Moreover, let >" be the union of =% and Th',
and =" be its transitive closure.

By the following lemma, after a finite number of steps, the process ends with binary relations
with risk separability and time consistency.

LEMMA 3.1 . There ezists an integer h such that for all h > h, =" = -,

Proof. See the appendix.

Note that clearly ¥ = w7 = 1 holds. Let 1= ! U >} Then we extend it by using
the same steps as the above. By the same argument as the proof of the above lemma, the binary
relation obtained is equal to =™,

Since X x M (X) contains an infinite number of elements, we cannot directly verify Assumption
3.1. We will present an assumption which can be directly checked and is equivalent to Assumption
3.1

Let

B}, = B"((Xp x Mp).

We define some binary relations on Xp x Mp as follows.

DEFINITION 3.6 . For all (z,m) € Xp x Mp, we define the following binary relations.

1. (8, m?) =grp (¥, m?) if (z*,m?) # (¥, m?) and In,(z*,m) = (2", m") € D* and
(', m7") € BY.

2. (zt,m¥) =rp (¢, m?") if 3n, (8, m?) = (2, m") € D* and (', m)") € B%
3. (zt,m?) =pp (@, m?) if (i) ' > 2" and mIFmd’, or (i) 2t > 2% and m/ =m?’.
4. (28, m?) =Fp (wi/,mj/) if (28, m?) =Fp (mil,mj’) orx* =1 and m? =m? .

Let >% = »pp U ~rp and t% = >rp U =Fp. The transitive closures of >—% and t% are
denoted by ;% and E%, respectively. By the following steps, ;?) and E(}) are extended to satisfy
risk separability and time consistency.

12



Step 1 For all m,m' € Mp, if there exists T € Xp such that (Z, m)=0(%, m'), then we define
mFym'. Let F}J be its transitive closure. Moreover, we define (z,m)I},(z,m') for all
z € Xp. Let T}) be the transitive closure of the union of =y and T}. Let >}, be the
union of =% and 'T}j, and ¥} be its transitive closure. Moreover, let =1 be the union of
>;% and Ti), and Ei) be its transitive closure.

Step h For all m,m’ € Mp, if there exists T € Xp such that (Z,m)=% (z,m'), then we define
mFAm/. Let F% be its transitive closure. Moreover, we define (z,m)Tp(z,m') for all
r € Xp. Let T%be the transitive closure of the union of >pp and TB. Let >-’I") be the
union of =% and T’}), and > be its transitive closure. Moreover, let =7, be the union of
=0 and T%, and E'}S be its transitive closure.

Since X x Mp contains only a finite number of elements, then, after a finite number of steps,
the process yields a binary relation with risk separability and time consistency. Let h* be the
integer such that Yh > h*, =% = >—’L”; . Let =5 = h* U =%. Then we extend it by the same
steps as the above. Let the extension of >—§)* be >§in.

ASSUMPTION 3.2 . =51 45 acyclic.

THEOREM 3.2 . Suppose Condition 3.1 holds. Then Assumption 3.1 holds if and only if As-
sumption 3.2 holds.

Proof. Assumption 3.1 clearly implies Assumption 3.2. The converse immediately follows
from Assumption 3.1 and Lemma 5.2 in the appendix.

Q.ED.

THEOREM 3.3 . Suppose Condition 8.1 holds. Then there exisls a risk separable rationalization
(W, p) for D if and only if Assumption 3.2 holds.

Proof. See the appendix.

Clearly, the acyclicity of >~’l’§in can be checked in a finite number of steps.
Under the same assumption, y can be chosen as a certainty equivalent.®
19 H Y €q

SFor the details of a certainty equivalent, see Chew and Epstein [1989] and Epstein and Zin [1989].
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COROLLARY 3.1 . Suppose Condition 3.1 holds. Then there exists a risk separable rationalization
(W', i) for D such that Yz € X, 1/ (6(z)) = z if and only if Assumption 3.1 holds, where 6(z) is
the probability measure which assigns unit mass to {x}.

Proof. For (W, ) obtained in Theorem 3.1, clearly, there exists a continuous, strictly in-
creasing function f : R — R such that Vo € X, f(p(6(z))) = = Let p/ : M(X) — R be
i (m) = f(u(m)). Then we define W'(x,a) = W(z, f1(a)). (W, 1) is clearly a risk separable
rationalization for D such that Vz € X, u/(6(z)) = z.

Q.ED.

4 Other Rationalizations

Using the proof of the theorems in Section 3, we can obtain necessary and sufficient conditions
for the existence of other rationalizations.
We first seek for the condition for the existence of an expected utility representation of p.

