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Abstract

The purpose of this paper is to investigate how seasonal fluctuations in preference may change
the dynamic stability and make multiple equilibria more likely outcome in a standard monetary
economy.  In the analysis, we investigate a model of money-in-the-utility function where
real money balances held at the beginning of the period induce utility.  Unless the utility
function has seasonal patterns, the steady state equilibrium is a unique cquilibrium unless the
degree of risk aversion is incredibly large.  However, when the utility function has some
seasonal patterns, the dynamic system may have multiple dynamic paths or limit cycles even if
the degree of risk aversion takes a reasonable value in most of the seasons.  In particular,
when the number of seasons is large, there may exist multiple dynamic paths even if the observed

money demand 1s decreasing in interest rates.
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1. Introduction

In almost all industrial economies, it is widely observed that seasonal fluctuations account for a
quantitatively important part of the total variations in most GDP components.  This is because
both preference and technology have secasonal patterns.  For example, consumers usually have
higher propensity to consume in holiday seasons than in other seasons.  Productivity may also
vary over seasons, especially in the agricultural sector Given these seasonal patterns in
preference and technology, it is not surprising that not a few macro variables have large seasonal
fluctuations.  However, given these seasonal patterns, it is far from obvious whether these
seasonal patterns can be a source of business cycles, that is, macroeconomic fluctuations of
seasonally adjusted data.  The purpose of this paper is to investigate whether seasonal fluctuations
in preference can be a source of endogenous equilibrium business cycles in a monetary economy.
Specifically, we explore how seasonal fluctuations in the utility functions may change the dynamic
stability and make multiple equilibria and limit cycles more likely outcome in a standard monctary
economy.

In the previous literature, there are several studies that have investigated the existence of
multiple dynamic paths (i.c., multiple convergence equilibria, sunspots, limit ¢ycles, and chaos) in
monetary economies.  For example, Benhabib and Day (1982), Grandmont (1985, 1986), and
Azariadis and Guesnerie, (1986) showed the existence of perfect foresight deterministic cycles and
sunspot equilibria in overlapping generations models.  In a cash-in-advance model of infinitely
lived agents, Woodford (1994) similarly found the existence of sunspot equilibria.! ~ Throughout
these studies on monetary economies, it was shown that there exist multiple dynamic paths when
the degree of relative risk aversion is very large.  This is because the relative importance of
the income and substitution effects plays an important role in producing multiple dynamic paths.
However, such a large degree of risk aversion was not supported by previous empirical studies
because it means that saving rates are decreasing in real interest rates.” In particular, in the
models of money, the large degree of risk aversion is not consistent with previous empirical
studies because it implies that the money demand function is increasing in nominal interest rate.

In the following analysis, we investigate a model of money-in-the-utility function where real
money balances held at the beginning of the period induce utility.*  Assuming that the utility

function is separable in consumption and real money balances, the first-order conditions

! Michener and Ravikumar (1994) showed the existence of deterministic cycles and chaos in a

similar cash-in-advance model.

* For example, Kydland and Prescott (1982) found that the degree of relative risk aversion
needs a value between one and two to mimic the observed relative variability of consumption
and investment.  Hansen and Singleton (1982) also showed that the degree of relative risk
aversion 1s close to zero in the estimates from stochastic Euler equations.

* This type of model was used in McCallum (1984), Danthine ct al. (1986, 1987), Den Tlaan (1990),
and Woodford (1990).



generally lead to the well-defined backward perfect foresight dynamics that the future value of
real money supply determines its current value.  When the utility function has no seasonal
patterns, the steady state equilibrium is a unique equilibrium path unless the degree of risk
aversion is incredibly large.*  Even if the utility function has seasonal patterns, the degree of
risk aversion needs to be large at least in one season for the existence of multiple dynamic paths.
However, if the degree of risk aversion is large in one season, the monetary economy can have
multiple dynamic paths even if the degree of risk aversion takes a reasonable value in all of the
other seasons.  In particular, when the number of seasons is large, there exist multiple
dynamic paths even if the observed money demand function is decreasing in nominal interest
rate.

