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Abstract

Randomization is an effective way of extracting information from a limited number of
observations, as random auditing shows. We employ this idea to support efficient
outcomes in repeated games with imperfect monitoring, when information is severely
limited. In particular, we show that efficiency can be improved when the players
randomize and condition their future actions both on the signal and their actions.
Firstly, we show that in a version of Radner, Myerson and Maskin’s example of
inefficient partnership, efficiency can be achieved by such (i.e., privately mixed
strategy) equilibria. Secondly, we show that the folk theorem under imperfect public
monitoring can be extended to the case with a small signal space by means of mixed
strategy equilibria with communication. In particular, we show that for generic
symmetric games with at least four players, we can drop the Fudenberg-Levine-Maskin
condition on the number of actions and signals altogether and prove the folk theorem
under the same condition as in the perfect monitoring case.

" This research was originated in a stimulus conversation with Tadashi Sekiguchi. I
would like to thank the saminar participants at Osaka University, Tokyo University and
LSE, especially A. Matsui, V. Bhaskar, and J. Moore for helpful comments and
discussion. Financial support from CIRJE at University of Tokyo is also gratefully
acknowledged.



1. Introduction

Even when a limited number of cases can be investigated, IRS is able to
discipline a large number of taxpayers by randomizing whom to audit. Likewise,
factory managers employ random sampling for quality control, when only a small
number of their products are to be examined. Randomization is an effective way of
extracting information from limited observations. We will show that this idea can be
fruitfully employed to support efficient outcomes in a long-term relationship.

More specifically, we will show that efficiency can be achieved in repeated
games with imperfect public monitoring, even when the amount of available
information is severely limited. This is done by introducing a new class of mixed
strategies that have not been employed in the previous literature on repeated games
with imperfect public monitoring. This class of games has attracted much attention
since Green and Porter’s seminal work on cartel enforcement under demand
uncertainty (1984). A general technique to analyze a certain class of equilibria (see
below) was introduced by Abreu, Pearce and Stacchetti (1990) and Fudenberg, Levine
and Maskin (1994) (FLM hereafter) proved the Folk Theorem.

All those works restrict attention to a special class of equilibria (perfect public
equilibria) where the players ignore what they have done and condition their actions
only on the history of the publicly observed signals. FLM showed that this class of
equilibria is rich enough to support any mutually beneficial outcomes (i.e., to prove the
Folk Theorem) when the signal takes on sufficiently many values relative to the number
of available actions. In particular, in generic symmetric games with K actions for each
player and L different values for the public signal, the FLM Folk Theorem obtains when
2K-1 < L. While one can reasonably argue that there are many variables which can
potentially serve as the signals (so that L is large), one can also tell equally convincing
stories that the players can potentially take a variety of actions (K is also large). In
short, it would be fair to say that the FLM Folk Theorem is applicable to a wide range of
situations, but an important class of games, where information is rather limited, is not
covered by their results. Examples of such games include repeated partnership where
the project in each period either succeeds or fails (=2). The present paper provides
the Folk Theorem for such a class of situations.

The main idea can roughly be explained by the analogy to the random
sampling technique for quality control. The manager randomly picks up one of the

products assembled by the workers and examines its quality. To provide incentives for



the workers, their compensation should depend not only on the quality of the sampled
product (the value of the signal) but also on whose product was examined (the action of
the manager). Similarly in repeated games, if the players randomize over different
actions and the future payoffs can depend both on the realized signal and actions, rich
information can be generated to discipline the players.

This idea is embodied in two sets of results. Firstly, we show that efficiency
can sometimes be improved when the players employ (mixed) private strategies. Aswe
have seen, nearly all existing works, including FLM, restrict attention to public
strategies, where the playrs’ actions depend only on the history of the publicly
observable signal. In contrast, in mixed private strategies each player’s action also
depends on the history of her own action. We re-examine Radner, Myerson and
Maskin’s example (1986), which shows that all equilibria in public strategies are
bounded away from the Pareto frontier, when the signal space is small relative to the
action space. We show that in a version of their model efficiency can be
(approximately) achieved when the players utilize private strategies.

Secondly, we introduce communication to the game. At the end of each period,
each player announces which action she has just taken. The players can tell a lie but
we will construct equilibria where the players voluntarily reveal the true actions. We
look at the public equilibria in such a game, where the players condition their actions
both on the history of public signal and communication'. In such an equilibrium, the
players’ future payoffs can depend both on the signal and actions, and a rich class of
information can be generated by randomization (as in the random sampling technique
for quality control discussed above). In particular, we show that for generic symmetric
games with at least four players, we can drop the FLM condition on the number of
actions and signals altogether and prove the folk theorem under the same condition as
In the perfect monitoring case. This result is particularly useful in wvarious
applications of the folk theorem, because quite often we do not have a clear idea about
the number of actions and signals when formalizing a given economic problem as a
mathematical model.