DEFINITION 4.1 . The pair of functions (W, u), where W : X xR — R andu: X — R, is said to
be a risk separable rationalization with an expected utility representation if, for alln =1,..., N,

1. W(z™, [ udm") > W(z, [ udm) for all (x,m) € B",
2. W is continuous and strictly increasing,

3. u is a continuous, strictly increasing function.

Considering =% as a binary relation on X x M(X), o=k U =3 can be defined,
where =5 is the transitive closure of =1® and =" is defined in Lemma 3.1. Below, we extend

it to a transitive, risk separable, time consistent binary relation on X x M(X). First, for all
VYm, m' € M(X), we define

mF#*m!' if 3z € X, (T, m)=z, m').

Let 7 be its transitive closure. Then, for m,m’ € M(X) such that m_F—#m’, we define
(z,m)T#(x,m) for all z € X. Let T# be the transitive closure of the union of = and T#,
1= 0 T#, and =% be the transitive closure of =#. (;#,vﬁ’#) satisfies risk separability and
time consistency; for the details, see the appendix.
Let, for m™ € Mp,
B(m")={me M(X) | n’zf”’ﬁ#m}
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and
A= {m e M(X)|YueU,, [ udm > O},

where M(X) is the set of finite countably additive Borel signed measures on X, and U, is the
set of continuous increasing functions on X. Also let

N
G:{<Za”(7ﬁ,”——m”)) |n_2nEE&B(mn),nzl,...,N,a:(al,...,aN) ESN~1},
n=1

where @6B(m") is the (weak*) closed convex hull of B(m™) and SN-1is the (N — 1)-dimensional

unit simplex. Let cn G be the cone generated by G and cl (cn (i) be the weak™ closure of cn G.

ASSUMPTION 4.1 .
c (en G) mA = {0},

where 0 is the zero measure.

THEOREM 4.1 . Suppose Condition 3.1 holds. Then there exists a risk separable rationalization
with an expected utility representation (W,u) if and only if Assumptions 3.2 and 4.1 hold.

Proof. Clearly, the assumptions are necessary. By Assumption 4.1, there exists a strictly
increasing function u on X such that mPF " m implies [wudm™ > [wudm; for the proof, see
Border [1982].7 Then the existence of a risk separable rationalization with an expected utility
representation follows from the same arguments as in Lemma 5.5 in the appendix and as in the
subsection of the construction of W in the appendix.

Q.ED.

Next, as in Selden [1979], we investigate the case that the utility is not risk separable.

DEFINITION 4.2 . The pair of functions (W,u), where W : X x R — R andu: X Xx X — R, is
said to be a rationalization with an ewpected utility representation if, for alln =1,..., N,

1. W(z", [u(z™, z)dm"(z)) > W(z, [u(z, z)dm(z)) for all (x,m) € B",
2. W is continuous and strictly increasing,

3. u is continuous and is strictly increasing in the second argument.

In fact, in order to obtain u we need to strengthen Border’s condition slightly; for the details, see Kamiya and
Ichimura [1995].
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Since the utility is not risk separable, we can construct the second period utility function for
+ each first period consumption z. Let, for each (z",m") € D4,

B(z",m") = {m e M(X) | (2", m") =g (z",m)}.
Then let I(z") = {i € {1,..., N} | 2 = 2"} and

G(z™) { ( Z o (”‘”' — m’)) | ™t € @B(x',m'),i€ I(z"),q; >0, Z a; =1, } .

e l(zm™) ieI(z™)

ASSUMPTION 4.2 . Foralln=1,... N,

c (en Gz ﬂA {0}.
ASSUMPTION 4.3 . »pg is acyclic.

THEOREM 4.2 . Suppose that Condition 8.1 holds and that there exist £ and T such that X =
[z,Z]. Then there exists a rationalization with an ezpected utility representation (W, u) if and only
if Assumptions 4.8 and 4.2 hold.

Proof. Clearly, the assumptions are necessary. By Assumption 4.2, there exists a function
u on X x X such that u is strictly increasing in the second argument and (z",m") =g (z",m)
implies [ u(z™,z)dm™(z) > [u(z",z)dm(z). Without loss of generality, we can assume that
" <z"tl n=1,...,N — 1. Then, we define

uw(z,z) =u(z!,2) if z €z,

w(z, z) = tu(z™, 2) + (1 — u(x" T, z) fH (0,1, z=1tz" + (1~ )"t

Then, by Assumption 4.3, we can extend > p to a total, acyclic binary relation on D%. Then
the existence of a rationalization with an expected utility representation follows from the same
arguments as in Lemma 5.5 in the appendix and as in the subsection of the construction of W
in the appendix.