What is crucial in the following analysis is the assumption that individuals who are not so
risk averse becomes very risk averse in some special season.  Some of the readers may think
that this assumption is strange and unrealistic.  However, recalling our activities in a year, we
can easily find economic behavior for which the assumption is satisfied.  For example,
individuals who are not so risk averse can be very risk averse in Christmas Live.  This is
because Christmas Eve is a special day for all Christians and they hate to have miserable
Christmas Eve.  The following analysis will show that this type of scasonal patlerns in
preference may cause not only seasonal fluctuations but also business cycles without exogenous
fundamental shocks.

In the previous literature, there are a few theoretical studies that analyzed scasonal
fluctuations in equilibrium models.  Chatterjee and Ravikumar (1992) and Braun and Evans
(1994) are one of these exceptional studics.  They modified the standard real business cycle
model by allowing scasonal shifts in taste and technology and compare the seasonal
implications of their models to the observed seasonal movements in the data.  However,
contrary to our study, they derived no welfare implications because seasonal variations are the
efficient responses of the cconomy to changes in preferences or technological opportunities in
their models.

In previous empirical studies, several authors have stressed the importance of seasonal
fluctuations in analyzing business cycles.”  In particular, there exist empirical studies which
have demonstrated that business cycles may not be independent of seasonal fluctuations.  For
example, Barsky and Miron (1989) and Beaulieu and Miron (1992) showed empirical evidence

that seasonal fluctuations have several common characteristics with business cycles.  Beaulieu,

4 This observation follows Fukuda (1993, 1 997).  In the previous literature, Matsuyama (1990,
1991) have also investigated the existence of non-convergent dynamic paths (i.e, sunspots, limit
cycles, and topological chaos) in a money-in-utility model of infinitely lived.  However, his
model ts different from our model in that he did not impose liquidity advance constraint.

> For example, Miron (1986), Miron and Zeldes (1988), and Birchenhall et al. (1989).



MacKie-Mason, and Miron (1992) showed that countries and industrics with large seasonal
cycles also have large business cycles.  Our theoretical results might be consistent with these
empirical studies because the economy with large seasonal patterns in preference can have
endogenous business cycles for reasonable parameters in our model.

The paper proceeds as follows.  Section 2 presents a basic framework in our model.  Section
3 reviews previous results on the dynamic stability of no seasonal fluctuation.  Scction 4 discusses
the steady statc equilibrium with seasonal fluctuations.  Section 5 investigates the dynamic
stability for the case where scasonal patterns exist in preference and scction 6 reconfirms its main
result by specific utility functions.  Section 7 explores the existence ol periodic cycles and section
8 presents some simulation results.  Section 9 summarizes our main results and refers to their

possible extensions.

2. A Basic Framework
We consider an cconomy inhabited by identical agents, each maximizing their utility over
an infinite lifetime.  There is a single, perishable, consumption good i the economy.  Each

representative agent has the following utility function :

(b Zﬁ“oﬁi [“Hi (Cras )+ vy (Mt%t“ ):l

where ¢, is consumption at period £, p, 1s the price level at period £, and M, 1s the amount of
currency at the beginning of period . 3 is a discount factor satisfying O < < 1.

A noteworthy feature in the above utility function is that the functional torms of «(+ ) and
v(* ) might be different over time.*  In the following analysis, we assume that the cconomy

has » seasons and suppose that :

@) w( )=u(-) and v(- )=w( ) whent= ns+j,
where n, s, and j are positive integers and 1= j = n. The well-defined utility functions
uf* ) and v(+ ) are strictly concave (i.e, #"(+ ) < 0 and v"(* ) < 0 ) and increasing (i.e.,
u/(* )> Oandv/(- )>0)forallj.  We also assume that v(+ ) satisfics the Inada conditions
such that im y, ..., v/(M/p) = 0 and lim ,, _, v/(M/p) =+ for j.

The budget constraint of the representative agent is

®  The utility function is a special case of state-dependent utility functions where states are

deterministically defined as seasons.
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3) o+ T+ M.y /p, = M/p +y,

where y is constant exogenous income and 7, represents lump-sum taxes (or transfers, if
negative) at time £. This budget constraint indicates that only real money balances held at the
beginning of the period induce utility.