The paper is organized as follows. Section 2 introduces the basic model of

repeated games with imperfect public monitoring. Section 3 shows that efficiency can

! Communication has been introduced in repeated games with imperfect private
monitoring, where each player privately receive a different signal about the past actions
(Ben-Porath and Kahneman (1996), Compte (1998) and Kandori and Matsushima
(1998)). The main role of communication in those works, which mainly look at pure
strategies, is to coordinate the players’ actions, rather than to generate more
information.



be achieved in a version of Radner, Myerson and Maskin’s example, when the players
employ private strategies. Section 4 introduces communication and proves the Folk
Theorem in the situation where the signal space is relatively small compared to the
action space. In section 5 we examine the way to provide strict incentives for truth-

telling.

2. The Basic Model

A group of players i=1,2, ..., N repeatedly play a stage game over time, t=0,1,....
The stage game payoff function for player i is given by u;(a;, ®), where a; € A, is player 1's
action and ® € Q is publicly observable signal. We assume that each player’s action is
not observable to other players. Given an action profile a € A = A;x-xAy, the
probability of ® is denoted by p(w|a) (We assume that Q and A are finite sets). Player
1's expected stage game payoff is defined by

(@)= u(a,»)p(wa).
weQd

Note that this formulation, which is standard in the literature, makes sure that the
realized payoff of player i (that is, u;) conveys no more information than his own action
a; and the public signal o do. This stage game is repeatedly played, and the average

payoffof player 11s given by
(1-8)),8'g,(a(r)),
=0

where a(t) refers to the action profile in period t and 6e (0, 1) is the discount factor. We
denote a mixed strategy profile by ae A=A;x---XAy, and abuse the notation to represent
the corresponding expected payoff and signal distribution by g;(t) and p(w| o). Finally,
we define the stage game payoff profile by g=(g;,...,8x)-

Next we will review the Fudernberg-Levine algorithm (1994) to compute the
perfect public equilibrium payoffs in the limit (as the discount factor tends to unity).
This method allows us to determine the limit value set in the repeated game by means
of a set of associated static contract problems. For a given welfare weight Ac RY, define
k(A) by



sup  A(g(e) + E[x(@)|er])

aeh, xQ—->RY
st. (IC) Yiva', g(a)+Elx,(@)a]2 g,(a,a )+ Elx,()a’,a_;]
(B) Vo Ax(w)<0.

This could be interpreted as an optimal contract design problem for the stage game,
where the social planner tries to maximize the social welfare by means of a side
payment scheme x, whose value depends on the publicly observable signal w.
Condition (B) can be regarded as a budget balancing requirement under the given
welfare weight, and (IC) shows that each player is optimizing under the given side
payment scheme x. Let D(A) = {ve R¥|Av<k(r)} and denote the set of perfect public
equilibrium payoffs under discount factor & by V(§). A perfect public equilibrium is a
sequential equilibrium where each player’s action at time t depends only on the

realization of past signals w(s), s<t. Then the following is true.

Lemma 1 (Fudenberg and Levine (1994)).
LimV(8) ="\ D(4),

2420

If the right hand side has non-empty interior.

We will employ an extension of this result to the case where communication is
allowed. In each period, each player i takes an action, observes ®, and then’
(simultaneously with other players) announces a message m;. As we examine the case
where the players reveal their action, we assume m;eA;. The players can tell a lie but
we will construct equilibria where they voluntarily tell the truth. Let m;=c;(a;,®) be
player i's communication strategy in the stage game. The set of player 1s
communication strategies is denoted by C; and we let C=C;x---xCy. For a given welfare
weight Ae RY, we define k*(A) by

2 Alternatively, we can assume that the players communicate before the realization of .
Our results in Section 4 and 5 show that the players truthfully reveal their actions after
each realization of ®. Then, under the same arrangements the players have incentives
for truth-telling before observing ®. Hence our results hold for either specification.



sup A(g(00) + E[xjet, c])

aeA, ceC, xOxA-»>RY
s.t. (IC°) ViVa' V¢, g(a)+ E[x,.]a,c] 2g(a;,,o0_)+ E[xl.la',. ;¢ e ;]
(BY) VaVmAx(w,m)<0,

where E[x|o,c] is the expected value of x(w,m) under (o,c). Define D(A) =
{ve RY| Av<ke(A)} and let V¢(3) be the set of perfect semipublic equilibrium payoffs in the
game with communication under discount factor 6. A perfect semipublic equilibrium is
a sequential equilibrium where each player’s action at time t depends only on the

realization of past signals ©(s) and messages m(s), s<t. Then we have the following.

Lemma 2.
laiE}V‘(5) > DODC(A),

if the right hand side has non-empty interior.

