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1 Introduction

Consider the canonical form of the multivariate normal linear model in which the p ×m
random matrixX and the p×p random symmetric matrix S are independently distributed
as N (Ξ,Σ, Im) and Wp(Σ, n), respectively, where we follow the notation of Srivastava
and Khatri (1979, p.54, 76). We shall assume that the covariance matrix Σ is positive
definite (p.d.) and that the sample size n ≥ p, and thus S is positive definite with
probability one, see Stein (1969). In this paper, we consider the problem of estimating
the covariance matrix Σ and the generalized variance |Σ|, the determinant of the matrix
Σ under the Stein loss function

L(Σ̂,Σ) = tr Σ̂Σ−1 − |Σ̂Σ−1| − p, (1.1)

where Σ̂ is the estimator of Σ and every estimator is evaluated in terms of the risk
functions R(ω, Σ̂) = Eω[L(Σ̂,Σ)], ω = (Σ,Ξ).

Beginning with the work of James and Stein (1961), where they showed that the
estimator

Σ̂
JS
= TDT t, (1.2)

where S = TT t, T is a lower triangular matrix with diagonal elements (and hence unique),
and

D = diag (d1, . . . , dp), di = (n+ p+ 1 − 2i)−1, i = 1, . . . , p. (1.3)

dominates the uniformly minimum unbiased estimator Σ̂
UB

= n−1S, many estimators

have been proposed in the literature dominating Σ̂
UB
, see Stein (1977) and Haff (1979),

among them, who developed what is now called Stein-Haff identity that led to a substantial
development in this area, see Kubokawa (1998) for an extensive review.

The estimators mentioned above did not use the information available in the observa-
tion matrixX while Stein (1964) has shown in the univariate case, p = 1, that a truncated
estimator that utilizes the information in the sample mean dominates the uniformly mini-
mum variance unbiased estimators of the variance σ2. Attempts in this direction utilizing
the information contained in the sample mean were first made by Shorrock and Zidek
(1976) and Sinha (1976) who provided minimax estimators for the generalized variance
using the information available in the observation matrix X.

The mathematical tools used in the above two papers to obtain these minimax estima-
tors were, respectively, the use of zonal polynomials and Fubini-type theorem of Karlin
(1960). Sarkar (1989, 1991) and Iliopoulos and Kourouklis (1999) used the above two
mentioned approaches to obtain the confidence interval for the generalized variance |Σ|.
Sinha and Ghosh (1987) also provided a truncated estimator of the covariance matrix Σ
utilizing the information contained in the observation matrixX. This truncated estimator
is given by

Σ̂
SG
=

 (n+m)−1(S +XX t) if (n+m)−1(S +XX t) ≤ n−1S

n−1S otherwise,
(1.4)
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improving on the UMVU one Σ̂
UB

= n−1S under the Stein loss, where A ≥ B means
that A −B is nonnegative definite. Based on the same technique, Hara (1999) recently

showed that Σ̂
SG
is dominated by

Σ̂
HR

= S1/2Qdiag (φ1, . . . , φp)Q
tS1/2

for

φi =

 min{n−1, (n+m)−1(1 + γi)} if γi > 0

n−1 if γi = 0,

where Q is an orthogonal matrix such that QtS−1/2XXtS−1/2Q = diag (γ1, . . . , γp).
When the rank of X is one, namely m = 1, the risk functions can be easily handled
and several further observations have been given by Kubokawa et al . (1992, 93) and
Perron (1990). Especially, Kubokawa et al . (1992) derived an empirical Bayes estimator

improving on the Sinha-Ghosh estimator Σ̂
SG
. However, none of these estimators were

shown to dominate the initial James-Stein minimax estimator Σ̂
JS
. Thus, our aim is

to obtain an estimator that dominates Σ̂
JS

as well as in which, as suggested by the

above estimators Σ̂
SG
and Σ̂

HR
, the coefficients (n+ p+1− 2i)−1 should be changed to

(n + m + p + 1 − 2i)−1 when we utilize both S and X in estimation of Σ. In Section
2, we develop a new type of estimator with such a natural analogy. For this purpose,
we introduce a new method for the improvement. This method can be also applied in
Section 3 not only to construct a new form of an improved estimator of |Σ| but also to
give another proof of the result of Shorrock and Zidek (1976) and Sinha (1976). When
X has full rank, namely, m ≥ p, another type of minimax improved estimator motivated
by Srivastava and Kubokawa (1999) are provided in Section 2, and the improvements on
any scale equivariant estimator are shown. Monte Carlo simulations are carried out in
Section 4 to compare risk behaviors of the proposed estimators.

2 Estimation of the Covariance Matrix

2.1 Improvements on the James-Stein minimax estimator

Consider the problem of estimating the covariance matrix Σ based on (S,X) relative
to the Stein loss function Every estimator is evaluated in terms of the risk function
R(ω, Σ̂) = Eω[L(Σ̂,Σ)], where ω = (Σ,Ξ).

Let G+
T be the triangular group consisting of p × p lower triangular matrices with

positive diagonal elements. Let T = (tij) ∈ G+
T such that S = TT t. For constructing an

estimator improving on the James-Stein minimax estimator (1.2), define an m× p matrix
Y by

Y = (yij) =
(
T−1X

)t
3



= (y1, . . . ,yp)

= (y1, . . . ,yj−1,Y j),

for Y j = (yj, . . . ,yp) and j = 2, . . . , p. Also for j = 1, . . . , p, define m × m matrix C j

inductively by

Cj = Cj(y1, . . . ,yj−1)

= Cj−1 − (1 + ytj−1Cj−1yj−1)
−1Cj−1yj−1y

t
j−1Cj−1 (2.1)

where C1 = Im. Then we can see that

|Ip + Y tY | =

∣∣∣∣∣ 1 + yt1y1 yt1Y 2

Y t
2y1 Ip−1 + Y

t
2Y 2

∣∣∣∣∣
= (1 + yt1y1)

∣∣∣Ip−1 + Y
t
2C2Y 2

∣∣∣
= (1 + yt1y1)

∣∣∣∣∣ 1 + yt2C2y2 yt2C2Y 3

Y t
3C2y2 Ip−2 + Y

t
3C2Y 3

∣∣∣∣∣
= (1 + yt1y1)(1 + y

t
2C2y2)

∣∣∣Ip−2 + Y
t
3C3Y 3

∣∣∣
=

p∏
i=1

(1 + ytiCiyi). (2.2)

Using the statistics ytiCiyi’s, we want to propose a new estimator given by

Σ̂
TR
= TGT t, (2.3)

where G = diag (g1, . . . , gp) for

gi = min

{
1

n+ p + 1− 2i,
1 + ytiCiyi

n+m+ p+ 1 − 2i
}
.