We assume that there is no government consumption nor the growth of the nominal money
supply.  Then, since the balanced government’s budget constraint implies that 7, = 0, it
holds that ¢, = y in the goods market equilibrium for all £, Thus, under perfect foresight,

the first-order conditions lead to:
(4) my = B Mgy [ Aj + "'_iﬂ‘(mtﬂ)/uj'(.y) ] when 7= ns +.]V>

where m, = My/p, and A= wy,, (0w (). 7

The above equation determines the dynamic system of real money supply m, in our model.
The dynamic system is the well defined backward perfect foresight dynamics that the future
value of real money supply determines its current value. For notational simplicity, the

following analysis rewrites the dynamic equation (4) as
(5)  m=f(my) whent=ns+j,

where f; (m)= B my, [ A + vio'(ne)u)(y) 1 and £, ()= f; (m).  Then, the self-contained

dynamics of season j (1 = j=n) is written as the following one-dimensional mappings:

©)  m= Ry ) = (1 Coo i Gt (ren)) -2 )) - wheen 1= s + .

We investigate the stability of this dynamic equation in the following sections.

3. The Stability without Seasonal Fluctuations
Assuming that u#(+ ) = u(> ) and »(+ ) = v(+ ) for all £, we first review the dynamic
stability of our model for the case where there exist no seasonal patterns in the utility functions.

Without seasonal fluctuations, our dynamic system (4) can be simply written as

7 For expositional simplicity, we define that A, = v,'(m, )Yu,'(¥) and u,,,'(y) = w,'(y).



7N m=Bmy [ 1+V(m,)u'(y)] forallt.

The non-zero steady state equilibrium m° is thus defined so as to satisfy:

&)  1=B[1+vm)YuW]i

Because of the Inada conditions, this steady state equilibrium always exists uniquely.
On the stability of dynamic equation (7), the following four facts are well known in previous
studies (sec Fukuda (1993, 1997) for details).

Fact 1: The steady state equilibrium m° is a unique non-zero equilibrium if and only if
9 -V / V(") < 2/(1-B).
Fact2: There exist multiple convergence cquilibria to the steady state if and only if
10) - V') /v > 2/(1-B).
Fact 3: If the condition (10) is satisfied, there exist period-two cycle equilibria and stationary
sunspot equilibria around the steady state.  In particular, when - m’ v'"(m°) / V(") = 2/(1- B),

period doubling bifurcation occurs.

1-R

Fact 4. Suppose that v(m,) = for some positive parameter K. Then, it R is large

my
1-R
enough, there exist period-three cycle equilibria. ~ Thus, the result of Li and Yorke (1975)

implies that if #is large enough, there exists topological chaos in our model.

Define I'(m)= Bm[1 +v(m)u'(y)].  Then, noting that m° is a unique non-zero steady state,
facts 2 and 3 can be derived from the well-known condition that /7' (m) < -1 at the steady state
m" (see, for example, Grandmont (1985), Woodford (1986), and Chiapport, ct al. (1992)).

However, the above four facts imply that the existence of multiple dynamic paths requires a
very large degree of relative risk aversion for v(m).  This is because the relative importance of
the income and substitution effects plays an important role in producing endogenous cycles and

1-R

my

- Then, since R = - m° v"'(m°) / v'(m"),

sunspots.  For example, suppose that v(m; )=

facts 2 and 3 imply that there exist multiple convergence equilibria, stationary sunspot equilibria,



and period-two cycle equilibria if R > 2/(1- ). This indicates that when 8~ 095, the
existence of multiple dynamic paths requires R to be greater than 40! Needless to say, such a
large degree of risk aversion is not supported by previous empirical studies. Therefore,
without seasonal patierns in preference, the monetary model may not have multiple dynamic

paths for empirically plausible parameters.