Proof: If we redefine the stage game payoff and the signal by g'(a,c)=g(a) and w'=(®w,m),
the stage game has a finite action space A xC and signal space QxA, where the signal

distribution is given by

p(wla) if Vim, =c,(a,,®)

0 otherwise.

p'(w,ma,c) ={

Lemma 2 is derived by applying Lemma 1 to this stage game 3.

3. Private Strategies and Efficiency

In this section we look at repeated prisoners’ dilemma game with imperfect
monitoring. There are two players, and two actions, C and D, are available for each
palyer. We also assume that the publicly observable signal o takes on two values, X or

Y. The expected stage game payoff profiles are summarized by the following table.

3 If we used mixed communication strategies in the definition of k°(}), we would have

equality rather than set inclusion >. For our purpose this weaker version suffices.



C D
C 1,1 -h, 1+d
D 1+d, -h 0,0

Each entry of the table denotes the column player’s payoff followed by the row player’s
payoff. We assume that this is a prisoners’dilemma game; d, h >0 (D is dominant) and
d-h < 1 ((C,C) is efficient, that is, it is not Pareto-dominated by the equal (public)
randomization between (C,D) and (D,C)). This is a simplified version of the model
examined by Radner, Myerson and Maskin (1986).

Consider the following information structure; 0 < p(X|C,C) < 1,0 <pX|D,D) <
1, and pX|C,D)=p(X|D,C)=0. The last equalities represent a “moving support”
assumption, but note that this does not help to support the efficient payoff profile (1,1)
by public strategies, as we will show later. Also note that the prisoners’ dilemma
payoffs in the above table can be generated by suitable choices of realized payoffs u(a;,

®) so as to satisfy

1=u(CX) pX|C,C) +u(C,Y) p(Y|C,C),
-h =u(CY),

1+d = u(D,Y), and

0 =uw(D,X) pX|D,D) + wD,Y) p(Y|D,D).

Consider the following private strategy. In the initial period t=0, each player
mixes between C and D. Action C is chosen with a (large) probability re (0, 1). If the
realization of the signal at the end of the current period is X and she played D, then she
will play D forever. Otherwise, the player repeats the same action plan as in the initial
period. Note well that (i) the players are using their private information (their actions)
and (ii) thanks to the assumption p(X|C,D)=p(X|D,C)=0, when a player chose D and
observes X, it is common knowledge that the other player also chose D (and of course is
observing X). Point (ii) thus ensures that the players can fully coordinate to trigger
punishment (defecting forever), as in the usual trigger strategy equilibrium. The

equilibrium conditions are

v = (1-8)(r - (1-Dh) + &v (3.1)

v = (1-®r(1+d) + 3[1 - (1-r)pX|D,D)]v (3.2)



Equation (3.1) represents the average payoff at the beginning of the initial period when
the player under consideration plays C (while the opponent is employing the above
strategy). In this case, the current payoffis either 1 or —h depending on the opponent’s
action, and punishment is surely avoided (as defection is triggered if and only if both
payers play D and the signal is X). On the other hand, equation (3.2) shows the payoff
when the player chooses D. The current payoff is either 1+d or 0, and the punishment
will be triggered when the opponent also chooses D and the signal is X. This happens
with probability (1-r)p(X|D,D), so with the complementary probability, the player will
enjoy the original average payoff v at the beginning of the following period. Equation
(3.1) and (3.2), taken together, imply that the player is just indifferent between choosing
C and D (the condition for a mixed strategy equilibrium).

From (3.1), we have

v=r—(1-r)h. (3.3)

Also, by (3.1) and (3.2) we get

(1-8)(xd + (1-)h) = 86(1-r) pX|D,D)v.

This and (3.3) result in a quadratic equation in r;

(1-8)((d-h)r + h) = 8(1-r) pX1D,D) ((1+h)r - h). (3.49)

We will show that there is a root of this equation in (0, 1) which tends to 1 as 6 —1.
Equation (3.3) then shows that, as r tends to 1, the average payoff tends to 1, the payoff

from full cooperation. This leads us to the following result.

Proposition 1. In the repeated prisoners’ dilemma game defined above, there is a
private equilibrium that approximately attains fully efficient average payoff (=1) as the
discount factor tends to unity, while any perfect public equilibrium average payoff is

bounded away from 1.

Proof. To show the efficiency of the private equilibrium given above, we need to prove
that a root of equation (3.4) lies in (0, 1) and tends to unity as d tends to 1. At r=1, the
left hand side of (3.4) is strictly positive ((1-8)d > 0) but the right hand side is equal to
zero. Now let r be any number r € (h/(1+h), 1) and let & tends to 1. The left hand side



of (3.4) tends to zero, while the right hand side tends to
(1-r) pX|D,D) ((1+h)r — 1) > 0.