Theorem 1. The truncated estimator Σ̂
TR

dominates the James-Stein minimax es-
timator Σ̂

JS
relative to the Stein loss (1.1).

Proof. For sake of convenience, let

tj,j−1 = (tj,j−1, . . . , tp,j−1)
t,

T jj =


tjj 0tj+1,j tj+1,j+1
...

...
. . .

tpj tp,j+1 · · · tpp


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for j = 2, . . . , p. T 11 corresponds to T . By making the transformation, it is supposed that
Σ = Ip without loss of generality. The risk difference of the two estimators is expressed
as

R(ω; Σ̂
JS
) −R(ω; Σ̂TR

)

= E
[
tr (D −G)T tT − log |DG−1|

]
=

p∑
i=1

∆i,

where
∆i = E

[{
(di − d∗i aii)(t2ii + tti+1,iti+1,i)− log di/(d∗i aii)

}
I(di ≥ aii)

]
, (2.4)

for

aii = 1 + ytiCiyi,

d∗i = (n+m+ p + 1− 2i)−1.

We shall show that ∆i ≥ 0 for i = 1, . . . , p. For this purpose, we write the joint density
function of (T ,Y ) as

c0(Ξ)
p∏
i=1

tn+m−i
ii etr

[
−2−1

{
T (Ip + Y

tY )T t − 2TY tΞ t
}]
, (2.5)

which is given by making the transformations S → TT t and X → Y t = T −1X with
the Jacobians 2p

∏p
i=1 t

p−i+1
ii and |T |m, where c0(Ξ) is a normalizing function. Let us

decompose Ip + Y
tY and Y tΞ t as

Ip + Y
tY = Ip +

(
yt1
Y t

2

)
(y1,Y 2)

=

(
a11 at21
a21 A22

)
,

Y tΞt =

(
yt1
Y t

2

)
(ξ1,Ξ2)

=

(
θ11 θ12

θ21 Θ22

)
,

where a11 = 1 + yt1y1, a21 = Y t
2y1, A22 = Ip + Y t

2Y 2, θ11 = yt1ξ1, θ12 = yt1Ξ2,
θ21 = Y t

2ξ1 and Θ22 = Y t
2Ξ2 for ξ1 being the first column vector of Ξ

t. Then we have

tr
{
T (Ip + Y

tY )T t − 2TY tΞt
}

= tr

{(
t11 0
t21 T 22

)(
a11 at21
a21 A22

)(
t11 tt21
0 T t

22

)
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−2
(
t11 0
t21 T 22

)(
θ11 θ12

θ21 Θ22

)}
=

(
a11t

2
11 − 2θ11t11

)
+

(
a11t

t
21t

t
21 + 2t

t
21(T 22a21 − θt12)

)
+

(
trT 22A22T

t
22 − 2trT 22Θ22

)
=

(
a11t

2
11 − 2θ11t11

)
+ a11||t21 + a−1

11 (T 22a21 − θt12)||2 − a−1
11 θ12θ

t
12

+trT 22(A22 − a−1
11 a21a

t
21)T

t
22 − 2trT 22(Θ22 − a−1

11 a21θ12) (2.6)

=
(
a11t

2
11 − 2θ11t11

)
+ a11||t21 + z1||2 + h1(y1,Y 2,T 22),

where C2 is defined in (2.1), ||u||2 = utu for suitable column vector u,

z1 = a−1
11 (T 22Y

t
2 −Ξt

2)y1,

h1(y1,Y 2,T 22) = trT 22(Ip−1 + Y
t
2C2Y 2)T

t
22 − 2trT 22Y

t
2C2Ξ2

−a−1
11 y

t
1Ξ2Ξ

t
2y1.

We are now ready to prove that ∆1 ≥ 0. Combining (2.4), (2.5) and (2.6) gives that

∆1 =
∫

· · ·
∫ {

(d1 − d∗1a11)(t
2
11 + t

t
21t21)− log d1/(d

∗
1a11)

}
I(d1 ≥ d∗1a11)

×c0(Ξ)
p∏
i=1

tn+m−i
ii

× exp
[
−1
2

{
a11t

2
11 − 2θ11t11 + a11||t21 + z1||2 + h1(y1,Y 2,T 22)

}]
(2.7)

×dt11dt21dT 22dy1dY 2.

Noting that ∫
||t21||2e−a11||t21+z1||2/2dt21

=
∫
(||z1||2 + ||x||2)e−a11||x||2/2dx (2.8)

=
(
||z1||2 + p− 1

a11

)
(2πa11)

(p−1)/2,

we can demonstrate that

∆1 ≥
∫
· · ·

∫ {
(d1 − d∗1a11)

(
t211 +

p− 1
a11

)
− log d1/(d

∗
1a11)

}
I(d1 ≥ d∗1a11) (2.9)

×c1(Ξ, a11)
p∏
i=1

tn+m−i
ii exp

[
−1
2

{
a11t

2
11 − 2θ11t11 + h1(y1,Y 2,T 22)

}]
×dt11dT 22dy1dY 2,
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where c1(Ξ, a11) = c0(Ξ)(2πa11)
(p−1)/2. Note that h1(y1,Y 2,T 22) = h1(−y1,Y 2,T 22),

a11 = 1 + yt1y1 and θ11 = yt1ξ1. When we denote the integrand of the r.h.s. of (2.9) by
G1(y1,Y 2, t11T 22), the r.h.s. of (2.9) is rewritten by∫

· · ·
∫
G1(y1,Y 2, t11T 22)dy1dY 2dt11dT 22

=
1

2

∫
· · ·

∫
{G1(y1,Y 2, t11T 22) +G1(−y1,Y 2, t11T 22)} dy1dY 2dt11dT 22

=
∫

· · ·
∫ {

(d1 − d∗1a11)
(
B1 +

p− 1
a11

)
− log d1

d∗1a11

}
I(d1 ≥ d∗1a11) (2.10)

×c1(Ξ, a11)
p∏
i=1

tn+m−i
ii

1

2

(
eθ11t11 + e−θ11t11

)
× exp

{
−1
2

(
a11t

2
11 + h1(y1,Y 2,T 22)

)}
dt11dT 22dy1dY 2,

where

B1 =

∫∞
0 tn+m+1

11

(
eθ11t11 + e−θ11t11

)
e−a11t211/2dt11∫∞

0 tn+m−1
11 (eθ11t11 + e−θ11t11) e−a11t

2
11/2dt11

.