Q.ED.
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5 Appendix

The Proof of Lemina 3.1

We first prove Lemma 3.1. Since D? has a finite number of elements, Lemma 3.1 follows from
the next lemma. Indeed, if a new binary relation on M(X) (or X x M (X)) is introduced in Step
h, then, by the following lemma, a new binary relation on D® must have been intr oduced n Step
h — 1. Since D% has only a finite number of elements, there exists h such that Vh >k, =" = ="

LEMMA 5.1 . Suppose, for some m,m’ € M(X), mF"m' and ~ (7n—}7—’h71m’) hold. Then there
ezist (z%,m?), (z%,m?%) € D* such that (z%, m®)>= h=l(zd mt) and ~ ((x%,m®) =2 (4, m?)).

Proof. By mF"m/, there exist (x1,m1),..., (2, my) € X x M(X) and z € X such that

h-1

(1) (z,m) =" (z1,m1) > P (g my) =P (2.

Suppose, in (1), each =""1is "1 or »p. Then clearly x = z; = - = 1} holds so that
mFh Ly Fh=1. . Fh=l;m, FP=1m! holds. Thus, by the transitivity of Ja
This is a contradiction. Thus at least one >""1 is = g.

—sh—1
, mI "m' holds.

Suppose, in (1), just one =M1 is s g, i.e., there exists just one i such that
(2) (@5, m4) =g (Tiv1, Maq1)-

Thus, by (1), z;,; = ¢ > z; holds so that m;Flm;, . Since the other s=h=1in (1) are 7" or
>, then mF" 'm’ holds. This is a contradiction.
Suppose, in (1), more than one =""1 are »p. Let the first one and the last one from the left
of (1) be
() (ms,mu) =R (Tir1, Miy1)
and
(4)  (zj,m;) =g (Tj+1,m541),

respectively. Note that, by the definition of =g, (x5, m;), (x5, m;) € D% holds. By (1),

(5) (5'71:"%) (a:],m])

holds.
Suppose
(6) (a, mi);h”z(arj, m;)
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also holds. Then since by (1) 241 > x > z; holds, then, by (4) and (6), m; F"~1mg ;1 holds. Since
all =" 1 are "1 or »p on the left of (z;,m;) and the right of (zj}1,7;1), then mE .
This is a contradiction. Thus (z;, m;)=""2(z;, m;) does not hold.

Q.E.D.

The steps of the Proof of Theorem 3.3
Below, we give the steps of the proof.

1. (>3, fmin) on X x Mp is extended to the smallest binary relations (;#,_ﬁ#) on X x
M(X) which satisfy transitivity, risk separability, and time consistency, where Fg‘i“ is the
binary relation on Mp naturally defined with %%i”. They are also shown to be acyclic.
(Lemma 5.3)

2. We construct a continuous function p : M(X) — R which is consistent with ok (Lemma
5.4)

3. 4 defines a complete binary relation on M(X). Thus, by time consistency and risk separa-
bility, we also obtain a new binary relation on X x M(X). It is proved that the new binary
relation on X x M(X) is acyclic. (Lemma 5.5)

4. Then we construct a function W which is consistent with the new binary relation.

5. Finally, we prove the necessity of Assumption 3.1.

The Acyclicity of (”;#'F#)

Next, considering =%" as a binary relation on X x M(X), sho— U ;’Bm can be defined,
where S5 is the transitive closure of »5® and »P is defined in Lemma 3.1. Below, we extend
it to a transitive, risk separable, time consistent binary relation on X x M(X).

First, we define the following binary relation.

Ym,m' € M(X), mF#m' if 3z € X, (&,m)= (T, m').

Let I be its transitive closure. Then, for m,m’ € M(X) such that mF ! , we define Vo €
X, (z,m)T#(xz,m). Let T% be the transitive closure of the union of =5 and T#, =#= =0 |J
T#, and =7 be the transitive closure of ~7#.

(;#,F#) satisfies risk separability and time consistency. Suppose the contrary. Then we
can extend it to a transitive, risk separable, time consistent binary relation. Thus, by the same
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argument as of Lemma 5.1, a new binary relation on DY must be introduced. However, this
contradicts the fact that =B is total on D2,
Below, after proving some lemmas, we show the acyclicity of (;#, —F#).