4. The Steady State Equilibrium
When the utility functions have seasonal fluctuations, the steady state equilibrium needs to be
defined for each season because it shows seasonal fluctuations.  Whent = ns +j (1= j = n),

the non-zero steady state equilibrium of m, is defined as m== m* %+ 0 which satisifes

an mj* = hj(””j*)g f; (’;ﬂ ('--(fjl—rmz (ﬁm-l (mj*))) )

To the extent that the utility functions have seasonal fluctuations, the steady state equilibrium in
season j is not equal to the steady state equilibrium in season i if 5.

Under some mild conditions, it is not difficult to show that the non-zero steady state
equilibrium my* always exists for all j.  In addition, when 1 > fi(m) > 0 foraltm>0Oandi~1,
2. ..., n, the non-zero steady state equilibrium is unique because 1 > dhGm)/dm = £ fii' - find
S >0 forallm>0.

However, when f(m) < 0 for some m > 0 and i = 1, 2, ..., n, the non-zero steady state
equilibrium is not necessarily unique. A special case where the non-zero steady state
equilibrium is not unique arises when (- ) = u(+ ) and w(* ) = -_7€ tor all t and that R >
2/(1-B).  Inthis case, because of no seasonal patterns in the utility functions, m* - m® for all
jis an equilibrium.  However, because of fact 4 in the previous subsection,  the dynamic equation
(6) has a period two cycle equilibrium such that m, = m' #m° when t is odd (even) and m, = m* #
m® when t is even (odd) for some m' # m?.  Thus, when n is even, both m' and m* are
another equibribria of m*®

The above special case implies that multiple steady state equilibria arise because period-two
cycles of seasonally unadjusted data is observationally equivalent to seasonal cycles when the
number of seasons is even.  In order to avoid this observationally equivalence problem, the

following analysis implicitly assumes that the non-zero steady state equilibrium is unique and

Because of continuity, we can also verify that m* is not umque when u(c) and uy(c) are

1R
different but very similar when v(* )= 5;17? and R >2/(1- ).



investigates how seasonal patterns in preference may cause the existence of multiple equilibria

around the unigue non-zero steady state equilibrium.

5. The Dynamic Stability
In this section, we investigate how seasonal patterns in the utility functions can change the
dynamic stability of our model.  Recall that the self-contained dynamics of seasonj (1% j=

n) is written as equation (6).  Then, if we detine

A2y gm= fiy (o (S G (m) .0,

the dynamic equation (6) is written as
A3y my= Iy () = £ (g () = B g () A v (g5 (men)) ' () ]

whent = ns+j (1= j=n).  The non-zero steady state equilibrium of m, at season j satisfies
(14) = Iy ()= B g (m*) [ A+ v (g (o)) |

Thus, it holds that

(15)  dhy (m*)/d m*
=B g m*) [ A+ v (g 0 )/ ) ]+ B g (m*) g (m*) viy" (g (m*)/w(»),
= B g’ m*) vy Y/ ) [T+ Ay {/ Y v (my )3+ ey 2" () v 'm0 )1

where n, * = g (m*).

Equation (15) implies that when g;' (m*) > 0. it holds that d&, (m*)/d m* < -1 if and only if 9
(16) = my* vi" () it Gy *) = 1+ (A + VB gl (m*)}) (! ) vy (im0 %))
Since there exist multiple convergence equilibria if dhy(m*)/d m* < -1, this implies that the

utility function v;,,(m) needs to have a large degree of relative risk aversion for the existence of

multiple convergence equilibria when g'(m*) > 0. In fact, because

° Without seasonal patterns in preference and technology, A; = 1, gj (m*) = m* and g (m*) =1.

Thus, the condition (16) reduces to the condition (10).



A7) VAT VLB ™)} /) via (i)}

1+gl~(mj*)/(mj *g,'(m*) -
1=A;Bgm;*)/m;* ’

(16) implies that the degree of risk aversion of v;.,(m) needs to be greater than two when g’ (m;*)
> 0.

However, when g (m*) <0, (15) implics that df; (m*)/d m* < -1 if and only if

(18) - mpy*viuy" (™) viy () < 1+ (A + VB g (m™)}) {a!(0) vy (my, )}

Therefore, when gi' (m*) < 0, there exist multiple convergence equilibria even if the degree of

risk aversion of v;,,(m) is arbitrarily small.