Making the Taylor expansions for eθ11t11 and e−θ11t11, we see that

B1 =

∫∞
0 tn+m+1

11

∑∞
�=0{θ2�

11t
2�
11/(2�)!}e−a11t

2
11/2dt11∫∞

0 tn+m−1
11

∑∞
�=0{θ2�

11t
2�
11/(2�)!}e−a11t

2
11/2dt11

≥ inf
�

∫∞
0 tn+m+1+2�

11 e−a11t
2
11/2dt11∫∞

0 tn+m−1+2�
11 e−a11t211/2dt11

(2.11)

= inf
�

{
1

a11

∫∞
0 x(n+m+2+2�)/2−1e−x/2dx∫∞
0 x(n+m+2�)/2−1e−x/2dx

}

= inf
�

{
n+m+ 2�

a11

}

=
n+m

a11
.

Hence the non-negativeness of ∆1 can be established since

(d1 − d∗1a11)
(
n+m

a11
+
p− 1
a11

)
− log d1

d∗1a11

=
d1

d∗1a11
− log d1

d∗1a11
− 1

≥ 0.

Next we shall prove that ∆i ≥ 0 for i = 2, . . . , p. To employ the same arguments as
in the above proof, we need to verify that for i = 2, . . . , p− 1,

tr
{
T (Ip + Y

tY )T t − 2TY tΞt
}

(2.12)
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=
i∑

j=1

{
ajjt

2
jj − 2ytjCjξjtjj + ajj||tj+1,j + zj||2 − a−1

jj y
t
jCjΞj+1Ξ

t
j+1Cjyj

}
+trT i+1,i+1

(
Ip−i + Y t

i+1Ci+1Y i+1

)
T t
i+1,i+1 − 2trT i+1,i+1Y

t
i+1Ci+1Ξi+1,

where aii = 1 + y
t
iCiyi,

zi = a
−1
ii

(
T i+1,i+1Y

t
i+1 −Ξt

i+1

)
Ciyi

and Ξt = (ξ1, . . . , ξ i,Ξi+1) for column vectors ξi’s. The same arguments as in (2.6) are
used to check the expression (2.12). In fact, we can observe that

trT ii

(
Ip−i+1 + Y

t
iCiY i

)
T t
ii − 2trT iiY

t
iCiΞ

= tr

{(
tii 0
ti+1,i T i+1,i+1

)(
aii ati+1,i

ai+1,i Ai+1,i+1

)(
tii tti+1,i

0 T t
i+1,i+1

)

−2
(

tii 0
ti+1,i T i+1,i+1

)(
θii θi,i+1

θi+1,i Θi+1,i+1

)}
=

(
aiit

2
ii − 2θiitii

)
+ aii||ti+1,i + a

−1
ii (T i+1,i+1ai+1,i − θti,i+1)||2 − a−1

ii θi,i+1θ
t
i,i+1

+trT i+1,i+1(Ai+1,i+1 − a−1
ii ai+1,ia

t
i+1,i)T

t
i+1,i+1

−2trT i+1,i+1(Θi+1,i+1 − a−1
ii ai+1,iθi,i+1)

=
(
aiit

2
ii − 2ytiCiξitii

)
+ aii||ti+1,i + zi||2 − a−1

ii y
t
iC iΞi+1Ξ

t
i+1Ciyi

+trT i+1,i+1

(
Ip−i + Y t

i+1

(
C i − a−1

ii Ciyiy
t
iCi

)
Y i+1

)
T t
i+1,i+1

−2trT i+1,i+1Y
t
i+1

(
Ci − a−1

ii Ciyiy
t
iC i

)
Ξi+1,

which proves the expression (2.12), where ai+1,i = Y t
i+1Ciyi,Ai+1,i+1 = Ip−i+Y t

i+1CiY i+1,
θii = ytiCiξi, θi,i+1 = ytiCiΞi+1 and Θi+1,i+1 = Y t

i+1CiΞ i+1. Integrating out with re-
spect to t21, t32, . . . , ti+1,i and using the expression (2.12) and the same arguments as in
(2.7), we see that

∆i ≥
∫
· · ·

∫ [
(di − d∗i aii)

(
t2ii +

p − i
aii

)
− log di

d∗i aii

]
I(di ≥ d∗i aii)

×cj(Ξ, a11, . . . , aii)
p∏
i=1

tn+m−i
ii

× exp
−1

2


i∑

j=1

(
ajjt

2
jj − 2θjjtjj

)
+ hi(y1, . . . ,y i,Y i+1,T i+1,i+1)




×
i∏

j=1

(dtjjdyj)dY i+1T i+1,
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where

hi(y1, . . . ,y i,Y i+1,T i+1,i+1)

= −
i∑

j=1

{
a−1
jj y

t
jCjΞj+1Ξ

t
j+1Cjyj

}
(2.13)

+trT i+1,i+1

(
Ip−i + Y t

i+1Ci+1Y i+1

)
T t
i+1,i+1 − 2trT i+1,i+1Y

t
i+1C i+1Ξi+1.

Similarly to (2.10), the non-negativeness of ∆i can be verified if we can show that{
(di − d∗i aii)

(
Bi +

p − i
aii

)
− log di

d∗i aii

}
I(di ≥ d∗i aii) ≥ 0, (2.14)

where

Bi =

∫∞
0 tn+m−i+2

ii

(
eθiitii + e−θiitii

)
e−aiit

2
ii/2dtii∫∞

0 tn+m−i
ii (eθiitii + e−θiitii) e−aiit

2
ii/2dtii

.