LEMMA 5.2 . Y(z,m),(z/,m') € Xp X Mp,
(a) (z, m)Th(:c',m') implies (.I,TTL)T)[L)(II,TTL’) forall h=1,...,h,

(b) (z,m) =" (&/,m) implies (x,m) =ho(ef,m') for all h= 1,...,h,

and

(c) (z,m) =" (z/,m) implies (x,m) =min (! ).

Proof. We first prove (a) and (b) by induction.
(i) Suppose there exist (z,m),(z',m’) € Xp x Mp such that (z, TrL)Tl(x', m'). By the definition
of Tl, there exist (z1,m1), ..., (2, me) € X x M(X) such that

(1) (2, m)T(z1,m)T - T(xe,me)T (', M),

where T = »p or T}. Suppose, in (1), all T are equal to > . Then (x,m) = (z',m') holds so
that (z, m)T}) (z',m') holds.

Suppose, in (1), just one T" is T1. Let it be (x5, m;)TH@i41, mis1). Note that z; = ;1. By
T # >, there exist (z;1,741), ... (Tik, Mix) € X X M(X) and T; € X such that

(§i7771'i) >—0 (:1,'7;],77’14‘1) >—0 cee >~O (.’L’ik, mik,) >—0 (—in,'rni_{_l)
with at least one »=° = >g. By mFm; and m;1 F'm/,
(2) (z:,m) w0 (T, m;) =0 (41, mM51) 0.0 (3k, ™Miik) -0 (s, miit1) =0 (75, m)

holds. Let (J:‘f,m‘f) Sy (azg,m?) be the elements of {(zs1,mi1), .-, (Tik, M)} W Xp X Mp).
Since = is transitive,

(3) @i, m) =0 (T, ms) »° (w‘f,m‘f) w00 (m,‘},mﬁ) =0 (@, mi1) =0 (@, m)
follows from (2). If T; € Xp, then let T =%;, and if ¥; ¢ Xp, then let z =z%. Then
4) (& m)=° (@ m) -0 (:L"f,m‘f) =00 (w?,m‘j) =0 (&,m)

holds. Since, for all (z?,m9), (¢4, ') € Xp x Mp, (z*,m?) =0 (24 m/) implies (24, m?) »9,
(z'*, m'®), then
(6) (&,m) T} (z,m)

8Below, we set (x, m) = {zo, mo0) and (z',m') = (o4, Mot ).
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holds. Thus, for all ¢ € Xp,
(iL‘d, m) T} (;cd., m’)
holds. Thus, by
(z,m) T3 (z,m') Th(z',m'),

6) (z,m)Tp (', m)
holds.
Suppose two T are T, Let them be (z;, m;) T (541, 1) and (z;, m; )T (41, Mj41), Wwhere
j > i. Note that z; = z;41 and z; = zj41. By T # >p, there exist (z51,m41),.. -, (Tig, Mik) €
X x M(X) and T; € X such that
@iy mi) =0 (i, mar) =0+ =0 (o, man) =0 (Tiy miga)
with at least one =0 = >g. Similarly, there exist (zj1,mj1), ..., (Ljr, Myp) € X X M(X) and
J1s M J j
Z; € X such that
(@5,my) =0 (@, myn) =0 =0 (g, mw) = (@5my41)
with at least one =% = >p. Since mFm; and mj1 F'm/,
(1) @i, m) = (T, mi) = (@i, mar) =0 - =0 (g, k) =0 (Ti, mig1)
and
() (&, my) 0 (zj1,mj1) =0 - =0 (wjn, M) =0 (T, myp1) =0 (@5, m)
holds. Let (x‘f, m‘li) ey (xg, mg) be the elements of {(x;1,m41) - - -, (T, max) } (X p X Mp) and
(x§,mE), ..., (x5, m§) be the elements of {(a:jl,mjl) e (wjk/,mjk/>} N(Xp x Mp). Since »F
is transitive,
9)  (@,m)=° @i, ms) >0 (z‘f,m’f) 0.0 (az’j,m‘}) >0 (F;, M)

and

0

(10)  (z5,my) =0 (5, m§) =0 - =0 (2f,m) =° (@5, myn1) =0 (T, )

follow from (7) and (8). If Z; € Xp, then let Z = T;,and if 7; ¢ Xp, then let ¥ = x4. Similarly,
if ; € Xp, then let ¥ = Z;, and if T; ¢ Xp, then let T = 7. Then