Because di(m)/dm = f' fi,' ... fina frenad's 11 holds that " < 0 for some & when dhy(m)/dm
<-1. Sice g (m*)=fi)' ... fina fiaa'-  this indicates that there always exists g (m*) > 0
for some & when dhy(m)/dm <-1. However, when f;' < 0 for some k. it is possible that £ > 0

forall i 7k even if dh(m)/dm < -1 for all . Therefore, when g' (m*) <0 for some k, it is
possible that g' (m*) > 0 for all ik even if di(m)/dm < -1 for all ;. This leads to the

following proposition.

Proposition 1: It there exist multiple convergence equilibria to the steady state,  then it
must hold that — m* v,"(m*) / v/'(m*) > 2 for some k. However, ift - m* v"(m.*) / v/ (m*)
1s large enough for some &, there exist multiple convergence equilibria to the steady sate even

- m* v"(m*) / v'(m*) 1s arbitrarily small for all i #£.

The above proposition implies that in order for our monetary economy to have multiple
convergence equilibria to the steady state, the degree of risk aversion of vi(m) needs to be large
at least in one season among n seasons.  However, if the degree of risk aversion is large in
one season, the monetary economy can have multiple convergence equilibria even if the degree
of risk aversion is small in the other n-1 seasons.  Therefore, if the number of seasons n is
large enough, there exist multiple convergence cquilibria and stationary sunspot equilibria even

if the degree of risk aversion is small for almost all of the periods.

6. Two Examples
The purpose of this section is to reconfirm Proposition 1 by specifying utility functions in two

alternative ways.  The first is the case where the utility functions are written as follows:



-
1

(19) ()= u(y) for all i, vz(m)z-ﬁi’%ﬁ-—,and v(m)= Dm when;#2.

When R is large, these utility functions indicate that each agent is very risk averse in season 2

but is risk neutral in the other seasons.'”  For these utility functions, equation (4) is written as

R
@00 B 102 (L)) whentoms e,

@0b) = B2 {ma,  whent # ms 1.
u'(y)

Thus, equations (20a) and (20b) lead 1o the self-contained dynamic equations of season 1 as

follows
R(n-1)

1 B R
D (y)], o2

n-1
= 14D -
@y m= B [”A‘(y)] ”’“”]”u-oz) B[

when ¢ = ns + 1. It is easy to sec that this dynamic equation has multiple convergence

equilibria to the steady state 1f

2

22) R » —
1-p" [1 +D ’ <y>}

In other words, as long as v,(m) satisties the condition (22), there exist multiple convergence
equilibria and stationary sunspot equilibria even if the utility function is linear n all of the other

seasons.
2 - B I-R ~ . . .
Recall that when v(m) = 5m (1-R) for all j, that is, when there exist no seasonal patterns

in the utility functions, there exist multiple convergence equilibria if and only 1if R > 2/(1- ).

Because

19 Although the risk neutral utility function violates the Inada conditions, the violation is not

essential in the following argument.

9



) |
2 <2 when ppe—Lj<1,
1-p u'(y)

1 - ﬁl?[] +D ' \jlnﬂl
w(y)

this implies that multiple convergence equilibria and stationary sunspot equilibria may exist
even if the risk averse utility tfunction satisfying (22) is not so risk averse as that satisfying (10).
In other words, although the existence of multiple dynamic paths requires some large degree of
risk aversion in one season, the required degree of risk aversion may not be so large as what was
derived in previous studies.