From (2.11), we have that Bi ≥ (n + m − i + 1)/aii, so that the inequality (2.14) is
guaranteed. Therefore the proof of Theorem 1 is complete. ✷✷

2.2 Improvements on scale equivariant minimax estimators

It is known that the James-Stein minimax estimator treated in the previous subsection
has a drawback that it depends on the coordinate system. We here try to construct
truncated procedures improving on minimax estimators not depending on the coordinate
system when m ≥ p or XXt is of full rank.

Assume that m ≥ p in this subsection. We consider the following equivariant estima-
tors under a scale transformation:

Σ̂(H tASAH,H tAXO) =H tAΣ̂(S,X)AH, (2.15)

for any H ∈ O(p), any O ∈ O(m) and any p× p symmetric matrix A, where O(p) is the
group of p× p orthogonal matrices. Then it can be seen that (2.15) is equivalent to

Σ̂(S,X) = (XX t)1/2HΨ(H tFH)H t(XXt)1/2, (2.16)

for any H ∈ O(p), where F = (XXt)−1/2S(XX t)−1/2, and (XXt)1/2 is a symmetric
matrix such that (XX t) = ((XXt)1/2)2. Let P be an orthogonal p× p matrix such that

P t(XXt)−1/2S(XX t)−1/2P = Λ = diag (λ1, . . . , λp)

with λ1 ≥ λ2 ≥ . . . ≥ λp. Then the estimator (2.16) can expressed by

Σ̂(Ψ) = (XX t)1/2PΨ(Λ)P t(XXt)1/2 (2.17)
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for
Ψ (Λ) = diag (ψ1(Λ), . . . , ψp(Λ)),

where ψi(Λ)’s are non-negative functions of Λ. The diagonalization of Ψ(Λ) follows from
the requirement that Ψ(Λ) = εΨ(εΛε)ε for any ε = diag (±1, . . . ,±1). This type of esti-
mators is motivated by Srivastava and Kubokawa (1999). We call them scale equivariant
in this paper.

For given estimator Σ̂(Ψ), we define a truncation rule [Ψ(Λ)]TR by

[Ψ(Λ)]TR = diag (ψTR1 (Λ), . . . , ψTR
p (Λ)), (2.18)

ψTRi (Λ) = min

{
ψi(Λ),

λi + 1

n+m

}
, i = 1, . . . , p,

which gives the corresponding truncated estimator of the form

Σ̂([Ψ ]TR) = (XXt)1/2Pdiag (ψTR1 (Λ), . . . , ψTR
p (Λ))P t(XXt)1/2. (2.19)

Then we get the following general dominance result which will be proved later.

Theorem 2. The truncated estimator Σ̂([Ψ ]TR) dominates the scale equivariant es-

timator Σ̂(Ψ) relative to the Stein loss (1.1) if P
[
[Ψ(Λ)]TR �= Ψ(Λ)

]
> 0 at some ω.

It is interesting to show that Σ̂(Ψ) is minimax under the same conditions on Ψ for
the minimaxity of an orthogonally equivariant estimators based on S only, given by

Σ̃(Ψ ) =RΨ(L∗)Rt, (2.20)

where R is an orthogonal matrix such that S = RL∗Rt and L∗ = diag (�∗1, . . . , �
∗
p) for

eigen values �∗1 ≥ . . . ≥ �∗p.

Proposition 1.
(1) If the orthogonally equivariant estimator Σ̃(Ψ ) is minimax, then for the same

function Ψ , Σ̂(Ψ ) is minimax and scale equivariant one improving on Σ̂
JS

relative to the
Stein loss (1.1).

(2) If P [ψi(Λ) < ψj(Λ)] > 0 for some i < j, then Σ̂(ΨO) dominates Σ̂(Ψ ), where
ΨO(Λ) = diag (ψO1 (Λ), . . . , ψ

O
p (Λ)) majorizes (ψ1(Λ), . . . , ψp(Λ)), that is,

∑j
i=1 ψ

O
i ≥∑j

i=1 ψi for 1 ≤ j ≤ p− 1 and
∑p

i=1 ψ
O
i =

∑p
i=1 ψi.

Proof. Recall that F = (XX t)−1/2S(XX t)−1/2 = PΛP t and that S ∼ Wp(n, Ip).
Then it is seen that the conditional distribution of F given X has Wp(n,Σ∗) for Σ∗ =
(XXt)−1. Then the risk function of Σ̂(Ψ) is represented by

R(ω, Σ̂(Ψ)) = EX
[
EF |X [

trPΨ (Λ)P tΣ−1
∗ − log |PΨ(Λ)P tΣ−1

∗ | − p
∣∣∣X]]

, (2.21)

10



so that givenX, conditionally PΨP t corresponds to the orthogonally invariant estimator
Σ̃(Ψ) of Σ∗ with S ∼ W(n,Σ∗). Hence the minimaxity of Σ̃(Ψ) implies the minimaxity
of Σ̂(Ψ), which proves the part (1). The part (2) follows from (2.21) and the results of
Sheena and Takemura (1992). ✷✷

From Proposition 1, we can obtain some scale equivariant and minimax estimators by
using the results derived previously for the estimation of Σ.

[1] Stein type estimator. Let Σ̂
S
= Σ̂(ΨS) for

ΨS(Λ) = diag (d1λ1, . . . , dpλp). (2.22)

The minimaxity of Σ̂
S
follows from the result of Dey and Srinivasan (1985), who also

gave another orthogonally equivariant estimator beating Σ̃
S
for p ≥ 3.