(11) (z,m) =° (&, m;) =° (x‘f,m‘f) 0.0 (w?,m‘f) =0 (&, ml)

and
(12) (& my) =0 (2§, m§) =0 - =0 (x5, m§) =0 (i,'rrLj+_1) =0 (z,m)
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hold. Since, for all (z¢,m?), (4, m'") € Xp x Mp, (z%,m?) -° (z'*,m'?) implies (z%,m?) =9
(mlda m’d)7 then, by m‘ei Fm;,
(13) (@ m)Tp (& my)

and
(14) (&,m;)TH (&, m')

hold. Thus, for all z¢ € Xp,
(xd, m) Th (2%, my) T} (:‘1{’1 ,m/ )
holds. Thus, by
(z,m) Th (z,m) Th(',m'),
(15)  (z,m) T (z',m)

holds.
If more than two 7" are T, almost the same argument leads to

(16) (z,m) Ty (z',m').
Since >-! = >0 [ JT" and =}, = -9 Th , by the same arguments as the above, (z, m = (2!, m)
D D Dy BY
implies (z,m) =1 (z/,m’)

ii) Suppose, for all (z,m),(z’,m') € Xp x Mp,(z,m 7" (&', m') implies (z,m "T’El(w’ ,m')
P

and (z,m) ="' (z/,m') implies (z,m) = (2!, m).

Suppose there exist (z,m), (z',m') € Xp x Mp such that (z, TrL)Th'(w’ ,m’). By the definition
of Th’, there exist (z1,m1), ..., (zy, my) € X X M(X) such that

17) (z,m)T(z1,m)T - T (s, my)T (2, m'),

where T = > or T". Suppose, in (17), all T = =x. Then, by (z,m) > (z',m'), (z, m)T’Z)(w’, m')
holds. Suppose, in (17}, just one T" is T". Then the same argument as in (i) leads to

(18) (z,m) ™ («',m').

Suppose, in (17), two T are T". Then the same argument as in (i) leads to
(19)  (z,m) T (', m').

Suppose, in (17), more than two 1" are T" almost the same argument leads to

(20)  (z,m) T?) (z',m').

21



Since »" = =M1 UTh and % = >—’L7’)_1 UT%, by the same arguments as the above,
(z,m) =" (2/,m') implies (z,m) =l (@, m).
By the same arguments as for =" and Th, clearly

(¢) (z,m)*7" («/,m') implies (z,m) o (g ).

Q.E.D.
LEMMA 5.3 . Under Assumption 3.2, S and = are acyclic.

Proof. Below, we prove that, for all nonnegative integer h, if there exist (z,m), (z',m') € Xx
M (X) such that (z, m)="(z',m') and (z/,m')="(x,m), then there exist (z¢, m%), (2%, m'?) € D*
such that (2%, m®)="%(z'?, m'?) and (2%, m/ dys=h (24, m?). This is clearly sufficient for the proof
of this lemma. That is if =" is cyclic, then ;’,5 is also cyclic and this contradicts Assumption
3.2. We prove this by induction.

(i) Suppose there exist (x,m), (¢, m') € X xM (X) such that (=, m)s=2(z’,m’) and (z', m/ =0z, m).
Then there exist (z1,m1), . ,(Tk, Mk)(Tht 15 Mt 1)s - - o5 (Thot 2y Mkt ¢) € X x M (X) such that
1) (z,m) =0 (x1,m1) =0 ... =0 (zg,mp) =0 (2!, )

=0 (g1, Mg gn) =0 oo =0 (e, M) =0 (M)

Case 1. Suppose, in (1), there is no >=g. (Recall that =0 = »p U =p.) Then (z,m) »r
(z',m') = (x,m) hold. This contradicts the definition of >F .

Case 2. Suppose, in (1), there is just one >g . Let it be (¢, m?) =g (F,M). On the other
hand, by (1), (Z,m) = (¢, m%). By the definition of - rp, (2%, m?) =grp (%, m?) holds, i.e.,
=9, is cyclic. This contradicts the fact that >-%i“ is total on D<.

Case 3. Suppose, in (1), there are more than one >g. Let the first one and the second one
from the left be

(2) A (azd,md) R (f,m) —F > F (.’B/d,rnld) >R (3 ??L) —p

By the definition of >gp, (2) becomes
oo (2%, m®) =rp (@MY =g (B, ) -
Applying the same argument to all »g in (1), we obtain a cycle of =gp. By ;%;—}RD U >rp,

>—% is cyclic.

(ii) Suppose that there do not exist (Z,m), (F.7') € X x M (X) such that (z,m)=""YF, ) and
@, m =" (z,7m) and that there exist (z,m), (z',m) € X x M (X) such that (z, m)="(z', m)
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and (&', m’)_;h(:v, m) . Then there exist (x1,m1), .- -, (Tk, M) s (T 1 ME+1) 5+« o5 (Tppes Mire) €
X X M (X) such that

(3) (z,m) =t (z1,m1) hs (2, M) =t (2, m) =M (Thy 1 M1) sho
= (@, M) = (2, m).