Thus equation (3.4) has a solution in (r’, 1) as & tends to 1, where r’ is any number close
to 1. Lemma 1 can be used to show that any perfect public equilibrium payoff is
bounded away from 1. The details are similar to Radner, Myerson and Maskin (1986)

and therefore omitted.

4. Randomization, Communication and Efficiency

In the last section, we showed that efficiency could be improved if the players
randomize and condition their future action plans both on the signal and their actions.
However, as their actions are private information, it is in general difficult to coordinate
their future action plans properly when they employ such (i.e., private) strategies®.
This coordination problem was resolved by the special information structure in the
previous example, but in general it is hard to cope with. To overcome such difficulties,
we iIntroduce communication in this section. In each period, each player takes an
action, observes ®, and then® (simultaneously with other players) announces which
action she has just chosen. The players can tell a lie but we will construct equilibria
where they voluntarily tell the truth. To implement this idea we need at least three
players, which will be assumed throughout this section.

First let us introduce some notation. For a given pair of players 1 and j, we

€A, = HAk,and their mixed action

ki,

denote their opponents’ action profile by a_;

1

profile o€ A is defined similarly. Let R;(j,a;) be the matrix whose rows and columns

are indexed by a; and (®,a ;) respectively with its (a;,(®,a ;))-element given by

Y. ] Je. (@), 4.1)

ki

4 The same difficulty arises when there is no publicly observable information and each
player privately observes a distinct signal. The study of such a class, i.e., repeated
games with imperfect private monitoring, is in its rudimentary stage. See, for example,
Bhaskar and van Damme (1999), Mailath and Morris (1998) and Sekiguchi (1997).

® For an alternative specification of timing, see footnote 2.



and define Q;(c) by

R(j.a_,
Q,-,(a)=[ (e )}

R G,or_,)

To avoid possible welfare loss, we will provide incentives for any given pair of players i
and j by efficiently allocating their future payoffs. That is, when we punish one player,
we reward the other so as to avoid punishing them simultaneously, which entails
welfare loss. As we also need to induce truth-telling, we let their future payoffs depend
on the signal and what others announce, (w,a;). The a;th row of matrix Q;(a)
represents the distribution of this information; when player i chooses action a; and other
players employ mixed actions o, then (w,a;) realizes with probability given by (4.1)
(provided that other players tell the truth). The a;-th row can be interpreted similarly.
If Q;(o) has the maximum row rank, we can statistically detect which of the two players
deviated, and thus the efficient punishment discussed above is feasible.

Let gy(ap (k=1j) and g;(w,a;) be the a,-th row and the (w,a;)-th column of
matrix Q;(a). The number of the columns is IlenlAkl, but as we have

ki, j

1
Y g,(@.a_)=]]a.(a)|:

ki, j 1

for each aj, at most (|Ql—1)H|Akl+lcolumns can be independent. The number of
ki, j

rows are |A;|+[A|, but as

N
Zqz’j(ai)ai(ai) :Zqij(aj)aj(aj) = ('“,Ep(wla)l_[ak(ak),"'),

k=1

at most |A;|+|A;l-1 rows can be independent. Therefore, a necessary condition for

Q;(0) to have the maximum row rank is

QD[ JIAIZIARIA 2. (4.2)

k#i, J



The next lemma shows that this is almost sufficient.

Lemma 3. Under (4.2), the following are true for a generic choice of signal distribution
pl@/a).

(1) For any €>0 and any pure strategy profile a, there 1s a mixed strategy profile a such
that | /g(a)-g(e)/ | <€ and Qy(c) has the maximum row rank for any pair 1, j.

(i) Take any €>0 and any profile (a; o;) where a; is a best response against o, Then
there is a profile (a}, a’y)) such that |/gi(a, ay)- gi(a, a’)] /<€, a’ is a best response
against o’;, and R(1, (a}, a’;)) has full row rank for each j#i.

Proof. (i) For each pair i, j, fix a profile a(i,j)=(a%,a%a’;), where a’; is completely
mixed. Then, each element of matrix Q;(x(i,))) is p(w|a’) times a positive constant,
with a distinct (o,a’) for each element (except that the a%-th and a%th rows are
identical). Therefore, Q;(a(i,))) has the maximum row rank under (4.2) in an open and

dense set, say P(i,}), in the space of all possible signal distributions p(-|-). Thus in an

open and dense set ﬂP(i, J), for each pair 1,j, Q;(a(i,})) has the maximum row rank.
iz

Take any (1A;|+|A;]-Dx(1A;|+1A;]-1) submatrix of Q;(0) that is nonsingular when

o=a(1,)), and denote its determinant by D;(o). Since Dy(a) is a polynomial in o and

nonzero for a=a(i,}), we conclude that it is nonzero on an open and dense set, say A(L]J),

in the space of mixed strategy profiles. Thus, for a generic choice of the signal

distribution, Q;(c) has the maximum row rank for each i,j on an open and dense set

ﬂA(i, J) . Claim (1) then follows from the continuity of the stage payoff function g.

i#j

(11) By a similar argument as above, we can show that for a generic choice of the signal
distribution, there is an open and dense set A’ such that for any pair 1,j and any a”,
matrix R(i, (a”;, o)) has full row rank if a’e A’.  Choose o’e A’ so that o’ ; is sufficiently
close to the given profile o;, Then, we have | | gia;, oy)- gi(a’;, @) | | <¢ by the Berge’s

theorem, and R;(j, (a’;, &) has full row rank for each j=#1.