[2] Takemura type estimator. Stein (1956), Eaton (1970) and Takemura (1984)
gave an orthogonally equivariant and improved estimator, which can be represented in
our problem as

Σ̂
T
= (XXt)1/2

{∫
O(p)

ΓUΓDmU
t
ΓΓ

tdµ(Γ )

}
(XXt)1/2, (2.23)

where UΓ ∈ G+
T with UΓU

t
Γ = Γ tFΓ for F = (XXt)−1/2S(XX t)−1/2 = PΛP t. Take-

mura (1984) provided another expression as Σ̂
T
= Σ̂(Ψ T ) for ΨT (Λ) = diag (ψT1 , . . . , ψ

T
p ),

where
(ψT1 , . . . , ψ

T
p )

t = diag (λ1, . . . , λp)W (Λ)(d1, . . . , dp)
t, (2.24)

for p× p doubly stochastic matrixW (Λ). Also Takemura (1984) gave exact expressions
for ΨT (Λ) for p = 2 and 3. For instance,

ψT1 = λ1

( √
λ1√

λ1 +
√
λ2

d1 +

√
λ2√

λ1 +
√
λ2

d2

)
,

ψT2 = λ2

( √
λ2√

λ1 +
√
λ2

d1 +

√
λ1√

λ1 +
√
λ2

d2

)

for p = 2. However, the explicit calculation of W (Λ) for p > 3 remains an intractable
problem.

[3] Perron type estimator. Perron (1992) gave an approximation to W (Λ), say
W̃ (Λ), with a doubly stochastic property, and showed the minimaxity of the approxi-
mated estimator. Let

w̃ij(Λ) =
tr j−1(Λi)

tr j−1(Λ)
− tr j(Λi)

tr j(Λ)
,

for

tr j(Λ) =


1 if j = 0,∑

1≤i1<···<ij≤p
∏j
k=1 λik if j = 1, . . . , p,

0 otherwise,

11



and
Λi = diag (λ1, . . . , λi−1, 0, λi+1, . . . , λp).

Let W̃ (Λ) = (w̃ij) and put(
ψP1 , . . . , ψ

P
p

)′
= diag (λ1, . . . , λp)W̃ (Λ)(d1, . . . , dp)

′. (2.25)

For p = 2, they are given by

ψP1 = λ1

(
λ1

λ1 + λ2
d1 +

λ2

λ1 + λ2
d2

)
,

ψP2 = λ2

(
λ2

λ1 + λ2
d1 +

λ1

λ1 + λ2
d2

)
.

Then the result of Perron (1992) implies the minimaxity of the scale equivariant estimator

Σ̂
P
= Σ̂(ΨP ) for ΨP = diag

(
ψP1 , . . . , ψ

P
p

)
.

[4] Haff type estimator. Let

Σ̂
H
=
1

n

(
S +

a0

trS−1XXtXXt
)
. (2.26)

From the result of Haff (1980), it can be verified that Σ̂
H
dominates the unbiased esti-

mator Σ̂
UB

when 0 < a0 ≤ 2(p − 1)/n. Σ̂
H
is expressed as Σ̂

H
= Σ̂(ΨH) by letting

ΨH = n−1Λ+ a0(trΛ
−1)−1I.

Yang and Berger (1994) derived an orthogonally invariant estimator as a Bayes rule
against the reference prior distribution, and we can construct a scale equivariant one
corresponding to it. Since it is difficult to express the estimator in an explicit form, we
shall not consider this estimator in this paper. However, for some numerical investigations,
see Sugiura and Ishibayashi (1997).

Now, applying the truncation rule (2.18) to the above estimators yields the improved
estimators.

Corollary 1. For Ψ = Ψ S, Ψ T and ΨP , the estimator Σ̂([Ψ ]TR) is scale-equivariant,
minimax and improving on the corresponding estimator Σ̂(Ψ ) relative to the Stein loss
(1.1). Also Σ̂([ΨH ]TR) dominates Σ̂(ΨH).

It should be noted that Corollary 1 does not imply the dominance of Σ̂([Ψ]TR) over
Σ̃(Ψ), but states the dominance of Σ̂([Ψ ]TR) over Σ̂(Ψ). Although Σ̂(Ψ ) is not identical
to Σ̃(Ψ ), if Σ̃(Ψ ) is a superior minimax estimator, Σ̂(Ψ) inherits the same good risk
properties with minimaxity and improvement. Corollary 1 states that these minimax
estimators can be further improved on by Σ̂([Ψ ]TR) by employing the information in X.

12



Proof of Theorem 2. Without any loss of generality, let Σ = I p. We first consider
the expectation of the general function h(F ,XX t) of F and XXt. The expectation is
evaluated as

E
[
h(F ,XXt)

]
= c0(Ξ)

∫ ∫
h(F ,XX t)|S|(n−p−1)/2

exp
{
−tr (S +XX t − 2XΞt)/2

}
dXdS (2.27)

= c0(Ξ)
∫ ∫

h(F ,XX t)|S|(n−p−1)/2

exp
{
−tr (S +XX t)/2

} ∫
exp

{
trXHΞ t/2

}
µ(dH)dXdS,

where µ(dH) denotes an invariant probability measure on the group of orthogonal ma-
trices. Here the second equality in (2.27) follows from the fact that F and XX t are
invariant under the transformation X → XH for m×m orthogonal matrix H. One of
the essential properties of zonal polynomials gives∫

exp
{
trXHΞt/2

}
µ(dH) =

∑
κ

α(m)
κ Cκ

(
ΞΞtXXt

)
,

where α(m)
κ is given in James (1964) and Cκ(Z) denotes the normalized zonal polynomials

of the positive definite matrix Z of order p corresponding to partitions κ = {κ1, . . . , κp}
so that for all k = 0, 1, 2, . . .,

(trZ)k =
∑

{κ:κ1+···+κp=k}
Cκ(Z).

Let W =XXt, and the r.h.s. of (2.27) is written by

c1(Ξ)
∫ ∫

h(F ,W )|S|(n−p−1)/2|W |(m−p−1)/2

exp {−tr (S +W )/2}∑
κ

α(m)
κ Cκ(ΞΞ

tW )dSdW ,

for the normalizing function c1(Ξ). Making the transformation F =W−1/2SW−1/2 with
J(S → F ) = |W |(p+1)/2 gives that

E
[
h(F ,XXt)

]
= c1(Ξ)

∫ ∫
h(F ,W )|F |(n−p−1)/2|W |(n+m−p−1)/2 (2.28)

× exp {−tr (F + I)W /2}∑
κ

α(m)
κ Cκ(ΞΞ

tW )dF dW .