The second special but more interesting example can be obtained when we specify the utility

functions as follows:

(23) w(= u(y) foralli, vi(m)= Hlog(m - K), and v(m)=J log(m) when j+# 1.
Under these utility functions, each agent always has log utility functions.  However, the agent
has the minimum subsistence level of consumption K in season 1. Tor these utility

tunctions, equation (4) is written as

(24a)  m =L [my, + H/ (my,, - K)] when 7 = ns,
(24b)  m = B(m., +J) whent + ns,

where m, > K when ¢ = ns+1.  Thus, equations (24a) and (24b) lcad to the self-contained

dynamic equations of season 1 as follows

n pH
25 m= p'm , +—"+ A, whent=nstl,
(£
where 4 =/ Z‘j’:] B/ and my, > K forall s, This dynamic equation has multiple convergence
equilibria to the steady state if

n__BH e _p k= B
B (m*‘K)z ~-1,  where (1 B )m = m*”_‘K+A,

""" Fukuda (1998) showed the existence of multiple equilibria for this type of utility functions in

an overlapping generations nmodel.

10



or equivalently,

3n,
26)  K(1-p")y> A+ B
1+p”

Therefore, even for the log utility functions, there exist multiple convergence equilibria and
stationary sunspot equilibria if the minimum subsistence level of consumption is large in season

I.

7. The Existence of Periodic Cycles
In the dynamic equation (13), the function /(m) is one-demensional mappings.  Thus, if
we assume that 8 is a bifurcation parameter and suppose that m* hj(mj*) when = 3 *,

then Theorem 3.5.1 in Guckenheimer and Holmes (1983) leads to the following proposition.
Proposition 2.  Suppose that :

(Oh/ 3 BYO°h/Om)+2(0%h/ Omd B) + 0  at(m*, [*),
(172)(o th/ o m™) 4 (1/3) 87‘}11 jom’)y + 0 at (m*, [*).

Then, pertod-doubling bifurcation occurs when

Q7 -mFv"(mF) v/ mF) =14 (A + VB gt ()Y Loy (0) 9 (m*)},

for some k. Thus, for the existence of period-two cycle equilibria, the degree of risk
aversion of v(m) needs to be large at least in one season among n seasons.  However, there
exist period-two cycle equilibria even if - m* v"(m*) / v/'(m*) = 1 forall i# k. Therefore,
if the number of seasons » 1s large enough, period-two cyele equilibria exist even if the degree

of risk aversion is small for almost all of the periods.

In no-linear dynamic models, the existence of period two cycles is particularly important
because 1t 1s a necessary condition for the existence of any periodic cycles (Sarkovskii theorem).
In fact, when we change the values of bifurcation parameters, we can see varicties of cycles
in our model.  For ecxample, when the utility functions are written as (19), we can draw
bifurcation maps for two alternative bifurcation parameters: f and K.

Figure 1a 1s a bifurcation map when we take 8 as a bifurcation parameter.  In the figure,

11



we set parameters as B = 1, D = 0.1, w'(y) = 1, n = 12, and R = 10.  For these parameters,
period-doubling biturcation occurs when 8= 0.972664.  In addition, period cycles with higher
frequencies also arise for smaller values of 8. For example, period-four cycle arises when B s
approximately equal 1o 0.967, period-eight cycle arises when § is approximately equal to 0.9655,
and so on.

Figure 1b shows another bifurcation map when we take R as a biturcation parameter.  In
this figure, we set parameters as B=1, B(1+D) =095, #'(y)=1.n =12, and 3= 0.9.  For
these parameters, period-doubling bifurcation occurs when R = 4.09769, period-four cycle
arises when R is approximately equal to 5.25, period-¢ight cycle arises when R is approximately
equal to 5.6, and so on.  In particular, when R is approximately equal to 6.7, we can see that

period-three cycle arises, implying the existence of chaos in our model.

8. Some Simulation Results
Based on discussions in previous sections, this section investigates the time-series property of
real money balances simulated by specific utility functions and parameter sets.  In the following

simulation, we specity the utility tunctions as follows:

(28a) wu(yv)= u(y) foralli,

iR 1-R,
(28b) vy (m)= fif{!l,_,f_ . and v (m)= B*m "1‘1";{2 2 when j#2.