. . . b
Case 1. Suppose, in (3), there is no >g, i.e., all =" are T". Then, by (3),
T>T 2 2 2T 2 Thy) 2 2 Tppe 2L

h
holds so that = @1 = +++ = Ty = ' = Tg41 = -+ = Tgpe holds. Thus (z,m)T’ (x,m') and
(x,m’)Th(m,m) holds. Since (z,m) = (z,m') is not consistent with (z,m’') >r (z,m), there
exist m$,...,m$, mé, |, ...,mf, , € Mp such that

() (2, m)T" (2,m) T (2,m§) T+ T" (i ) T () T

(a:,m‘,ﬁ,ﬂ) ... T" (;17, mﬁ,w,) 7" (z,m) .
Thus, by Lemma 5.2 and (4),
(md,m‘f) T}IS (a:d mg) T’Il) TD (a: mk,) T <.I‘d mk,H) TD
TD( mk,H,> TD( d m‘f)

holds, where (z%, m¢) € D?. This contradicts Assumption 3.2.
Case 2. Suppose, in (3), there is just one > . Let it be (:z:d md) =g (Z,m). On the other

hand, by (3), (Z,m) »F (ac m) T (x m ) holds. Thus, as the proof of Lemma 5.2, either

(a) (:cd,v'ﬁ) - p ( d m‘i)

or
b) there exist md s e md € Mp such that
1 %

(:Zfd,ﬁ’l,) ~F (xd ﬁz’f) Th...Th ( d ﬁ?d> Th ( mi)
holds. Thus, by Lemma 5.2 and the definition of = gp,
(acd,md) ~RD (a:d’,md) if (a) holds

and
(md,n1,d> >~RD (md, 7%'11) T}[) (ard,'m,‘i> if (b) holds.

This contradicts Assumption 3.2.
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Case 3. Suppose, in (3), there are more than one . Let the first one and the second one
from the left of (3) be

(5) T (@ @) mp @) T T (2 ) mp @A T

In (5), clearly, 7 > 7% and (id, ﬁL) ™ (Td,md) hold.
Thus, as the proof of Lemma 5.2, either
(a) (Td,ffb) ~F ("f’j,?ﬁ’j) ,
or
(b) there exist me, ... My € Mp such that
(-fd m‘) — (——d Ad) Th ... Th (-d Ad) 7h (,_d —d) =
) =r {T%, M T4 my ¢ m) =g (T,)
holds. Thus, by Lemma 5.2 and the definition of >gp,
(fd,ﬁbd> ~=RD (’a‘?d,’rﬁd> =g (Z,m) if (a) holds
and
(:/B\d,fﬁd) >RD (deﬁl(ii> T’z) ('i'fd,md) =g (Z,m) if (b) holds.

Applying the same argument to the other >g in (3), we obtain a contradiction.
Since ;’Bm is acyclic and total on D%, the acyclicity of =7 follows from the same argument
as the above.

QED.

The Construction of y
First, we construct u.

LEMMA 5.4 . These exists a weak® continuous function p : M(X) — R such that, for all
m,m’ € M(X),
mEF"m! implies  p(m) > p{m').

Proof. (i) By the separability of M(X), there exists a countable dense subset & of M(X)
such that Mp C ®. Since ® is countable, it can be written as

o = {m(1),m(2),...,m(s),...}.

(ii) Using @, we extend F# to a continuous complete binary relation on M (X).°

9For a set A, a binary relation G C A x A is said to be complete if Vi, as either a1 Gay or axGas holds.
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First, we introduce a new binary relation using m(1). Let
L(m(1)) = {m e M(X) | m(l)—F—#m}.
and
U(m(1)) = {m € M(X) | mF"m(1)}.

Since M(X) is separable, there exist a countable dense subset DIL{m(1)) of L(m(1)). For each
m € DL(m(1)), take Be,, (m), the ball with the center m and the radius &m, Where

1

== d?(m,m’).
3 m’Ell]I%m(l)) <m/ " )

Em

Note that since L(m(1)) N U(m(1)) = 0, then &y, > 0 holds. Let L(m(1)) = Uneprim@)) Bem (1)
Similarly, we take a countable dense subset DL(m(1)) of U(m(1)). For each m € DL(m(1)), take

B, (m), where
1

- inf P (m,m’).
3 m/E]lJI%m(l))( (m, ')

Em =
Let U(m(1)) = Ume prim(1)) Bem (m). By the construction,

(1) Lm@)JU(m(1)) =0

and
(2) L(m(1)) € L(m(1)) and U(m(1)) C U(m(1))

hold.
Then we define a binary relation F1 as follows:

m(1)Flm if m € L(m(1))

and
mF'm(1) if me U(m(l)).