Lemma 3 assures that we can generate sufficiently rich information by means
of randomization and communication as long as condition (4.2) is satisfied. Combining

_this and Lemma 2 leads us to the following folk theorem. Let y; be player i's minimax

value v, =maxming,(a;,&_)and let (a,0;) be the profile that achieves this value.

a; a—'l

10



Define the set of feasible and individually rational payoff set by V*={ve cog(A)|Viv,>y;},
where cog(A) is the convex hull of pure strategy stage payoffs.

Proposition 2 (Folk Theorem). Suppose N>3 and V* has non empty interior. Under
(4.2), for a generic choice of the signal distribution, any feasible and individually
rational payoff profile can be approximately achieved by a sequential equilibrium with

communication, If the discount factor is sufficiently close to unity:

IﬁinllV‘:((S) SV

Remark: Condition (4.2), (IQI—I)HIAkI 2|AH A2, is much weaker than the FLM

ki, j
condition for their folk theorem, IQIZIA,.I+IAJ.|-1, especially when there are many

players. We will show (Corollaries 1 and 2) that our condition is automatically

satisfied for a wide class of games with at least four players.

Proof. In the light of Lemma 2, it is sufficient to show ﬂDc(l) D V* Fix A#0 and
A=0

define IA)={i| A#0}. We will determine D*(A) in the following three possible cases:
(a) IA)={i} for some 1 and A>0.
(b) I(A)={1} for some 1 and A;<0.
(©) IV [22.

In case (a), let a* be the profile that maximizes player 1's stage payoff. By
Lemma 3 (i1), for any given £>0, we can always find a profile (a’;, &) in such a way that
| | gi(a*)-gi(@’, o’ ) | | <e, &’; is a best response against o’ ;, and R, (a;, &) has full row
rank for each j#i. Let us define the side payment scheme in the definition of D°(A) by
x=0 and x;(w,a)=y;(®,a ) for j#i. Note that each player’s side payment is independent of
her announcement, so that telling truth is an optimal strategy. = Then, condition (IC°)
is satisfied at (a’;, o) for player i, because a’; is a best response against o’ ; and x;=0. To

satisfy condition (IC) for player j#i, we will show that we can choose x; so that
Va; v;=gja,a;, o)+ E[xl a;, a’;, o'y

for some v;. This can be rewritten as

11



v—g(a,a;.ay) |= R, a ) y(w,.a )|,

and it has a solution in y; because R,(i, (a’;, &’ ;)) has full row rank. Hence we have x
which satisfies (IC°) and (B°) with equality to support profile (a’, o). Since we have
| |g(a*)-g(a’,a’ ) | | <e and € can be arbitrarily small, we have k°(A)=Ag(a*)=max, ,Ag(a).

Case (b) is similar and we can show that minimax point for player i, g(a,, '), is
approximately supported by a side payment scheme with Ax=0, so that we have
ke(M)>hg(a;, o' )=hy;.

In case (¢), let a* be a maximizer of Ag(a). Then, by Lemma 3 (1), for any >0,
we can find a mixed strategy profile o such that | |g(a*)-g(o) | | <e and Q;(c) has the
maximum row rank for all pair i, . We will show that o can be supported by a side
payment scheme satisfying Ax=0. When je I(A), choose any i#j and find x;(w,a)=y;(®,a.;)
so that j has an incentive to follow o;. This can be done exactly in the same way as in

case (a). For any pair i,j e I(}), fix any (v;,v;) and find y¥(®,a ;) (k=i,j) such that

Va;, v;=gla,o)+ElyYla,o], (4.3)

Va; v;=gfa,a;) +EyYla,0;] and

AyY + hy% =0. (4.9)

This set of conditions is equivalent to

Va; vigla,o) =E[y%la,0] and

V a - vi-gia, )] = Ely%|a,0],

and by a similar argument as in case (a), thié system is shown to have a solution in y¥,
as Q;(@) has the maximum row rank. Now for ie I(1), define x; to be the average of y%:

1

X; = W z y,fj . Then, by (4.3) and (4.4), we have x which satisfies (IC®) and

Jji,jel(A)
(B) with equality to support a. As we have| |g(a*)-g(o) | | <e and € can be arbitrarily
small, we have k°(A)=Ag(a*)=max, s1g(a).