Again making the transformations F = PΛP t and W = PV P t in order, we see that
(2.28) is represented as

E
[
h(F ,XXt)

]
13



= c2(Ξ)
∫ ∫ ∫

h(PΛP t,W )h(Λ)|W |(n+m−p−1)/2

× exp
{
−tr (Λ+ I)P tWP /2

}∑
κ

α(m)
κ Cκ(ΞΞ

tW )µ(dP )dΛdW

= c2(Ξ)
∫ ∫ ∫

h(PΛP t,PV P t)h(Λ)|V |(n+m−p−1)/2 (2.29)

× exp {−tr (Λ+ I)V /2}∑
κ

α(m)
κ Cκ(ΞΞ

tPV P t)µ(dP )dΛdV ,

where h(Λ) is a function of Λ (see Srivastava and Khatri (1979)).
Based on the expression (2.29), we can evaluate the risk difference of the two estima-

tors, which is given by

R(ω, Σ̂(Ψ))−R(ω, Σ̂([Ψ]TR))
= E

[
tr

{
PΨ(Λ)P t − P [Ψ(Λ)]TRP t

}
W − log |Ψ(Λ){[Ψ(Λ)]TR}−1|

]
(2.30)

= EΛ
[
tr

{
Ψ (Λ)− [Ψ(Λ)]TR

}
E[V |Λ]− log |Ψ (Λ){[Ψ(Λ)]TR}−1|

]
.

By the basic property of zonal polynomials,∫
Cκ(ΞΞ

tPV P t)µ(dP ) = Cκ(ΞΞ
t)Cκ(V )/Cκ(Ip). (2.31)

For simplicity, let us put

A = diag (a1, . . . , ap)

=
{
Ψ (Λ)− [Ψ(Λ)]TR

}
(Λ+ I)−1,

B = (Λ+ I)−1.

Then from (2.31), it can be seen that

tr
{
Ψ (Λ)− [Ψ(Λ)]TR

}
E[V Cκ(V )|Λ]/E[Cκ(V )|Λ] (2.32)

≥ inf
κ

{
c3(B)

E[Cκ(V )|Λ]
∫ (

trAVB−1
)
Cκ(V )|V |(n+m−p−1)/2e−trV B−1

/2dV

}
,

where c3(B) ia a normalizing function in Wp(n+m,B). If we can show that for any κ,

E
[
trAV B−1Cκ(V )|Λ

]
= c3(B)

∫ (
trAV B−1

)
Cκ(V )|V |(n+m−p−1)/2e−trV B−1

/2dV

≥ (n+m)(trA)E [Cκ(V )|Λ] , (2.33)

where conditionally, V |Λ ∼ Wp(n + m,B), then the r.h.s. of the extreme equation in
(2.30) is evaluated as

(the r.h.s. of (2.30))
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≥ E
[
tr

{
Ψ(Λ)− [Ψ(Λ)]TR

}
(n+m)(Λ+ I)−1 − log |Ψ(Λ){[Ψ(Λ)]TR}−1|

]
=

p∑
i=1

E
[{
n+m

λi + 1
ψi(Λ)− 1 − log n+m

λi + 1
ψi(Λ)

}
I
(
n+m

λi + 1
ψi(Λ) ≥ 1

)]
≥ 0.

Hence we complete the proof of Theorem 2 with verifying the inequality (2.33).
We shall use the Stein-Haff identity due to Stein (1977) and Haff (1979) to prove the

inequality (2.33). For the Kronecker’s delta δij and V = (vij), let

dij =
1

2
(1 + δij)

∂

∂vij
,

and denote D = (dij). For p× p matrix G(V ) = (gij(V )), define DG(V ) by

[DG(V )]ij =
p∑

s=1

disgsj(V ).

Then the Stein-Haff identity is given by

E
[
trG(V )B−1|Λ

]
= E

[
2tr [DG(V )] + (n+m− p− 1)trG(V )V −1|Λ

]
. (2.34)

This identity is applied to the conditional expectation (2.33), which is rewritten as

E
[
trAV B−1Cκ(V )|Λ

]
= E [2tr [D{AV Cκ(V )}] + (n+m− p − 1)trACκ(V )|Λ] . (2.35)

For evaluating the first term in the r.h.s. of (2.35), we observe that

[D{AV Cκ(V )}]ij =
p∑

s=1

as

(
1 + δis
2

)
δijCκ(V ) +

p∑
s=1

asvsj{disCκ(V )},

which yields that

tr [D{AV Cκ(V )}] = p + 1

2
(trA)Cκ(V ) +

p∑
i=1

p∑
s=1

asvsi{disCκ(V )}. (2.36)

Here we need to evaluate the second term in the r.h.s. of (2.36). Since zonal poly-
nomials Cκ(V ) are polynomials of the eigen values �1, . . . , �p (�1 ≥ · · · �p) of V with
nonnegative coefficients, we can put

f(L) = Cκ(V )

for L = diag (�1, . . . , �p), and note that

∂

∂�i
f(L) ≡ fi(L) ≥ 0.
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SinceV =HLH t for p×p orthogonal matrixH = (hij), we obtain by taking differentials,
as in Srivastava and Khatri (1979, p.31),

dV = (dH)LH t +H(dL)H t +HL(dH t),

so that
H t(dV )H =H t(dH)L+ dL+L(dH t)H. (2.37)

Since H tH = I, we have the relation that (dH t)H +H t(dH) = 0, or

(dHt)H = −H t(dH) = −[(dHt)H]t,

which means that (dH t)H is a skew symmetricmatrix. This fact implies that the diagonal
elements of the first and the second terms in the r.h.s. of (2.37) are zero. Letting
d = ∂/∂vij especially and considering the diagonal elements in (2.37), we can see that

dij�s =
1

2
(1 + δij)

∂�s
∂vij

=
1

2

[
H t (E ij +Eji)H

]
ss

= hishjs, (2.38)

where Eij is a p × p matrix such that the (i, j)-th element is one and others are zero.
Using the equation (2.38), we get that

dijf(L) =
p∑

r=1

(dij�r)
∂

∂�r
f(L)

=
p∑

r=1

frhirhjr,

which is substituted in the second term in the r.h.s. of (2.36) to get that
p∑
i=1

p∑
s=1

asvsi{disCκ(V )} =
p∑
i=1

p∑
s=1

asvsi

p∑
r=1

frhirhsr

=
p∑

s=1

p∑
r=1

as{VH}sr{diag (f1, . . . , fp)H t}rs (2.39)

= trAVHdiag (f1, . . . , fp)H
t

= tr
(
H tAH

)
diag (�1f1, . . . , �pfp)

≥ 0.