For these utility functions, equation (4) is written as

B Ry
(29a)  m = B [ “*‘-—'——-( . ) ] when 1= ns + 1,
u'(y) Sl

Ry
29b)  m = Bmy {1+ ——{3——(—1»—) ] when t#ns -+ 1.
' () NPl

Throughout the simulation, we set that n = 12, = 095, B = 001, and «' (y) = 1 and
assume that that m,,, = 1.5.  Unless specified, we also set that R, = 7 and R, = 0.1, For this
parameter set, Figure 2 depicts the dynamic paths of real money balances from 7= 1 to 120,
From the figure, we can see that movements of real money balances show some regularity for
cach 12 periods.  Since the number of seasons is 12, this implies that there exist seasonal
cycles in the simulated real money balances.

However, in Figure 2, we can also see that the movements of real money balances have

12



some regularity whose cycles are longer than 12 periods.  This indicates that there exist
business cycles, that is, endogenous cycles of seasonal adjusted data in Figure 2. In fact,
when we plot the dynamic paths of real money balances only for season 1, we can sec a clear-
cut business cycle regularity in the movements of real money balances.  Iigure 3 shows this
by depicting the dynamic paths of m, only when ¢ = ns + 1 from s = 1 t0 30, In the figure, we
can see that the annual data of real money balances show quite regular movements that are close
to period four cycles.

Needless to say, the existence of these endogenous business cycles crucially depends on the
choice of parameter sets.  In particular, the first part of Proposition 1 states that when both
R, and R, are small, our model never has endogenous business cycles.  However, the second
part of Proposition 1 indicates that when R, is large, our model can have endogenous business
cycles even if R, is small.  In addition, our model tends to have larger endogenous cycles
when R, is larger but when R, is smaller.  Figures 4 and 5 show this property graphically.

Given that R, = 0.1, Figure 4 depicts the dynamic paths of real money balances in season |
from s = 1 to 30 for four alternative values of R, that is, 5,7, 10, and 15, When £, = 5. we
can see no fluctuations of real money balances.  However, for the other values of R;,  we can
see significant fluctuations of real money balances. In particular, we can sec larger
endogenous fluctuations as R, becomes larger.

On the other hand, given that &, is large, endogenous fluctuations of real money balances
are likely to arise when R, is smaller.  Figure 5 shows this by depicting the dynamic paths of
real money balances in season 1 for four alternative values of R,, that s, 0.1, 1. 1.5, and 2.
When R, = 0.1, 1, or 1.5, we can see significant fluctuations of real money balances.  In
particular, we can see larger fluctuations as 2, becomes smaller. O the other hand, when R,
=2, we can see no fluctuations of real money balances.

In interpreting the above simulation results, it is important to recall that when R, = R, that is,
when there is no seasonal patterns in preference, our parameter set never produces endogenous
fluctuations of real money balances if R, = R, <40.  Becausc our simulations had endogenous
cycles when R, = 7 and R, = 0.1, this indicates that the existence of seasonal patterns in
preference make endogenous fluctuations more likely outcome not only for smaller value of R,

but also for smaller value of R,.

9. Concluding Remarks
This paper has investigated how seasonal {luctuations in preference can change the dynamic
stability and may make multiple equilibria and limit cycles more likely outcome in a model of

money-in-the-utility function. ~ Without seasonal {luctuations, the steady state cquilibrium is



a unique equilibrium unless the degree of risk aversion is large enough.  However, when the
utility function has some seasonal patterns, we found that the dynamic system may have
multiple dynamic paths or limit cycles around the steady state even if the degree of risk aversion
takes a reasonable value in most of the seasons.

When the degree of risk aversion is always large in the models of money, the derived money
demand function may not be consistent with previous empirical studies because it is increasing in
nominal interest rate.  However, when the degree of risk aversion is small in most of the
periods, the observed money demand function can be decreasing in nominal interest rate.
Thercfore, when the number of seasons is large, our theoretical results on endogenous cycles can be
consistent with previous empirical studies on money demand functions.

In the previous literature, there are some theoretical studies that analyzed seasonal
fluctuations in equilibrium models.  However, most of them derived no welfare implications
because seasonal variations were the efficient responses of the cconomy in their models.
Since derived multiple dynamic paths are Pareto-ranked in our model, our results have thus
quite important welfare implications of seasonal fluctuations which were not discussed in
previous studies.