12



From the conclusions of the three cases, D°(A) is {v| Av<max,_,Ag(a)} in cases (a)

and (c) and it contains {v| vy} in case (b). Hence we have ﬂDc(l) DV
A0

As an application of Proposition 2, consider a game where the players have an
equal number of actions. Then we can show that the folk theorem generically holds for
such a game no matter how small the signal space may be, as long as there are at least

four players.

Corollary 1. Consider a game where the players have an equal number of actions, and
suppose N24 and V* has non-empty interior. Then, for a generic choice of the signal
distribution, any feasible and individually rational payoff profile can be approximately
achieved by a sequential equilibrium with communication, if the discount factor is

sufficiently close to unity:

Proof. As the realized payoff for player i depends only on his action and the signal,
there is no strategic interaction when | Q|=1. Then V* is a singleton set with the
Pareto efficient Nash equilibrium payoff of the stage game if | Q|=1 so that the
statement is trivially true. When | Q|>2 we invoke Proposition 1, and condition (4.2)
reduces to (| Q| -1)KN-2 >2K-2, where K is the number of available actions for each player.
When | Q[>2 and N>4, we have (| Q[-1)KN? - (2K-2) > K? - 2K + 2 > (K-1)2+1 > 0.

We will now prove a similar result for symmetric games. As some restrictions
are imposed on the information structure (i.e., on matrices Q;) by the symmetry of
p(w]a) (it should be invariant with respect to any permutation of the elements of a), we
have to check if the generic full rank properties (Lemma 3) hold for symmetric games.

The answer turns out to be positive, and we obtain the following result.

Corollary 2. Consider symmetric games, and suppose N>4 and V* has non-empty
Interior. Then, for a generic choice of the (symmetric) signal distribution, any feasible
and individually rational payoff profile can be approximately achieved in a sequential

equilibrium with communication, if the discount factor is sufficiently close to unity.

Proof. See appendix.

13



5. Strict Incentives for Truth-Telling

So far we constructed equilibria where each player’s expected future payoff is
independent of what she announces, thereby providing her a weak incentive to tell the
truth. In this section we modify the equilibria to provide strict incentive for truth-
telling. Our construction is based on the following idea. Suppose the realization of
some random variable y is commonly observable to 1 and j, but its probability
distribution p(y) is only known to 1. Is it possible for j to induce i to reveal the true
distribution p? The answer is yes, and j can let 1 announce a distribution, say r(-), and

when y is realized provide i with payoff 2r(y)-Z,x(y’)?.. Then, i's expected payoff is

2L2r(3) = 2 r(y)1p(y),

.
and this concave quadratic form in r is uniquely maximized at the point where the first
order conditions Vy 2p(y)—2r(y)=0 are satisfied. Hence announcing the truth r = p is
the unique optimal for i.

In the context of repeated games, y corresponds to a; and under our
assumption that each player announce her action after observing ®, player 1 knows that
the probability distribution of a; is given by Pr(a | a;,®), which corresponds to p in the

above construction. Suppose i receives payoff

fi(@,m)=2Pr(m_lm,0)~ Y Pr(a'_Im,»)*, (5.1)

a'_jeA;

which depends on the announcements me A. When other players tell the truth (m =a),
the expected payoff E[f;| a;,®] is maximized when Pr(-| m;, ®) is the true distribution of
a,, as announcing m; amounts to be choosing a particular distribution r(-)= Pr(: | m;, ®) in
the above construction. Hence truth-telling m;=a; is an optimal announcement.
Furthermore, if there is no other a’#za; which induces the same distribution, Pr(a ;| a;, ®)
=Pr(a,|a’;, ®) for all a;, then announcing the truth is the unigue optimal.

Hence strict incentives for truth-telling can be provided if we modify the
variation of future payoff, which is represented by x; in Lemma 2, to incorporate a small

term proportional to f, provided that we have

VoViv(a', a”) such that a’# a”; 3a,; Pr(a;la’}, ®) # Pr(a;la”;, w). 5.1)

14



Condition (5.1) requires that the players’ actions are not independent conditional on ®.
Note that even though each player independently mixes so that a; and a; are ex ante
independent, the posterior distribution of a; usually depends on a; once player 1
observes the signal ®. The main idea here is to exploit this statistical dependence of
private actions to provide strict incentives for truth-telling. As we will show below, it is

easy to see that the reqired condition (5.1) is generically satisfied.