Combining (2.35), (2.36) and (2.39) gives that

E
[
trAV B−1Cκ(V )|Λ

]
≥ E [(p + 1)(trA)Cκ(V ) + (n+m− p − 1)(trA)Cκ(V )|Λ]
= (n+m)(trA)E[Cκ(V )|Λ],

which proves (2.33) and the proof of Theorem 2 is complete. ✷✷
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3 Estimation of the Generalized Variance

In this section, we treat the problem of estimating the generalized variance |Σ| which has
been studied as one of the multivariate extensions of the Stein result. The method used in
Section 2.1 will be applied in Section 3 not only to construct a new improved estimator of
|Σ| but also to give another proof of the conventional result given by Shorrock and Zidek
(1976) and Sinha (1976). It is supposed that every estimator δ = δ(S,X) is evaluated
in terms of the risk function R(ω, δ) = Eω[L(δ, |Σ|)] for ω = (Σ,Ξ) relative to the Stein
(or entropy) loss function

L(δ, |Σ|) = δ/|Σ| − log δ/|Σ| − 1. (3.1)

Shorrock and Zidek (1976) and Sinha and Ghosh (1987) showed that the best affine
equivariant estimator of |Σ| is given by

δ0 =
(n− p)!
n!

|S| (3.2)

and that it is improved upon by the truncated estimator

δSZ = min

{
(n − p)!
n!

|S|, (n+m− p)!
(n+m)!

|S +XX t|
}
. (3.3)

Shorrock and Zidek (1976) established this result on the basis of expressing the risk
function with the zonal polynomials. Since their approach was somewhat complicated,
Sinha (1976) gave another method base on the Fubini-type theorem of Karlin (1960)
which derives the distribution of a square root matrix of S with respect to the Lebesgue
measure. Using (2.2) and T = (tij) ∈ G+

T such that S = TT t, we see that the estimator
δSZ is rewritten by

δSZ =
p∏
i=1

(n− i+ 1)−1t2ii ×min
{
1,

p∏
i=1

Gi

}
, (3.4)

where

Gi = (n− i+ 1) 1 + ytiCiyi
n +m− i+ 1 . (3.5)

Also we can consider another type of estimators which are sequentially defined by

δTRk =
p∏
i=1

(n− i+ 1)−1t2ii ×min
1, G1, G1G2, . . . ,

k∏
j=1

Gj

 , (3.6)

for k = 1, . . . , p. Then the method used in Section 2.1 can be applied to establish that
δSZ dominates δ0 and that δ

TR
k beats δTRk−1 for k = 1, . . . , p. The two improved estimators

δSZ and δTRp are possible choice though the preference between them cannot be compared
analytically.
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Theorem 3.
(1) The estimators δSZ dominates the δ0 relative to the loss (3.1).
(2) For k = 1, . . . , p, the truncated estimator δTRk dominates δTRk−1 relative to the loss

(3.1), where δTR0 denotes δ0.

Proof. We first prove the part (1). Consider an estimator of the general form

δφ = (
p∏
i=1

eit
2
ii)φ(a11, . . . , app),

where ei = (n − i+ 1)−1 and aii = 1 + ytiCiyi for i = 1, . . . , p. Since it is supposed that
Σ = Ip without loss of generality, the risk function of δφ is written as

R(ω, δφ) = E

[
p∏
i=1

eit
2
iiφ− log

p∏
i=1

eit
2
iiφ− 1

]
.

From (2.12), it is noted that

tr
{
T (Ip + Y

tY )T t − 2TY tΞ t
}

(3.7)

=
p∑
i=1

{
aiit

2
ii − 2θiitii − ki(y1, . . . ,y i)

}
+

p−1∑
i=1

aii||ti+1,i + zi||2,

where

ki(y1, . . . ,yj) = a−1
ii y

t
iCiΞ i+1Ξ

t
i+1Ciyi,

θii = ytiCiξi.

Hence, integrating out the density with respect to t21, . . . , tp,p−1, we rewrite the risk as

R(ω, δφ) =
∫

· · ·
∫ (

p∏
i=1

eit
2
iiφ− log

p∏
i=1

eit
2
iiφ− 1

)
(3.8)

×
p∏
i=1

tn+m−i
ii exp

{
−

p∑
i=1

{
aiit

2
ii − 2θiitii − ki(y1, . . . ,y i)

}
/2

}

×c2(Ξ, a11, . . . , app)
p∏
i=1

dtiidY .

Note that for i = 1, . . . , p and j = 1, . . . , i,

θii(y1, . . . ,yj, . . . ,y i) = (−1)δijθii(y1, . . . ,−yj, . . . ,y i),
ki(y1, . . . ,yj, . . . ,y i) = ki(y1, . . . ,−yj, . . . ,y i),
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where δij is the Kronecker’s delta. Then the risk can be further rewritten as

R(ω, δφ) =
∫

· · ·
∫ ( p∏

i=1

eit
2
iiφ− log

p∏
i=1

eit
2
iiφ− 1

)
(3.9)

×
p∏
i=1

{
1

2

(
eθiitii + e−θiitii

)
tn+m−i
ii e−aiit

2
ii/2dtii

}

×c2(Ξ, a11, . . . , app) exp

{ p∑
i=1

ki(y1, . . . ,y i)/2

}
dY ,

which is minimized at φ = φ∗
Ξ where

φ∗Ξ =
p∏
i=1

∫
tn+m−i
ii

(
eθiitii + e−θiitii

)
e−aiit

2
ii/2dtii

ei
∫
tn+m+2−i
ii (eθiitii + e−θiitii) e−aiit2ii/2dtii

.

From (2.11), we get the inequality

φ∗Ξ ≤
p∏
i=1

aii
ei(n+m− i+ 1) = φ

∗
0 (say),

so that
φ∗Ξ ≤ min (1, φ∗0) ≤ 1

in the case that φ∗0 < 1. Therefore the convexity of the loss (3.1) completes the proof of
the first part of Proposition 1.