Let G be the transitive closure of GX = F|{J F#. Below, we show that, Glis acyclic, i.e.,
mG implies ~ (m_élm).
Suppose the contrary. Then there exist my, ma, ..., my € M (X) such that

(3) miGlmaGh - Gy 1GrmGrmy.

Since T is acyclic, at least one of G in (3) must be F1. Thus, in (3), some m; = m(1). This
contradicts (1).
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Similarly, we extend G' using m(2). We repeat this procedure for m(3),m(4),....

(i) Next, we define a complete binary relation on M(X). For all m, m! € M(X), we define
(a) mF*m/ i Je > 0,77 € Bo(m)(\®, VAl € B.(m')N®,3t, mG 7,
(b) m'F*m  if 3e > 0,V € Bo(m)(\®,¥m € B.(m/)N®,3t, WG,
(c) m~p m' otherwise.

Define

mFrm/ if mF*m' or m~p m'.

Next, we show that
1. mFm! implies mF*m/,
2. Fr is transitive, complete, and reflexive,

3. Vm € M(X),{m|mFm} and {m|TmF m} are closed.

First, we prove 1. If m,m’ € ® holds, then 1 immediately follows from the definition of
F*. Otherwise , by the construction of _F’#, (a) mFm! or (b) 3m? € Mp, mF " mdF" m' holds.
In case (a), by the definition of F, there exist m € ®(B:(m) and m’ € O B:(m') such
that mEm/, where 0 < e < %dp(m,m’). Thus, for some § > 0, Vi € Bs(m)N®,Vm' €
Bs(m/YN @, 3, G 7. In case (b), 1 immediately follows from mF? méF" m! and the definition
of F*.

Clearly, 2 holds.

Below, we prove 3. For m* € {m|mF*m}, there exists a real number £ > 0, such that
vim € B, (m)N®,vi' € B. (m*)N®, 3, mGw . Thus, for me € Be(m*), there exist a real
number § > 0 such that Vin € Bs (m) @,V € Bs (maq) NP, 3, MG/ Thus {m|mF*m} is
an open set. Since F* is complete {m|mFm} is the complement of {m|mF*m} and thus it is
closed . The same argument applies to {m|mFrm}.

By Debreu [1954] and 1,2, and 3, there exists a weak* continuous function p : M(X) — R
such that
mE*m’ if and only if p(m) > p(m')
mF*m/ if and only if p(m) > p(m’)
Moreover, clearly
mF#m'  implies p(m) > pu(m')

holds. This concludes the proof. Q.E.D.



Next, Ym,m' € M(X),
if  p(m) > pu(m'), then we define Vi € X, (z,m) =# (2, m)

and
if u(m) > p(m'), then we define Va € X, (z,m) =% (z,m).

Let =#2=»#1 | =# and 2= H1 | ~#. Let E#Q be the transitive closure of >#2. Then we
define

(z,m)=72(&',m') if there exist (z1,m1),..., (¢, mu) € M(X)
such that
(z,m) =% (z1,m1) =#2 =2, my) = (2, m),

where at least one >7% s =72

We prove the following lemma.

LEMMA 5.5 . Y (z,m),(z/,m') € X x M(X), =#2 4s acyclic.
Proof. Suppose the contrary. Then there exist (z,m), (z/,m') € X x M(X), and
(21,m1) 5y (Ts, M) (Tog1, Mist1) 5 - -+ (Tt Msge) € X X M(X)
such that

(1) (z,m) =72 (z1,m1) SHZ - #2 (2, my) = (2 m)

(2) (wl*,lnl’l) t#2 (.’173_}.1,7713_{.]) E#Z T Z:#2 ($s+t:m's+t) t#z ((17,771),

where, in (1), at least one =#2 is =#2? . There are three cases.

Case 1. Suppose, in (1) and (2), no =#2 is =%, where >}, was defined in Assumption 3.1.
Then, by (1) and (2), ¢ = 2’ holds. Thus, by (1), z(m) > p(m’) holds. On the other hand, by
(2), p{(m’) > p(m) holds. This is a contradiction.