Proposition 3. Suppose that N>3, V* has non-empty interior, and communication is
allowed. Under (4.2), for a generic choice of the signal distribution, any feasible and
Individually rational payoff profile can be approximately achieved by a sequential
equilibrium where all players have strict incentives to announce their true actions, if

the discount factor is sufficiently close to unity:

Proof. Fix any A#0 and let (0*,x) be the pair identified in the proof of Proposition 2 that
approximately achieves k°(L). Instead of x;, we will introduce a new side payment

scheme x’;, which is represented as
X,i(mrm) = Yi(mym-ij) + p(fl(mrm) - Bl)’

where p is a small positive number and B, is a real number to satisfy A,(f(w,m) - B)<0 for
all (m,m). Note that y; is independent of what i and another (suitably chosen) player j
announce, as i1s the case with x; in the proof of Proposition 2. If condition (5.1) is
satisfied at o*, each player i has a strict incentive for truth telling under x’;, as we have
seen above. By similar arguments as in the proof of Proposition 2, we can show the
existence of y; such that (i) x’; satisfies (IC°) in Section 2 and (i1) Ay(w,a)=0 for all (w,a).
(The details can be found in Appendix.) Then, by choosing p sufficiently small we can
make Ax’(®,a) an arbitrarily small negative number for all (w,a). Hence we conclude
that (a*,x’) also approximates k°(A).

Condition (5.1) is satisfied if for all ®, i, and (a’;, 2”;) such that a’# a”;, we can
find (a°;, a')) such that

Pr(a’la;,w) _ Pr(a’la"; ®)
Pr(al_ila',. ,@) Pr(al—ila"i ,0) '

As the conditional probability is given by
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P(wla)a” (a_,)
Y Pr(wla,.a’_ ) (@)’

Pr(a_la

W)=

i

where o* ;(a;) 1s the probability of a; under a*, condition (5.1) is satisfied if for all o, i,

and (a’, a”) such that a’#a”,, we can find (a°,a',) such that
o*,(a*,) >0, k=0,1 and (5.2)

p(wla'; ,af,.) p(wla";,

1

a
plwla’, ,al_,.) p(wla", ,a

t

)
i 5.3
) (5.3)

1

0
1

Clearly, condition (5.3) is satisfied generically as a’#a”; and a°#a',.

We can also show that condition (5.1) is also satisfied generically in the space of
symmetric signal distributions, so that providing strict incentives for truth-telling for

symmetric games are also possible:

Corollary 3. Consider symmetric games, and suppose that N>4, V* has non-empty
Interior, and communication is allowed. Then for a generic choice of the (symmetric)
signal distribution any feasible and Individually rational payoff profile can be
approximately achieved by a sequential equilibrium where all players have strict
Incentives to announce their true actions, if the discount factor is sufficiently close to

unity.

Proof. We can choose a%; and a!; satisfying (5.2) in such a way that they consists of
different combinations of actions. Then, the symmetry does not require p(w|a’;,a’;) to
be identical to neither p(wia’,a',)) or p(wia”,a’,), because each of (a’,a’), (a’,a',) and
(a”;,a%,) consists of a distinct combination of actions (Recall a'#a’;). Hence (5.3) is

satisfied generically in the space of symmetric signal distributions.
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Appendix
A. Proof of Corollary 2.

We only need to check if the statements in Lemma 3 hold under symmetric

signal distributions. Hence Corollary 2 is shown by the following lemma.

Lemma 4. When N>4, the following are true for a generic choice of symmetric signal
distribution p(w/a).

(1) For any e>0 and any pure strategy profile a, there is a mixed strategy profile a such
that / /g(a)-g(e)] | <€ and @(a) has the maximum row rank for any pair 1, j.

(i1) Take any €>0 and any profile (a;, o ;) where a; is a best response against o, Then
there Is a profile (a’, &’;) such that [/gya; ay)- g(a, &’)//<e, a’ is a best response

against o’;, and R(3, (a}, &’ ;) has full row rank for each j#1.

Proof. Let A={1,2,...K} for each i and Q={w},...,0". We assume K,L>2, because
Corollary 2 trivially holds when K=1 or L=1 (for the latter case see the proof of Corollary
1).

Part (i): For any pair of players i and j, define o(1,j) to be the profile where (i) 1
and j are taking pure action 1 and K respectively and (ii) other players mix all actions

with an equal probability. Fix any symmetric distribution where

1 if #{hla, =k} isevenforallk=2,.. K

0 otherwise,

p(@'la) ={

and consider the (partial) table of p(w|a)’s in Figure A.1, where n and m are any distinct
players other thaniandj. The rows and columns of the table are indexed by (a;,a;) and
(w,a ) respectively. This forms a lower-triangular matrix (call it B) with 1's on the

diagonal, because we have the following:

The elements in area (A) are equal to 0 because #{h|a,=a,}=1 and a_>2.
The elements in area (B) are equal to 0 because #{h | a,=K}=3.
The elements in area (C) are equal to 0 because #{h | a,=K}=1.