Next we demonstrate the part (2). Let us define Fk by

Fk =
min

(
1, G1, . . . ,

∏k−1
i=1 Gi

)
∏k
i=1Gi

.

From (2.10) and (2.12), it can be seen that

R(ω, δk−1)−R(ω, δk) = E

[{
(Fk − 1) (

k∏
i=1

Gi)(
p∏
i=1

eit
2
ii)− logFk

}
I(Fk ≥ 1)

]

= E

[{
(Fk − 1) (

k∏
i=1

Gi)B
∗
k(y1, . . . ,yk) − log Fk

}
I(Fk ≥ 1)

]
,

where

B∗
k(y1, . . . ,yk) = B

∗
k

=

∫ · · · ∫ ∏k
i=1 eit

2
iif1(t11, . . . , tkk,T k+1,k+1,Y k+1)

∏k
i=1 dtiidT k+1,k+1dY k+1∫ · · · ∫ f1(t11, . . . , tkk,T k+1,k+1,Y k+1)

∏k
i=1 dtiidT k+1,k+1dY k+1

,
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for

f1(t11, . . . , tkk,T k+1,k+1,Y k+1) =
p∏
i=1

{
tn+m−i
ii (eθiitii + e−θiitii)e−aiit

2
ii/2

}
× exp{−h∗k(T k+1,k+1,Y k+1)/2},

h∗k(T k+1,k+1,Y k+1) = h
∗
k = tr

{
T k+1,k+1(Ip−k + Y t

k+1Ck+1Y k+1)T
t
k+1,k+1

−2T k+1,k+1Y
t
k+1Ck+1Ξk+1

}
.

By the same arguments as in (2.11), we observe that

B∗
k ≥

1∏k
i=1Gi

∫ · · · ∫ ∏p
i=k+1 eit

n+m+2−i
ii e−h

∗
k
/2dT k+1,k+1dY k+1∫ · · · ∫ ∏p

i=k+1 t
n+m−i
ii e−h

∗
k
/2dT k+1,k+1dY k+1

. (3.10)

By making the transformation T k+1,k+1Y
t
k+1 =Xk+1, the r.h.s. of (3.10) is expressed by

1∏k
i=1Gi

∫ · · · ∫ ∏p
i=k+1 eit

n+2−i
ii f2(T k+1,K+1,Xk+1)dT k+1,k+1dXk+1∫ · · · ∫ ∏p

i=k+1 t
n−i
ii f2(T k+1,K+1,Xk+1)dT k+1,k+1dXk+1

,

which can be easily seen to be 1/
∏k
i=1Gi, where

f2(T k+1,K+1,Xk+1)

= exp
[
−1
2
tr

(
T k+1,k+1T

t
k+1,k+1 +Xk+1Ck+1X

t
k+1 − 2Xk+1Ck+1Ξk+1

)]
.

Therefore we get that R(ω, δk−1) ≥ R(ω, δk) for any ω, and the proof of Theorem 3 is
complete. ✷✷

4 Simulation Studies

It is of interest to investigate the risk behaviors of several estimators given in the previous
sections. We provide the results of Monte Carlo simulation for the risks of the estimators
where the values of the risks are given by average values of the loss functions based
on 50,000 replications. These are done in the cases where p = 2, n = 4, m = 1, 10,
Σ = diag (1, 1), ξ1j = a/3 and ξ2j = a for Ξ = (ξij) and 0 ≤ a ≤ 8.

The risk performances of estimators ofΣ are first investigated. For the sake of simplic-

ity, we denote Σ̂
UB
, Σ̂

SG
, Σ̂

JS
, Σ̂

TR
, Σ̂(ΨS), Σ̂([ΨS ]TR), Σ̂([ΨT ]TR) and Σ̂([ΨH ]TR)

with a0 = (p − 1)/n by UB, SG, JS, TR, S∗, STR, TTR and HTR, respectively.
Table 1 reports the values of the risks of the estimators UB, SG, JS and TR for m = 1,

p = 2 and a = 0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8. In this case, SG, JS and TR are possible candidates

since Σ̂
HR

given in Section 1 is identical to SG.
For m = 10 and p = 2, the scale equivariant minimax estimators proposed in Section

2.2 are added to candidates, and the risk behaviors of the estimators UB, JS, TR, S∗,
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Table 1. Risks of the Estimators UB, SG, JS and TR in Estimation of Σ
for m = 1 and p = 2

a 0 0.5 1 2 3 4 5 6 7 8
UB .925 .925 .925 .925 .925 .925 .925 .925 .925 .925
SG .922 .922 .923 .924 .925 .925 .925 .925 .925 .925
JS .861 .861 .861 .861 .861 .861 .861 .861 .861 .861
TR .839 .839 .840 .844 .850 .853 .855 .856 .857 .858

STR, TTR and HTR are given in Figure 1 for 0 ≤ a ≤ 8 where the risk of Σ̂([ΨP ]TR) is
not given there since it behaves similarly to TTR.

Table 1 and Figure 1 reveal that
(1) in the case that m = 1 < p = 2, the estimator TR is much better than UB, SG

and JS,
(2) in the case that m = 10 > p = 2, the estimator HTR is the best of the seven,
(3) STR beats TTR for 0 ≤ a < 2 while the reverse hods for a > 3,
(4) the risk gain of TR is not so much as the scale equivariant minimax estimators for

m = 10.
The truncated minimax estimator TR is thus recommended when m < p. When

m ≥ p, the estimators HTR, STR and TTR are recommendable for the practical use.

The risk performances in estimation of the generalized variance |Σ| are investigated
in Figure 2, where δUB, δSZ and δTR are denoted by UB, SZ and TR, respectively. Figure
2 reveals that TR has a smaller risk on a large parameter space while the risk gain of SZ
is significant at Ξ = 0.
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Figure 1. Risks of the Estimator UB, JS, TR, S∗, STR, TTR and HTR in Estimation of
Σ for m = 10 and p = 2
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Figure 2. Risks of the Estimators UB, SZ and TR in Estimation of |Σ| for m = 10 and
p = 2
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