Case 2. Suppose, either in (1) or in (2), just one =#2 is >}, . Let it be

(3) (:Eg,mg) =1 (Tay M)
where (xg, mﬁ) € D¢. That is

@) (z,m) =#2... =72 (:U‘é,mﬁ) =5 (2g,mg) =# - =2 (2, m).
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Then
(3) za= a:g

holds so that, by (3),
(6) miF#m,

holds. Thus g (m‘é) > 1 (mg) holds. On the other hand, by (4),

(7) p(me) > p (mﬁ>
holds. This is a contradiction.
Case 3. Suppose, in (1) and (2), more than one >=#2 are =%, . Let them be as follows:

(8) (z,m) =#% ... =#2 (g;l,ml) = (@y,m) =72 =2 (mg,mg) =% (w9, m3)
I (i’?t:mt) =T (24, my) =#2 - H#2 (p,m),

where (wf,mf) i = 1,...,t, belongs to D% and no »#2 in (8) is >}. By the fact that
>—‘f)ﬂn is total on D9, either (:c‘f,m‘f) ) (m‘%,m‘%) or (Ig,m’%) =D (11,7n1> holds. Suppose
(z%,m‘%) ~R (as‘f,m‘f) holds. Then (xg,mg) w2 (x1,m1) holds. On the other hand, x; > zd
and p(mi) > p (m‘%) hold. By z; > % and (m2,7n2) 2 (zy,my), p (m%) > p(my) holds. This
is a contradiction. Thus (ml,ml) =D (J/?,’fn?) holds.

Similarly, (aci,mi) =D (:le,n’LfH) ,i=2,...,t—1, and (wt,mt) =D (a"l,ml) hold. Thus
they generate a cycle

d d _d\ _* d d
(zl,m1> =D (m2,7n2> =D >p (xt,mt> ) (ml,m’l)

This contradicts the fact that »mm is acyclic on D?.

Q.ED.

The Construction of W

Finally, we construct . First, we introduce a complete binary relation on X x pu (M (X)),
where p (M(X)) = {a € R|3m € M(X),a=pu(m)}.
For all (z,a),(¢',a') € X x p(M (X)), we define

(z,a)=#3 («/,a') if Im,m € M(X),p(m) = a,p(m') =d,
and (z,m)="%(z',m')
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and

(z, a)E*‘;63 (',a) if 3m, m' e M(X),p(m) = a,p(m') = a,

and  (z,m)=2(z',m).

Clearly, =73 is well-defined. Indeed, suppose, for (z,a), (¢/,a') € X x p(M(X)), there exist
m,m’ € M(X) such that p(m) = a, p(m’) = o/, and (x, m)=#%(z',m'). Then, by the definition
of =2 for all 71,7 € M(X) satisfying 4 (1) = a and p(W') = o, (z, )= #*(z/, ') holds.
Thus 72 is well-defined. The same argument applies to E#‘;

Finally, we construct a continuous function W : X x u (M (X)) — R such that

(z,0)5"% (/,d/) implies W(z,a)>W(z',d')

and
(z, (L)E#3 (z',d') implies W(x,a) > W(z' a).

Such a W, together with p, is clearly a risk separable rationalization of {(z", mh), B”}f:;l .
In order to construct W, we first take a countable dense subset & in X x pu(M(X)). Then
the existence of W follows from the same argument as the proof of Lemma 5.4.

The Necessity of Assumption 3.2

Finally, we prove the necessity of Assumption 3.2.

Suppose that there exists a rationalization (W, ) and that there is no total binary relation
on D? of which risk separable, time consistent extension is acyclic. Then we take the equivalence
classes Ay, ..., Ap, subsets of X x Mp, such that A; N A; = @ for i # j, for all (z,m), (', m') e
A;, W(z, u(m)) = W(a/, u(m')), and, for all (x, m), (z',m') € (Xp x Mp)\UF, As, W(z, p(m)) #
W (z', p(n?')). Let =; be the acyclic total order on A;. Let = be the binary relation on Xp x Mp
naturally defined by (W, ), i.e., (z,m) »=p («/,m') if and only if W (z, p(mn)) > W (z', p(m’)).
Then » = »p U(Uf:1 ;) must be cyclic. Let the cycle be

(1) (z1,m1) = (z2,mg) > - > (1, my).

In (1), if > = »; for some 4, then we replace »; by ~. Suppose all > in (1) are replaced
by ~. Then this contradicts the fact that »; is acyclic on A;.10 Suppose there are some >
not replaced by ~. Then this contradicts the fact that »p is derived from (W, p). That is
W (zy, p(my)) > -+ > Wz, p(mg)) must hold.

1% this case, all (x,m) in (1) must be in the same equivalence class.
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