The elements in area (D) are equal to O because #th | a,=a,}=1 and a >2.



*** Figure A.1 about here ***

Hence matrix B is non-singular because its determinant is equal to 1 (the product of its
diagonal elements). Note that Q;(c’'(i,j)) has a sumbatrix equal to K™?B, because at
o’(1,j) each aj; is taken with an equal probability K®?. Therefore, Q;(c(1,j)) has the
maximum row rank for the particular distribution given above. As the determinant of
B is polynomial in p(w| a), we conclude that Q;;(0’(i,j)) has the maximum row rank in the
open and dense set P’(i,}) in the space of symmetric signal distributions. The rest of the
proof is identical to Lemma 3 (3).

Part (11): For any pair of players i and j, conider (a”;, a* ;) where a”; is any fixed
pure strategy and each player n#i,j mixes all actions with an equal probability. Choose

any symmetric distribution with

0 if Ik #{hla, =k} =1

1 otherwise,

p(o'la) ={

*** Figure A.2 about here ***

and then we obtain a nonsingular matrix B’ of p(w|a)’s in Figure A.2, where m is any
player other thaniandj. By a similar argument as in part (i), Rj(i, (a";, «*)) is shown
to have a submatrix equal to K™?B’, and therefore it has full row rank in an open and

dense set P(i,j, a”) in the space of symmetric signal distributions. Then, in open and

dense set nP(i, j,a";), we can follow the same argument as in the proof of Lemma 3

ivj.a";

(if).

B. Construction of the side payment schemes in the proof of Proposition 3.

We use Lemma 2 to show the folk theorem, by demonstrating ﬂDc(l) D V*,
A0

Fix 2#0 and define I(A)={i| A#0}. As in the Proof of Proposition 2, we need to determine
D¢(A) in the three possible cases: (a) I(A)={i} for some 1 and A>0, (b) I(A)={i} for some i and
A;<0, and (c) |[I(A)|2>2.

Here, we consider only case (c), as other cases are similar. Let a* be a
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maximizer of Ag(a). Then, by Lemma 3 (i), for any >0, we can find a mixed strategy
profile a such that | [ g(a*)-g(o) | | <e and Q;;() has the maximum row rank for all pair i,
j. We will show that o can be supported by a side payment scheme that satisfies
-£<Ax'(0,2)<0 for all (w,a). When igI(}), let f; be given by (5.1). Choose any other
player j#1 and consider a function y;(®,m ). We now define the side payment scheme
for i by X'j(®w,m )=y(®,m ;)+p(f(w,m)-B;) for some p>0 and B;eR. Function y; is to be

determined to satisfy
Va; v;=gfa, o)+ Ex(wa)l a;, o] B.1

for some v;. This can be rewritten as
Vi—§& (ai’a.i) —E[P(f, - B,‘)Iai’a.i] = R,'(j’a-i) y[(a),a_ij) s

and it has a solution in y; because R;(j, a.;) has full row rank (as Q;;(e) has the maximum
row rank). Under x';, player i has an incentive to tell the truth after any action a; and
signal ® (because term y; is independent of what she says and term f; rewards truth-
telling). Given truth telling, (B.1) ensures that player i is indifferent to take any action
so that she has an incentive to follow the designated mixed strategy o,.

For any pair i,j € I(A), fix any (v;,v;) and find y%(w,a ;) (k=1,j) such that
Va; v;=ga,e) + Eitp(E-B)la,a, (B.2)
Va; v;=ga;,o,) + Ely%+p(f-B) a0, and
Ayl + AyS=0. (B.3)
This set of conditions is equivalent to
Va; vi-gia,a) — Elp(f-Byla,a;] = E[yY|a;,o;] and

Va; -(A ;"j){vj'gj(ajva-j) - E[P(f;—Bj) fa,oul} = Ely% a0,
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and by a similar argument as above, this system is shown to have a solution in y¥, as

Q;(0) has the maximum row rank. Now for 1 e I(A), define x;, by
1 )
X, = Z v/ +p(f;—=B;). Then, by the same argument as above, we can
#I(A‘) -1 j#i.jel(A)

deduce from (B.2) that x’ satisfies IC%).  From (B.3), we have Ax'= ZAp(f-B). By
choosing B, suitably and making p a small number, we can ensure -e<Ax’(®,a)<0 for all
(n,a). Hence we have found (o,x’) which satisfies (IC°) and (B°) with the property
| 1 g@®)-(g()+AE[X | af) | | <2e. As €& can be arbitrarily small, we have
k*(M)=Ag(a*)=max, ,Ag(a), and therefore D*(A)={v|Av < max, ,Ag(a)} in case (c). By

similar arguments, the same is true for case (a) and D*(A)={v|v2v;} in case (b). Hence

we conclude ﬂDC(/l) DV*,
20
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