Although we have analyzed a model of money-in-the-utility function in the text, similar
results can hold truc in other monetary models such as an overlapping gencrations model and a
cash-m-advance model.  This is because models of money-in-the-utility function are reduced
forms of various types of monetary models (sec Feenstra (1986)).  In the Appendix, we
show this for a cash-in-advance model by specitying utility functions.

One possible extension of our analysis is to investigate what eflects scasonal patterns in
technology will have on the dynamic stability.  In particular, it would be interesting to see
how seasonal patterns in preference and technology will atfect the dynamic stability in optimal
growth models.  Without seasonal {luctuations, there exist a large number of studies that
investigated the dynamic stability of optimal growth models, especially, two-sector models and
models of externalities and increasing returns to scale.  The results of this paper hint that
allowing scasonal fluctuations may be also important in considering the issues of multiple

dynamic paths and endogenous cycles in these dynamic models.

Appendix
The purpose of this Appendix is to see how the results derived in the text essentially carry
through in a cash-in-advance model.  The following model is based on a modified version of

Lucas and Stokey (1987) and Woodford (1994).  In the model, a representative individual
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has the utility function with seasonal patterns as follows:

(A1) Zﬁ;()ﬁi [ ¢L+i(ct,+iA) + ’ﬁm(cmB)])

where ¢,,;* is cash-good consumption and ¢,,;? is credit-good consumption at period £+i.  As in

the text, we assume that the economy has » seasons and suppose that :
(A2) @ (- )=¢ ) and G )=g( ) whent=nst,
where . s, and j are positive integers and 1= j= n. The utility functions ¢(+ )and g (- )
are well-defined and satisfy the conditions that ¢ /(= ) > 0, ¢,"(+ )<0,¢/(- )> Oand ¢;"(+ )
<0 for all ;.
The budget constraint of each individual 1s:

(A3) .t v M /P =y Mp,  forallt.

In addition, each individual faces the cash-in-advance constraint that applies only to cash-good

consumption purchases as follows
(Ad) ¢ = M/p,.
A representative individual’s optimization problem is to maximize (Al) subject to the

budget constraint (A3) and the cash-in-advance constraint (Ad4). The constraint optimization

problem can be solved by using the following Lagrangean :
(AS) L= Z;O;() Bi [ (”t*i(CHiA) + ¢t+i(CL+iB>]
A (v Mipo- (e e F T My ipdy + v o (MYp- )]
Differentiating (A5) with respect to c,,*, ¢,.;*, and M,,;, we obtain
(A6a) ¢/ (= A T7,

(A6b) B¢ (CLB) = 1.
(A6c) A p=B Aty w)/ pu



As in the text, we assume that the nominal money supply M, is constant and that there is no
government consumption.  We also assume that the cash-in-advance constraint is always

binding.  Then, because ¢, = y and ¢, = M/p, in equilibrium, (A2) and (Ata) - (A6c) lead to
(AT) @ ) x =0 & ia" (X)) X when t = ns + j,

where x, 2= M/p,.

Equation (A7) determines the dynamic system of real money balances x, in our cash-in-
advance model.  Since ¢(x) is increasing in x. it is the well-defined backward perfect
foresight dynamics.  In particular, defining that ¢ (¢) =u/()u(c), #(c) — &) + (o),
and m,= 1'(x) x, (A7) can be reduced to equation (4) in the text if it holds that v/(#/(x) x) =
m' (/' (x). 1t is not difficult to see that v/(#/(x) x) = ' (x)/p' (x) for reasonable utility
functions. For example, when p(x) = x"?P/(1-p) and m(x) =x'*(1-L), it holds that
V) ) = om0/ @) i vm) = [(1-p)(A-R)m Y where (1-4)/(1-p) < 1. This
verifies that for some reasonable utility functions, all results in the text can carry through in the

above cash-in-advance model.
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Figure 1. Bifurcation Maps for Two Alternative Parameters

(i) The case where 3 1s a bifurcation parameter
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(1) The case where R s a bifurcation parameter
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